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Abstract

Dynamic events can be regarded as long-term temporal objects, which are characterized by spatio-
temporal features at multiple temporal scales. Based on this, we design a simple statistical distance
measure between video sequences (possibly of different lengths) based on their behavioral content. This
measure is non-parametric and can thus handle a wide range of dynamic events. Having an event-based
distance measure between sequences, we use it for a variety of tasks, including: (i) event-based search
and indexing into long video sequences (for “intelligent fast forward™), (ii) temporal segmentation of
long video sequences based on behavioral content, and (iii) clustering events within long video sequence
into event-consistent sub-sequences (i.e., into event-consistent “clusters™). These tasks are performed
without prior knowledge of the types of events, their models, or their temporal extents.

Our simple event representation and associated distance measure supports event-based search and
indexing even when only one short example-clip is available. However, when multiple example-clips of
the same event are available (either as a result of the clustering process, or supplied manually), these
can be used to refine the event representation, the associated distance measure, and accordingly the
quality of the detection and clustering process.

1 Introduction

Dynamic events can form a powerful cue for analysis of video information, including event-based
video indexing, browsing, clustering, and segmentation. Analysis of events [27, 2, 10, 16, 15, 7, 18, 11,
21] has primarily focused on the recognition of sets of predefined events or actions, or assumed restricted
imaging environments. For example, Ju et al. model and recognize articulated motions [10], Black and
Yacoob treat facial expressions [2], and the approaches of Polana and Nelson [18], Cutler and Davis [5],
Liu and Picard [11] and of Saisan et al. [21] are designed to detect periodic activities. These methods
propose elegant approaches for capturing the important characteristics of these events/actions by spe-
cialized parametric models with a small number of parameters. These parametric models usually give
rise to high-quality recognition of the studied actions. The construction of these parametric models is
usually done via an extensive learning phase, where many examples of each studied action are provided
(often manually segmented and/or manually aligned).

However, real-world applications are unlikely to be restricted to recognition of pre-studied carefully
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modelled events. When dealing with general video data (e.g., movies), often there is no prior knowl-
edge about the types of events in the video sequence, their temporal and spatial extent, or their nature
(periodic/non-periodic). A desired application might be for the user who is viewing a movie (e.g., a
sports movie), to point out an interesting video segment which contains an event of interest (e.g., a short
clip which shows a tennis serve), and request the “system” to fast-forward to the next clip (or find all
clips) where a “similar” event occurs. We refer to this as ““event-based video indexing”, or “Intelligent
Fast-Forward”. Such applications require developing a notion of event-based similarity which is based
on a less-specialized (but also less restrictive) approach to event modelling.

Approaches for modelling events in non-parametric ways in the form of dynamic textures have been
previously suggested (e.g., [4, 18, 25, 21, 1]). Some for synthesis, a few for recognition (but usually
recognition of periodic events). Our approach bears resemblance to this category of methods, but (i)
applies to both periodic and non-periodic events, and (ii) is insensitive to photometric and spatial changes
(e.g., due to different worn clothes, etc.).

We regard an event as a stochastic temporal process, where local space-time measurements at multiple
temporal scales are taken as samples of the stochastic process, and are used to construct an empirical
distribution associated with this event. Our particular choice of space-time measurements preserves
the temporal variations while being insensitive to spatial changes, and applies to both periodic and
non-periodic events. The distance between empirical distributions provides a simple statistical distance
measure between video sequences (possibly of different lengths) based on their behavioral content. This
measure is non-parametric and can thus handle a wide range of dynamic events. It may not be optimal for
a specific action, but allows for general event-based analysis of video information containing unknown
event types.

Having an event-based distance measure between sequences, we can use it for temporal segmentation
of long video sequences based on behavioral content. Alternatively, we can use it for clustering events
within long continuous video sequences without prior knowledge of the types of events, their models,
or their temporal extent. An outcome of such a clustering process is again a temporal segmentation
of a long video sequence into event-consistent sub-sequences but also yields their grouping into event-
consistent clusters. The proposed temporal segmentation is based on similarity of behavioral content,
and is thus fundamentally different from the standard temporal segmentation of video into “scenes” or
“shots” (e.g., [14, 29, 20, 13]). An approach to behavioral-based temporal segmentation of video was
proposed by Rui & Ananadan [19]. However, unlike [19], our approach provides temporal segmentation
into richer non-atomic actions and events. For example, in a clip showing a tennis player striking the
ball, the approach of [19] will segment the strike into its fragments (e.g., backward movement of the
arm, forward movement of the arm, forward step, etc.), whereas our approach can treat the entire tennis
strike as a single event.

While our event-based distance measure is inferior in accuracy to the more specialized (but more
restricted) parametric models (e.g., [27, 2, 10]), it can be refined with the gradual increase in knowledge
about the underlying data. This gives rise to a stratified approach to event-based detection and indexing:
When only one short example clip of the event-of-interest is available, our simple and crude measure
can be used for event-based indexing and detection. However, when multiple example clips of the same
event are available (either as a result of the clustering process, or pointed-out manually), these can be
used to refine our event representation, the associated distance measure, and the quality of the detection
and clustering process.

A preliminary version of this paper appeared in [28].



2 What is an Event?

Events are long-term temporal objects, which usually extend over tens or hundreds of frames. Polana
and Nelson [18] separated the class of temporal events into three groups and suggested separate ap-
proaches for modelling and recognizing each: (i) temporal textures which have indefinite spatial and
temporal extent (e.g., flowing water), see [17] , (ii) activities which are temporally periodic but spatially
restricted (e.g., a person walking), see [18], and (iii) motion events which are isolated events that do not
repeat either in space or in time (e.g., smiling). In this paper we refer to temporal events as all of the
above, and would like to treat all of them within a single framework.

Temporal objects (events) and spatial objects bare many similarities as well as differences. Spatial
objects are usually characterized by multiple spatial scales [8, 3, 22]. Similarly, temporal objects (events)
are characterized by multiple temporal scales. For example, in a sequence of a walking person, the high
temporal resolutions will capture the motion of the arms and legs, whereas the low temporal resolutions
will mostly capture the gross movement of the entire body.

However, there is a major difference between spatial and temporal objects. Due to the perspective
nature of the projection in the spatial dimension, a spatial object may appear at different spatial scales in
different images (e.g., depending on whether it is imaged from far or near). In contrast, a temporal event
is always characterized by the same temporal scales in all sequences. This is due to the “orthographic”
nature of the projection along the temporal dimension (which is simply the temporal sampling at constant
frame rate). For example, a single step of a walking person, viewed by two different video cameras of
the same frame rate, will extend over the same number of frames in both sequences, regardless of the
internal or external camera parameters. Hence, the same event will be captured at the same temporal
scales in different sequences, even when viewed from different distances, different viewing positions,
or at different zooms. This observation has motivated us to represent and analyze events by performing
measurements and comparing them at corresponding temporal scales across different sequences.

3 Event Representation

Based on the above observations, local space-time measurements at multiple temporal scales of the
video sequence are taken as samples of a stochastic temporal process (the event), and are used to con-
struct an empirical distribution associated with this event at each temporal scale. Two events are con-
sidered similar if they could have been generated by the same stochastic process, i.e., if their empirical
distributions at corresponding temporal scales are similar. This is explained next.

For obtaining measurements at multiple temporal scales we first construct a temporal pyramid of the
entire video sequence by blurring and sub-sampling the sequence along the temporal direction only (see
Figure 1). The temporal pyramid of a sequence S is thus a pyramid of sequences S!'(= S),S?,...,SE,
where the image frames in all the sequences are of the same size, and each sequence S! has half the
number of frames of the higher resolution sequence S'~!. For example, given a sequence S = S* of 600
frames of size 200 x 300, we blur it using a 1D gaussian filter (we used a 5 tap filter) along the temporal
dimension. We then sub-sample along the temporal dimension by a factor of 2 resulting in a sequence
S? of 300 frames of the same spatial dimensions as the frames in S* (200 x 300). Similarly S? will have
150 frames of size 200 x 300 and so forth. We usually use 3 or 4 temporal scales (i.e., L=3 or 4).

For each level (sequence) S’ in the temporal pyramid, we estimate the local space-time intensity
gradient (Si,S:fj, S!) at each space-time point (z,y,t) (See Figure 2). The gradient is normal to the
local spatio-temporal surface generated by the event in the space-time sequence volume (at temporal
resolution ). The gradient direction captures the local surface orientation, which depends mostly on



Figure 1. The Temporal Pyramid: The
temporal pyramid is constructed by
blurring (convolving with a 5-tap 1D
gaussian) and sub-sampling (by a
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the local behavioral properties of the moving object, while its magnitude depends primarily on the local
photometric properties of the moving object and is affected by its spatial appearance (e.g., color, texture
of clothes, illumination, etc.). To preserve the orientation (behavioral) information alone and eliminate
as much of the photometric component as possible (the magnitude), we normalize the spatio-temporal
gradients to be of length 1. To be invariant to negated contrasts between foreground and background
(e.g., a person wearing dark/light clothes against a light/dark background) and to the direction of action
(e.g., walking right-to-left or left-to-right), we further take the absolute value of the normalized space-
time gradients. Our local space-time measurements are therefore:
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We associate with each event a set of 3L empirical distributions {p! }, one for each component of
the space-time measurements (k = x,y,t) at each temporal scale (I = 1,...,L). These empirical
distributions capture the statistics of the spatio-temporal shape generated by the event. The empirical
distribution p!. of measurements N} is represented by a discrete smoothed histogram %! whose integral
is normalized to 1. For example, when using 3 temporal scales an event is represented by a set of 9 one-
dimensional histograms: {h}, hy, hy, h2, h2, hi, b3, h3, hi}. The normalization of the histograms gives
rise to similar histograms (i.e., statistics) for sequences displaying the same event, even when the two
sequences are of different temporal lengths or of different spatial sizes.

We ignored all space-time points (x, y, t) for which the temporal derivative is below some threshold,
thus performing the statistics (computing the histograms) mostly on spatio-temporal points which par-
ticipate in the event. This step can be regarded as a very rough spatial segmentation, and was sufficient
for our purposes (this was used for all the results shown in this work).

(Ny, Ny, Nj) = (1)
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Figure 2. Space-Time Measurements: (a)-
(c) Three example frames from an example
sequence showing a person walking left-to-
right. (d) The corresponding space-time vol-
ume S. The space-time gradient (S,, S, S;) =
(5: 5, 5¢) is estimated at each space-time
point (z,y, t) in the volume S.

(d)

To illustrate this, Figure 3 shows the empirical distributions (histograms) k! of one component of
space-time measurements N} (k = t,1 = 1) for 6 different video clips. Three clips (Figure 3.a,¢,f)
show “walking” activities performed by different people wearing different clothes, viewed from dif-
ferent viewing angles, from different distances and with different backgrounds. The other three clips
(Figure 3.b,c,d) show the same person (wearing the same clothes, same background, etc.) performing
different activities (“jog”, “wave” and “roll””). The distributions of all the *walking’ clips (marked in blue
solid lines) are much closer to each other than to those corresponding to the other activities (marked in
different colors and different line types).

Unlike Chomat & Crowley [4], which measure motion features at multiple spatial scales, our mea-
surements are performed at multiple temporal scales. We therefore capture temporal textures as opposed
to “moving spatial textures” which are captured by [4]. Although [18, 25] used the term “temporal
textures”, in fact they did not measure texture properties at multiple temporal scales. [23] used the
term “video textures” with a different meaning - for synthesizing video by temporally shuffling frames.
Saisan et al. [21] model “dynamic textures” in video sequences as auto-regressive processes and perform
recognition by examining the auto-regressive model parameters. This yields good results for sequences
with temporal stationarity (e.g., waves, steam, etc.) but cannot be applied to non-stationary dynamic
events such as a single tennis stroke. Spatio-temporal video textures have been previously used by [1]
for video synthesis. While in video synthesis it is important to preserve both the spatial and the temporal
properties of the texture (in order to generate a long realistic looking sequence from a short clip), in
event recognition and detection we do not want to be sensitive to the spatial texture, only to the temporal
texture properties. Insensitivity to spatial texture is necessary in order to detect different people wearing
different clothes as performing the same dynamic operations. The spatio-temporal measurements we
use in this work (unlike those of [1]) are relatively insensitive to the changes in spatial properties of the
acting person or of the background.
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Figure 3. Distributions of Space-Time Measurements: (a),(e),(f) Example frames from three clips
showing walking activities performed by different people wearing different clothes, viewed from
different viewing angles, from different distances and with different backgrounds. (b),(c),(d) Exam-
ple frames from three clips showing the same person performing different activities (while wearing
the same clothes, same background, etc.). (g) The empirical distribution &} of N} for the six differ-
ent clips. The distributions of all the ““walking”” clips (marked in blue solid lines) are much closer to

each other than to those corresponding to the other activities (“jog”, “roll”’, and “wave”, marked
in different colors and different line types).

4 An Event-Based Distance Measure

To measure the “behavioral” distance between two sequences (S; and S;) we measure the distances
between corresponding empirical distributions of all the components of the space-time measurements
at all temporal scales using x? divergence, and add these to obtain a single (squared) distance measure
between the two sequences: , 1 [hllk(i) _ hék(i)r

D=0 ST TG )
Prior smoothing of the histograms decreases tHé seﬁ§|(tz|2/ity &Féﬁe x?2 test to small local miss-matches
between the histograms {r!, } and {h},.}. Note, however, that the sequences S; and S, need not be
pre-aligned.

In general, enforcing simultaneous occurrence of space-time measurements at multiple temporal
scales should provide a better distance measure than Eq. (2). However, this requires the use of multi-
dimensional histograms (e.g., [22]). These are computationally intensive and memory-consuming (e.g.,
for k = 3, L = 4, and assuming 256 bins for each histogram dimension, the size of the multi-dimensional
histogram is 256'%). Instead we use single-dimensional histograms and require the simultaneous oc-
currence of distributions of space-time measurements at multiple temporal scales. The use of single-
dimensional histograms reduces the data size to 12 - 256, which is easy to manage and computation-
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ally fast. However, by using the single-dimensional distributions we implicitly assume independence
between the components of the space-time measurements of each spatio-temporal point, i.e., we as-
sume that (N ,N, ,N/,..., NI NI N[) of the spatio-temporal point (;, y;, t;) are independent (an
assumption which is usually inaccurate). However, as can be seen from our results, requiring the si-
multaneous occurrence of distributions of space-time measurements {A } was found to give satisfactory
results.

Figure 4 shows the effectiveness of the distance measure of Eq. (2) for event detection and indexing
based on a single example clip. The video sequence was several-minutes long (approx. 6000 frames)
recorded outdoors by a stationary video camera (see Figure 4.a - 4.f). The sequence contains four types
of frequently occurring activities: walking, jogging, hand-waving, and walking-in-place (performed
by different people of both genders wearing different clothes for different lengths of time), and single
occurrences of several other activities (e.g., rolling, and other free activities). Most of the walking is
performed parallel to the image plane, but several parts include walking in slightly diagonal directions
and some on snake-like paths. A short clip (64 frames long) where a single person walked left-to-right
was selected and compared against a sliding window continuously shifted across the entire long video
sequence. Small values in the graph of Figure 4.g indicate temporal regions in the long sequence with
high similarity (small distance) to the example clip, while large values indicate low similarity (large
distance). The blue bars on the time axis mark the video segments where a person actually walked (i.e.,
manually marked ground-truth).

Figure 5 further illustrates the effectiveness of the distance measure of Eq. (2) by applying the event
detection scheme to a video sequence showing a person performing three types of actions: ’punch’,
’kick’ and "duck’ in an arbitrary order. A short clip where the person performed a single punch was
selected and compared against a sliding window continuously shifted across the entire long video se-
quence. Here again, small values in the graph of Figure 5.d indicate temporal regions in the long se-
quence with high similarity (small distance) to the example clip, while large values indicate low similar-
ity (large distance). The blue bars on the time axis mark the video segments in which the person actually
punched (i.e., manually marked ground-truth).

Our simplistic (but general) event-based representation and distance measure are probably inferior
in accuracy to the more sophisticated (but more restricted) parametric approaches (e.g., [27, 2, 10]).
However, they can handle a wide range of unknown events and actions. Furthermore, as was shown in
Figure 5, a single example clip of an event suffices to generate our event representation and measure its
behavioral distance from other video clips. In Section 7 we discuss how an improved representation and
distance measure can be obtained with the gradual increase of information about the underlying data,
i.e., when more example clips of the same event are available.

5 Event-Based Temporal Segmentation

Having an event-based distance measure between video sequences, we can use it for temporal segmen-
tation of long video sequences according to their behavioral content. This is different from the standard
temporal segmentation into “scenes” or “shots” (e.g., [14, 29, 20, 13]), which is based on scene-cut or
shot-cut detection. We next suggest a scheme for temporal segmentation of long video sequences, which
is fast and simple to implement.

We use a sliding temporal window to compare every sub-sequence of length 7" to its consecutive sub-
sequence of length 7" (i.e., we compare the sub-sequence extending from frame f —7T+1 to frame f with
its consecutive sub-sequence extending from frame f + 1 to frame f + 7). For each pair of consecutive
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Figure 4. Event-Based Detection: (a)-(f) Representative frames of a 6000 frame long video se-
quence of various people performing various activities. (g) The measured distances (using Eq. (2))
between a single example clip showing a person walking and a sliding window shifted across the
entire sequence. The blue bars mark ground-truth for walks (manually detected and marked).
The measured distance between the example clip and all other “walks™ is small, even though the
various “walks™ were performed by different people wearing different clothes, viewed from dif-
ferent viewing angles, from different distances. For color images and sequences with results see
http://www.wisdom.weizmann.ac.il/~vision/EventDetection.

sub-sequences we estimate the distance between them based on information from all temporal scales
using the distance measure of Eq. (2). This results in a set of distance values where maxima points
correspond to start/end points of events (See Figure 6).

Figure 7 displays the results of applying temporal segmentation to the sequence of Figure 5. A single
action in this sequence (i.e., a single punch, kick or duck) usually extends between 25 and 40 frames. We
tested our temporal segmentation scheme using a sliding temporal window of length 7" = 32 (top row of
Figure 7). This resulted in good temporal segmentation (i.e., the event-based cuts were indeed detected
at transitions between different actions). Small variations in the length 7" of the temporal window did
not affect the segmentation results. However, using significantly smaller sliding temporal windows,
which capture only small fragments of the actions or the short pauses between the actions (e.g., a sliding
temporal window of length 7" = 16 or 7' = 8 frames) resulted in inferior temporal segmentation (middle
and bottom rows of Figure 7). When using 7" = 16 all correct cuts were detected, but additional (false)
temporal cuts were also detected. In most cases, these occurred at the short pauses between repeated
occurrences of the same action. However, a very small temporal window (e.g., of length 7" = 8) captures
too little information about the action. Hence, when a window of length 7" = 8 was used, some of the
correct cuts were missed, while other false cuts were detected.
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Figure 5. Event-Based Detection: (@)-(c) Sample frames from a sequence showing a per-
son punching, kicking and ducking. (d) The measured distances (using Eq. (2)) between a
single punch clip and a sliding window shifted across the entire sequence. The blue bars
mark ground-truth for punches (manually detected and marked). The measured distance be-
tween the example clip and all other “punch” clips is small. For sequences with results see
http://www.wisdom.weizmann.ac.il/~vision/EventDetection.

6 Event-Based Clustering

The temporal segmentation scheme described above can be performed on-line as video streams in.
However, when the entire video sequence is available (e.g., in a batch mode) and when the sequence
contains multiple occurrences of events (e.g., the same events performed by different people at different
times), then our event-based distance measure can further be used for clustering events within long
continuous video sequences into event-consistent clusters. This can be done without prior knowledge of
the types of events, their models or their temporal extents.

Here too, we use a sliding temporal window to compare sub-sequences of the long video sequence,
but now every sub-sequence of length 7" is compared against all other sub-sequences of the same length
within the long video sequence (and not only against its consecutive sub-sequence, as in the temporal
segmentation of Section 5). Figure 8) illustrates this. We first construct a distance matrix D whose entries
are D(i,j) = D(j,i) = ij, where ij is the distance between sub-sequence 7 and sub-sequence j com-
puted using Eq. (2). We then use the Modified-Ncut approach of [24, 12] to cluster the data. We start by
estimating the affinity (similarity) matrix M/ whose entries are M (i, j) = M(j,4) = exp [-D(4, j)?*/0],
where ¢ is a constant scale factor used for stretching values (see [26] for more details). We take mul-
tiple eigen-vectors of M (we chose the number of eigen-vectors to be equal to the number of clusters)
and then perform k-means clustering on the entries of these vectors (for further details see [12]). This
results in a fully automatic clustering process where the only manually defined parameter is the num-
ber of clusters. The initial clustering is then refined by re-classifying all sub-sequences using cluster
representatives (see Section 7).

Figure 9.a displays the results of applying the above clustering method to the “punch-kick-duck”
sequence of Figure 5. Results are shown again for sliding temporal windows of sizes 7" = 32 frames
(which is approximately the length of a complete action), 7" = 16 frames, and 7" = 8 frames. The
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Figure 6. Temporal Segmentation Scheme: We measure the distance between consecutive sub-
sequences of length 7" (using all temporal scales). Maxima points correspond to temporal cuts.
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Figure 7. Temporal Segmentation: Results of temporal segmentation for the sequence of Fig-
ure 5 using temporal windows of lengths 7" = 32 frames (top row), 7' = 16 frames (middle
row) and 7" = 8 frames (bottom row). The detected cuts are marked by black vertical lines
on top of the ground-truth values (manually marked by colored bars). The blue bars corre-
spond to sub-sequences of “punches’, the green bars correspond to ““kicks” and the red bars
correspond to *“ducks”. The white regions correspond to sub-sequences in which no-motion oc-
curred. For more details see text (Section 5). For color images and sequences with results see
http://www.wisdom.weizmann.ac.il/~vision/EventDetection.

number of clusters was set to three. We visually display the clustering results by color coding the
time axis with the respective cluster association (7" = 32 top colored-bar, 7" = 16 second colored-
bar, and 7' = 8 third colored-bar of Figure9.a). These results can be compared against the ground-
truth manual classification (bottom colored-bar of Figure9.a). For T' = 32 all the sub-sequences were
clustered correctly, and good temporal segmentation into event-consistent sub-sequences (of various
lengths) was obtained. The use of 7" = 16 also yielded high quality results (almost all sub-sequences
were clustered correctly and only a few were miss-classified). However, when 7" = 8 was used the
results were not as good (there were more miss-classifications). The majority of the miss-classified
sub-sequences correspond to short pauses where hardly any motion occurred. The clustering process
classified these to the most similar cluster, which was not always the correct answer. Using a larger
window (e.g., " = 32, or T = 16) we did not encounter this problem, because sub-sequences which
included short pauses also included enough activity information in order to be classified correctly.

The suggested clustering process groups all the sub-sequences of length 7" into event-consistent clus-
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Figure 8. An illustration of the clustering scheme: (a) A schematic drawing of the content of a video
sequence showing different activities performed by different people. (b) Estimating the distances
between every sub-sequence of length 7" to all other sub-sequences of the same length should give
a distance matrix with low values (marked in black) for sub-sequence showing the same event and
high values (marked in white) for sub-sequence showing different events. (c) The sorted (block
diagonal) distance matrix after clustering. All sub-sequences showing the same event are grouped
together.

ters. As a by-product, this grouping also provides an event-based temporal segmentation of the long
video sequence. Due to the increase in the amount of available information, the clustering process is
less sensitive to the length 7' of the examined temporal windows, leading to a more robust temporal
segmentation than that obtained by the on-line process described in Section 5. Comparing the tempo-
ral segmentation results obtained by the on-line process of Section 5 (Figure 7) with those obtained by
the batch clustering process (applied to the “punch-kick-duck” sequence shows that using the “correct”
window size of 7" = 32 gave high quality results in both cases (see Figure 9). Using a “wrong” win-
dow size of length 7" = 16 still gave high quality results when applying the clustering process, whereas
inferior results were obtained with the on-line the temporal segmentation scheme. Using a very small
temporal window of size 7" = 8 gave results of lesser quality both when applying the on-line temporal
segmentation scheme and when applying the off-line (batch) event-based clustering.

To further illustrate the robustness of the clustering process to inaccuracies in specified parameters,
we show in Figure 10 results of applying the same clustering method to the “punch-kick-duck” sequence
of Figure 5 but this time with varying (wrong) number of clusters (instead of the correct number of 3).
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Figure 9. Event-Based Clustering: (@) Clustering results for the sequence of Figure 5 (using 3
clusters; see Section 6) displayed on the time axis for 7" = 32 (top colored bar), 7" = 16 (second
colored bar) and 7" = 8 (third colored bar) vs. ground-truth information (bottom colored bar).
All sub-sequences corresponding to the same cluster were assigned the same color (blue for the
“punches” cluster, green for the ““kicks™ cluster, and red for the ““ducks” cluster). (b) The distance
matrix before clustering. (c) The distance matrix after clustering.

When the number of clusters is set to 2 (Figure 10.a) we get that all “punches” and all “kicks” are
grouped together into one cluster and the second cluster corresponds to all the “ducks”. This result is
intuitive, since the “punches” and “kicks” are far more similar to each other than to the “ducks”. Similar
results were obtained for 7" = 32, T = 16 and for 7" = 8. Setting the number of clusters to the wrong
number 4 (Figure 10.b) forced the clustering process to classify some of the sub-sequences into a fourth
cluster (marked in black). When T" = 32 and 7" = 16 were used, the forth cluster corresponded to a
sub-cluster of the “punches”. One sub-cluster contained all the sub-sequences in which the punching
person stood frontal to the camera, and the other sub-cluster of the “punches” included all the punch
sub-sequences with a small angle between the person and the camera (However, for T = 16 ther were
more miss-classifications). When 7" = 8 was used, the fourth cluster corresponded mostly to the short
pauses between consecutive punches or consecutive kicks or consecutive ducks, where no activity was
performed. Since such pauses last for only extremely short periods of time, they cannot be detected
when a temporal window of length 7" = 32 is used.

Figure 11 shows the results of applying the event-based clustering method to the long video sequence
(6000 frames) of Figure 4. We used a sliding temporal window of size " = 64 frames, at skips of 8
frames (this is done to reduce the dimensions of the distance matrix from 6000 x 6000 to 750 x 750
in order to speed-up the clustering process). As described before, the sequence contains four types
of frequently occurring activities: walking, jogging, hand-waving, and walking-in-place (performed
by different people of both genders wearing different clothes for different lengths of time), and single
occurrences of several other activities (e.g., rolling, and other free activities). Most of the walking is
performed parallel to the image plane, but several parts include walking in slightly diagonal directions
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Figure 10. Robustness of Event-Based Clustering: Clustering results using “wrong” number of
clusters and various temporal windows. (a) Clustering results for the sequence of Figure 5 when
the number of clusters is set to 2 (instead of 3). Results are shown for temporal windows of length
T = 32 frames (top row), T' = 16 frames (second row) and 7' = 8 frames (third row). (b) Clustering
results when the number of clusters is set to 4 (i.e., over-fragmentation). See text for more details.
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Figure 11. Event-Based Clustering: Results of event-based clustering for the sequence of Fig-
ure 4 using a temporal window of length 7 = 64 frames. Top row: All sub-sequences
corresponding to the same cluster were assigned the same color (blue for the *““walks™ clus-
ter, red for the “runs™ cluster, etc.). Bottom row: manually marked ground-truth informa-
tion. See text for more details. For color images and sequences with clustering results see
http://www.wisdom.weizmann.ac.il/~vision/EventDetection.

and some on snake-like paths. Waving includes waving with a single hand or both hands (not necessarily
having the same phase). Figure 11) shows the clustering result vs. ground-truth.

Figure 12 shows the result of applying event-based clustering to a 500-frame long tennis sequence
recorded with a panning camera. The sequence was first stabilized to compensate for the camera-induced
background motion using [9]. A sliding window of size T" = 10 was applied to the stabilized sequence.
The three detected clusters correspond to strokes (backhand and forehand), hops, and steps of the tennis
player. Since our normalized local measurements are invariant to mirror reflections of the same action,
the backhand and forehand strokes are clustered together into a single “strokes” class. Figure 12.d shows
the clustering results vs. ground-truth.

7 Refining the Representation and Measure

When only a single example clip of each event £ is available, the event representation (i.e., the empir-
ical distributions of components of space-time measurements at multiple temporal scales) is constructed
from the single example clip, and the distance between two event clips is estimated using the 2 test (see

Eq. (2)).
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Figure 12. Event-Based Clustering: (@)-(C) Representative frames of a 500 frame long video se-
quence. (d) Clustering results displayed on the time axis (top colored-bar) vs. ground-truth in-
formation (bottom colored-bar). See text for more details. For color images and sequence with
clustering results see http://www.wisdom.weizmann.ac.il/~vision/EventDetection.

However, when multiple example clips of the same event E are available (either specified manually,
or obtained via the automatic clustering process), we can refine the event representation and the distance
measure to emphasize the contribution of important space-time measurements at the important temporal
scales, as learned from the examples.

To show this, we first rewrite the y? distance measure as a weighted sum of the squared differences
between two empirical distributions h; and hs:

Py (ho(i) — ha (i) _ N
X —~ ho(i) + ha(4) ;w (ha(i) 1(2)) 3)
where w; = ;—+—. Treating each histogram h as a column vector, we can re-write this in vector
notation:
on.

X? = (ha — )" [diag(hs + h1)] ™" (ha — ) 4)

where diag(hs + hy) is a diagonal matrix whose i-th diagonal entry is ho(i) + by (7).

We next show how to refine the weights w; and the empirical distributions / with the gradual increase
in information about the underlying data.

When multiple example clips of the same event type E are available, we compute the mean and vari-
ance of all the corresponding distributions (separately for each histogram bin of each filter response
at each temporal scale). The mean histogram h can be used as the event representation, and the his-
togram of variances varp indicates the reliability and hence the relative significance of the individual
histogram bins. This is illustrated in Figure 13. The solid blue line corresponds to a mean histogram
hz, Whereas the dashed green lines define the envelope corresponding to the mean +/— the standard
deviation of all histograms of the example clips. Therefore, when estimating the distance measure be-
tween the event E (represented by %) and any new incoming sequence with an empirical distribution
h, the weights of Eq. (3) should be replaced with w; = varlE(i) (where varg (1) is the variance of all the
example-histograms at bin ). Namely, high weights are assigned to bins of low variance (which are
more reliable, e.g., near the dashed cyan arrow) and low weights to bins of high variance (which are
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less reliable, e.g., near the solid magenta arrow). The refined distance measure specialized for detecting
events similar to £ is therefore:

D% = (h - @)T [diag(varg)] ™" (h - E) (5)

This measure identifies and emphasizes the contribution of prominent spatio-temporal components of
the space-time measurements at their prominent temporal scales. Note that for each event type FE there
will be a different set of weights.

When neighboring histogram bins (which correspond to similar filter responses) are not statistically
independent, we can further generalize the distance measure of Eq. (5) by incorporating covariance
information and not only the variance:

D% = (h — @)T covp ! (h — @) (6)

This is actually the squared mahalanobis distance [6], applied here to distributions (histograms).

Figure 14 compares the quality of the y2-based distance measure of Eq. (2) (or Eq. (3)) to the refined
distance measure of Eq. (5) for detection purposes. The detection is based on the measured distance
between a single (64 frames long) example clip of a walking event compared against a sliding window
(of 64 frames) which was shifted across a few-minute-long (6000 frames long) video sequence (the
sequence of Figure 4). The bottom colored-bar marks the ground-truth (manually detected walks). The
top colored-bar shows the results using the distance measure of Eq. (2). Even though the example clip
contains only a single person walking in a single direction and wearing a particular set of clothes, all
the other walking people wearing different clothes and walking in different directions were detected.
Although there are several false detections, the result indicates that our initial choice of representation
and distance measure are reasonable given no other information. The middle colored-bar shows the
detection results using the refined distance measure of Eq. (5) based on 10 example clips of walking
events (each 64 frames long). Using the refined distance measure reduces the number of false detections.

7.1 A Bayesian Point of View

The problem of event detection can be reposed as follows: Given a new video clip S and an event type
E, what is the a posteriori probability P(FE|S)?

According to Bayes rule P(E|S) = ZE20E). When no information is available about the set of
possible events, the number of events, or their ?requency of occurrence, we assume that all events E are
equally likely (i.e., P(E) is the same of all £). Similarly, when no information is available about the
types of sequences, we assume that all sequences S are equally likely (i.e., P(S) is the same of all S).

In that case P(£)/P(S) is constant, and

1 1 —\T  _ -
PUELS) & P(SI) = oy [—5 (h =) " covg! (h— hE)] ,
E 2

where h denotes the empirical distribution of space-time measurements in the video clip S, and r is
the dimension of A (i.e., the number of bins). The log-likelihood of E' is proportional to the (negated)
squared mahalanobis distance defined in Eq. (6). Therefore, small distances measured by Eq. (6) directly
correspond to high likelihood of the event F, and vice versa. When there is an approximate knowledge
about the size of the constant %, this can be used to determine the choice of threshold to be applied
to the distance measure of Eq. 663 for the purpose of event detection and event-based indexing. If we
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Figure 13. Weighting Histogram Bins: The mean histogram &z of all the distributions (histograms)
of the example clips (blue solid line) and the standard deviation from it (green dashed lines) of all
these distributions. The dashed cyan arrow points at a low variance region and the solid magenta
arrow points at a high variance region.

further assume independence between histogram bins, then the off-diagonal entries of the covariance
matrix become zero, and the discussion above applies then to the distance measure of Eq. (5). When
there is no prior statistical information about the event E (e.g., when there is only one example clip
of event type E), then our probability estimate is based on the standard y? distance measure of Eq.(4)
(which is equivalent to Eq. (2) or Eq. (3)).

Let us now examine the case when multiple example clips are available for all event types (e.g., via the
clustering process). We can further use our improved distance measures to refine the clustering results,
as well as for classification of new incoming sequences. This is done as follows: Let F1, ..., E be the

set of all possible events, and let S be a sequence to be classified. Then P(E}|S) = LEERLE)

P(S)
P(S|E)P(Ey) . . . ..
5 P(ern)PfEn)' The priors P(S|E), ..., P(S|EN) can be estimated from the distance measure (the ini-

tial or refined, depending on the number or example clips per event type), as explained above. When

all events are assumed to be equally likely (i.e., Vk P(E;) = L), then P(E|S) = %. Al-

ternatively, one can assume that the prior P(F}) of an event £}, is proportional to the frequency of its
occurrences. This can be estimated by the number of times it was detected in a long video sequence, or
by the size of each cluster identified in the clustering process. A sequence S will be classified as event
type Ej if P(Ey|S) = max, (P(E,|S)). The clustering results shown in Figs. 11 and 12 were obtained
by simple clustering followed by classification refinement according to representative event types.

8 Conclusion

We proposed a simple statistical distance measure between video sequences based on their behavioral
content. This measure is non-parametric, and can thus handle a wide range of dynamic events without
prior knowledge of the types of events, their models, or their temporal extent. We showed that this
measure can be used for a variety of video applications, including event-based detection, indexing,
temporal segmentation, and clustering of long streams of video sequences.

While our event-based distance measure is inferior in accuracy to the more sophisticated (but more
restricted) parametric models, it can be refined with the gradual increase in available information about
the underlying data.
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