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1 Introduction

The theory of sparse graph limits concerns itself with versions of local convergence and global con-
vergence, see e.g. [41]. Informally, in local convergence we look at a large neighborhood around a
random uniformly chosen vertex in a graph and in global convergence we observe the whole graph
from afar. In this note rather than surveying the general theory we will consider some concrete
examples and problems of global and local convergence, with a geometric viewpoint. We will discuss
how well large graph approximate continuous spaces such as the Euclidean space. Or how properties
of Euclidean space such as scale invariance and rotational invariance can appear in large graphs. For
the theory of unimodular random graphs and stationary graphs see [2] [8].

The first sections consider approximating the Euclidean and Finsler metrics by graphs. We study
the emergence of rotational, scale and conformal invariance in large graph metrics. We then move on
to comment on random graph metrics. Starting with graphs obtained by perturbing the Euclidean
metric, and then moving on to random graphs that are restricted to have a planar topology. In
particular, we will study graphs generated by random subdivisions. Local and global graph limits
will be woven into the whole discussion.

2 Some definitions of distance between metric spaces

Given a graph G = (V,E), the graph distance between any two vertices is the length of the shortest
path between them.

Along the note we will consider three notions of distances between metric spaces.
The first is that of quasi-isometry and slake-isometry between spaces, the second the Gromov

Hausdorff distance which is suitable for comparison between bounded spaces and is therefore useful
for studying scaling limits, and the third is regarding a local statistical similarity between spaces.

See Burago and Ivanov [17] for background on metric spaces, including the first two notions and
Lovász [41] for local limits.
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Definition 2.1. Two metric spaces G and H are said to be quasi-isometric if there exists a map
f : G → H and two constants 1 ≤ C < ∞ and 0 ≤ c < ∞, such that

• C−1dH(f(x), f(y))− c ≤ dG(x, y) ≤ CdH(f(x), f(y)) + c for every x, y ∈ G,

• For every y ∈ H there is an x ∈ G so that dH(f(x), y) < c.

Two metric spaces are said to be slack-isometric iff they are quasi-isometric with multiplicative
constant equal to 1. That is, if we can take C = 1 in the definition.

For global convergence we use: the Gromov-Hausdorff distance between two metric spaces is
obtained by taking the infimum over all the Hausdorff distances between isometric embeddings of
the two spaces in a common metric space.

One way to look at a large finite graph is to look at a large neighborhood around a random
uniformly chosen vertex. Often such neighborhood statistics capture quantities of interest and their
asymptotics. Thus, one is led to take limits of such statistics and thereby define a probability measure
on infinite rooted graphs, where the neighborhood of the root has the statistics that arise as the limit
statistics of the finite graphs. Such a limit of a sequence of finite graphs is local limit. All such limit
measures have a property known as unimodularity; it is not known whether all unimodular measures
are limits of finite graphs. This fundamental question was asked in [2]. Those that are such limits are
called sofic. Intuitively, a probability measure on rooted graphs is unimodular if its root is chosen
ı̀uniformlŷı from among all its vertices. This, of course, only makes sense for finite graphs. It is
formalized for networks on infinite graphs by requiring a sort of conservation property known as the
Mass-Transport Principle, see [13] [2] [8].

For local limit we follow [13]: a limit of finite graphs Gn is a random rooted infinite graph (G, ρ)
with the property that neighborhoods of Gn around a random vertex converge in distribution to
neighborhoods of G around ρ.

Formally, let (G, o) and (G1, o1), (G2, o2), . . . be random connected rooted locally finite graphs.
We say that (G, o) is the limit of (Gj , oj) as j → ∞ if for every r > 0 and for every finite rooted
graph (H, o′), the probability that (H, o′) is isomorphic to a ball of radius r in Gj centered at oj

converges to the probability that (H, o′) is isomorphic to a ball of radius r in G centered at o.

Given a (possibly random) graph we will consider the distribution on rooted graphs obtained by
rooting at a random uniform vertex.

Exercise: what is the limit of n-levels full binary trees?
Hint: it is not the infinite full binary tree.
We will also need the following,

Definition 2.2. Let G = (V,E) be a finite graph. Define the Cheeger constant of G to be

h(G) = inf
0<|S|< |V |

2

|∂S|
|S| .
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If G is an infinite graph we set

h(G) = inf
0<|S|<∞

|∂S|
|S| .

An infinite graph G with h(G) > 0 is called non-amenable. Otherwise it is called amenable.

3 Rotational invariance

How well can the graph metric on bounded degree graphs approximate the metric of homogeneous
manifolds equipped with some invariant length metric.

3.1 Slack Euclidean?

Recall that the scaling limit of the Z2 grid is the L1 metric on the plane.
The following question was raised by Gady Kozma in a discussion with Oded Schramm and

myself.

Question 3.1. Is there a bounded degree graph which is slack-isometric to the Euclidean plane?

The Pinwheel tiling, which is a non-periodic tiling defined by Charles Radin [47], is a graph
quasi-isometric to the Euclidean plane where the multiplicative constant goes to 1 uniformly in the
distance.

By sampling a Poisson process in the Euclidean plane and drawing the corresponding Voronoi
tiles we get the Poisson Voronoi tessellation (see Wikipedia). The graph metric on the tiles is almost
surely have an asymptotically Euclidean metric see e.g. Howard-Newman [27].

Question 3.2. What is the asymptotic shape of a ball in a Poisson Voronoi tessellation where the
underling space is the plane with an lp metric?

See the closely related [18].

3.2 Near critical percolation

Can the L2 or other given Finsler metric ”naturally” emerge as a limit of bounded degree graph
metrics in the Gromov-Hausdorff distance?

Consider the natural embedding of the square grid in the plane.
Dilute the planar square grid by removing edges independently with probability q < 1/2. Since

1/2 is the critical percolation probability (Kesten [35]) almost surely there is a unique connected
dense infinite subgrid left.

Condition on the origin to be in the infinite connected component and look at large balls rescaled
to have diameter 1.
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For any fixed q the subadditive ergodic theorem was used in the context of first passage percolation
to show that the rescaled large balls around the origin will a.s. converge in the Gromov-Hausdorff
distance to a centrally symmetric convex body in the Euclidean plane.

Conjecture 3.3. As q → 1/2 the limiting shape Gromov-Hausdorff converges to an Euclidean ball.

Seems hard, since metric properties do not follow from conformal geometry. Yet simple simula-
tions seems convincing.

4 Scale invariance

4.1 Rotational and scale invariant Euclidean structures

Is there a distribution on tilings of the Euclidean plane which is rotation and translation invariant,
mixing (that is, what is observed in far apart fixed Euclidean balls decorrelates with the distance
between the balls), and stationary scale invariant (that is, there is a stationary matching or clustering
of neighboring tiles resulting in a rescaled sample)? The Pinwheel tiling [47] is such. What if we
further require spatial Markovity. That is given a tile you can not tell the tiling of the complement
e.g. at which points of its boundary 3 tiles meet? Consider space filling Schramm’s SLE(8) curve
and remove from it an independent Poisson process in the plane, the curve is then cut into pieces of
finite area. As suggested by Wendelin Werner, variants on this observation might provide the exotic
tilings we are after.

Aldous [1] initiated a study of random road networks whose distributions are exactly invariant
under Euclidean scaling. He introduced a natural axiomatization of a class of structures he called
scale-invariant random spatial networks, whose primitives are routes between each pair of points in
the plane and constructed a model, based on minimum-time routes in a binary hierarchy of roads
with different speed limits, satisfying the axioms.

We mention briefly an open problem of remotely similar spirit. Can you foliate Rd with Brownian
paths?

5 One large scale control, symmetric graphs

Let (Gn) be an unbounded sequence of finite, connected, vertex transitive graphs such that |Gn| =
o(diam(Gn)d) for some d > 0. In [10] it is shown that,

Theorem 5.1. Up to taking a subsequence, and after rescaling by the diameter, the sequence (Gn)
converges in the Gromov Hausdorff distance to a torus of dimension < d, equipped with some invari-
ant Finsler metric.
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In particular if the sequence admits a doubling property at a large yet sub diameter scale, then
the limit will be a torus equipped with some invariant length metric. Otherwise it will not converge
to a finite dimensional manifold. When the degrees are uniformly bounded the limiting metric is a
polygonal Finsler metric.

The proof relies on a recent quantitative version of Gromov’s theorem on groups with polynomial
growth obtained by Breuillard, Green and Tao [16] and a scaling limit theorem for nilpotent groups
by Pansu [45]. See also Gelander [29]. Establishing quantitative versions will have applications to
random walks and percolation on vertex transitive graphs. For example in the spirit of Varopoulos’
theorem that the only recurrent finitely generated groups has at most quadratic growth [49]:

Let G be a finite, d-regular connected vertex transitive graph. View G as an electrical network
in which each edge is an one Ohm conductor.

Conjecture 5.2 (with Gady Kozma). For any two vertices

electric resistence(v, u) < Cd +
diam2(G) log |G|

|G| .

In addition for a sequence of vertex transitive graphs, if the diameter is o(|Gn|) then the electric
resistance between any two vertices is o(diam(Gn)).

Since finite vertex transitive graphs, when they converge to a manifold, converge to a torus, it
follows that the infimum, over all such, of the Gromov Hausdorff distance to Sn is attained. Which
one is the closest?

Question 5.3. Is the skeleton of the truncated icosahedron (soccer ball) the closest to S2?

”Proof”: Otherwise we would have a different design for soccer balls. See also Géode (géométrie)
in French Wikipedia.

5.1 Expander at all scales?

A sequence of graphs {Gn} is of an expander if there is h > 0, for all n, h(Gn) > h.

Question 5.4. Is there a family {Gn} of finite d-regular graphs, |Gn| → ∞, so that all induced balls
in all the Gn’s are expanders?

That is, there is h > 0, for all r > 0 and any v in any of the graphs Gn’s the ball B(v, r) is h-
expander, expander with a uniform edge expansion constant h. Note e.g. that if Gn is a sequence of
expanders with girth growing to infinity, then if r is smaller than the girth then the balls of radius
r are trees and thus not uniform expanders as r grows.

We conjecture that there is no such family. For vertex transitive graphs a positive answer to the
following conjecture regarding percolation on expanders will show that no such family exists. The
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proof will proceed by constructing a limiting nonamenable vertex transitive graph with a unique
infinite cluster whenever percolation occurs, we omit the outline.

Question 5.5. Let G be a bounded degree expander, further assume that there is a fixed vertex v ∈ G,
so that after performing p = 1/2 percolation on G,

P1/2(the connected component of v has diameter > diameter(G)/2) > 1/2,

Show that there is a giant component w.h.p? G is not assumed to be transitive.

The following two questions are regarding the rigidity of the global structure given local infor-
mation.

Question 5.6. Given a fixed rooted ball B(o, r), assume there is a finite graph such that all its r-balls
are isomorphic to B(o, r), e.g. B(o, r) is a ball in a finite vertex transitive graph, what is the minimal
diameter of a graph with all its r-balls isomorphic to B(o, r)? Any bounds on this minimal diameter,
assuming the degree of o is d? Any example where it grows faster than linear in r, when d is fixed?

Note that some r-ball in the grandparent graph, or any infinite non unimodular vertex transitive
graphs, does not appear as a ball in a finite vertex transitive graph. As by [13] local limit of finite
graphs is unimodular. When the rooted ball is a tree, this is the girth problem. One can consider a
weaker version e.g. when we require only that most balls are isomorphic to B(o, r). Not assuming a
bound on the degree, consider the 3-ball in the hypercube, is there a graph with a smaller diameter
than the hypercube so that all its 3-balls are that of the hypercube?

Question 5.7 (with Romain Tessera). Let X is the Euclidean or hyperbolic plane, together with
a triangulation, whose triangles are at most of diameter r. Suppose for each pair of Euclidean (or
hyperbolic) balls of radius r, B1, B2 centered on vertices of this triangulation, there is a Euclidean
(or hyperbolic) isometry mapping B1 to B2 respecting the triangulation (in the obvious way).

Does it imply that the triangulation is periodic?

5.1.1 Roughly transitive graphs

A metric space X is (C, c)-roughly transitive if for every pair of points x, y ∈ X there is a (C, c)-
quasi-isometry sending x to y.

If Gn is only roughly transitive and |Gn| = o
(
diam(Gn)1+δ

)
for δ > 0 sufficiently small, we are

able to prove, this time by elementary means, that (Gn) converges to a circle.

Question 5.8. Is there an infinite (C, c)-roughly transitive graph, with C, c finite, which is not
quasi-isometric to a homogeneous space?

Where a homogeneous space is a metric space with a transitive isometry group. The same question
can be asked in the wider category of Coarse embedding.

See [6] and references there for the study of quasi isometry between random spaces.
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6 Packing

Packing one graph in another space can be viewed as large scale-rough conformal geometry. Large
scale conformal geometry is developed in a work by Pierre Pansu [46]. We present a sample.

Question 6.1. Which graphs can be realized as the nerve graph of a sphere packing in Euclidean
d-dimensional space?

Where vertices correspond to spheres with disjoint interiors and edges to tangent spheres.
The rich two dimensional theory started with Koebe, who proved that all planar graphs admits

a circle packing.
In higher dimensions, Thurston observed that packability implies an upper bound of order

|G|(d−1)/d on the size of minimal separators, see e.g. [43]. There is an emerging theory with many
still open directions. Local graph limits were useful in the proof of the last two theorems below.

Theorem 6.2 (with Oded Schramm). The grid Z4, T3×Z and lattices in hyperbolic 4-space cannot
be sphere packed in Euclidean R3.

Let (Gn) be a sequence of finite, (k > 2)-regular graphs with girth growing to infinity,

Theorem 6.3. For every d there exists an N(d) such that Gn is not regularly sphere packed in
Euclidean d-dimensional space for any n > N(d).

The following is an extension to higher dimension of a theorem of Bowditch [15] following a
suggestion by Gromov.

Theorem 6.4. Let G be an infinite locally finite connected graph which admits a regular packing in
Rd. Then we have the following alternative: either G has a positive Cheeger constant, or they are
arbitrarily large subsets S of G such that |∂S| < |S| d−1

d
+o(1).

By regularly we mean uniform upper bound on the ratio of the radii of neighboring spheres. The
proof of the last two theorems in [7] uses sparse graphs limits.

Question 6.5 (with Oded Schramm). Show that any packing of Z3 in R3 has at most one accumu-
lation point in R3 ∪ {∞}.

7 Perturbing the Euclidean metric

Some families of metric spaces are naturally parameterized by the reals. The critical spaces are
usually more exotic. We will present a few examples. These spaces sometimes admit combinations
of properties which are impossible in the vertex transitive world. We start with the classical model
of first passage percolation for perspective.
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7.1 First passage percolation

One natural way to randomly perturb the Euclidean planar metric is that of first passage percolation
(FPP), see [36] and [30] for background. That is, consider the square grid lattice, denoted Z2, and
to each edge assign an i.i.d. random positive length. There are other ways to randomly perturb the
Euclidean metric and many features are not expected to be model dependent. Large balls converge
after rescaling to a convex centrally symmetric shape. Richardson (1973) proved the first shape
theorem, when the length has exponential distribution and the graph is the Zd lattice. Simulations
indicate that the limiting shape is not the Euclidean ball. Kesten (unpublished) showed that the
shape is not the Euclidean ball in high enough dimension.

The boundary fluctuations are conjectured to have a Tracy-Widom distribution. The variance of
the distance from the origin to (n, 0) is conjectured to be of order n2/3. So far only an upper bound
of n

log n was established, see [11]. Optimal bounds on the length of efficient algorithms for finding the
shortest path or to estimate its length are still unknown.

The structure of geodesic rays and two sided infinite geodesics in first passage percolation is still
far from understood. Furstenberg asked in the 80’s (attending a talk by Kesten) to show that almost
surely there are no two sided infinite geodesics for natural FPP’s, e.g. exponential length on edges.

Häggström and Pemantle introduced [24] competitions based on FPP, see [22] for a survey. Here
is a related problem. Start two independent simple random walks on Z2 walking with the same clock,
with the one additional condition, that the walkers are not allowed to step on vertices already visited
by the other walk, and otherwise chose uniformly among allowed vertices. Show that almost surely,
one walker will be trapped in a finite domain. Prove that this is not the case in higher dimensions.

7.2 Pertubations, beyond first passage percolation

We now describe several random metrics, the first two of which can be viewed as perturbations of the
grid like FPP, but with slightly stronger perturbation ”causing the underling grid metric to almost
disappear”.

7.2.1 LRP

Start with the one dimensional finite grid Z/nZ with the nearest neighbor edges, add to it additional
edges as follows. Between, i and j add an edge with probability β|i−j|−s, independently for any pair.
The main problem in long range percolation is, how does the distance between 0 and n/2 typically
grows in this random graph?

The off critical cases: when s > 2 the distance is order n, for 1 < s < 2 the distance is polylogn
(see [14] for the exact result, background and history). For s = 1 Coppersmith, Gamarnik and
Sviridenko showed that the distance is log n

log log n and if s < 1 the distance is uniformly bounded.
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The critical case: when s = 2 the distance is of the form θ(nf(β)), where f is strictly between 0
and 1 (Sly and Ding (2012) in preparation). Continuity, monotonicity, or even a guess of f are still
open.

These natural random graphs admit a combination of properties which are impossible for vertex
transitive graphs. E.g. when 1 < s < 2 the mixing time of the simple random walk is a.s. ns−1. That
is, small diameter does not exclude small bottlenecks as in vertex transitive graphs [5].

7.2.2 CCCP

Examine bond percolation on Zd. Each edge is open with probability p independently. Clusters are
connected components of open edges. For any d > 1, there is 0 < pc < 1, such that if p < pc all the
clusters are finite a.s. and the diameter of the clusters has exponential tail. If p > pc there is a unique
infinite cluster. While for the critical probability pc it is conjectured that there is no infinite cluster
and that the diameter of clusters has polynomial tail. This is true in dimensions 2 and d large.

The unique infinite cluster, for p > pc is a random perturbation of the grid. E.g. asymptotics of
the heat kernel are the same, how can we get ”interesting” critical geometry?

Conditioning on the critical percolation to have an infinite cluster results in a ”thin” graph with
infinitely many cut points.

Here is a suggestion: contract each cluster into a single vertex. The result is a random graph G

with high degrees (each vertex v ∈ G is a cluster C in Zd and its degree is the number of closed edges
coming out of C). When the percolation is subcritical one expects to see a perturbation of the lattice.
A random version of a rough isometry, but when the percolation is critical the random geometric
structure obtained is expected to be rather different.

We say CCCP instead of G (CCCP standing for Contracting Clusters of Critical Percolation).
For example (with Ori Gurel-Gurevich and Gady Kozma) we have: when d = 2, the CCCP has
exponential volume growth a.s. When d > 6 a.s. the CCCP has double-exponential volume growth.

8 Random planar metric

Above we reviewed random perturbations of the Euclidean plane. How to define and model a genuine
random planar metric?

8.1 Local convergence

Plane topology Angel and Schramm [3, 4] constructed the uniform infinite planar triangulation
(UIPT), a rooted infinite random triangulation which is the limit (in the sense of [13]) of finite random
triangulations (the uniform measure on all non isomorphic triangulations of the sphere of size n), a
model that was studied extensively by many (see e.g. [38]). The UIPQ is a similar construction with
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quadrangulation. The UIPT/Q looks very different from random perturbations of the plane as in the
Poisson Voronoi triangulation and has a rather surprising geometry at first encounter, e.g. volume
growth of balls in the UIPT is asymptotically r4. The UIPQ is recurrent [31] and subdiffusive [9] for
the simple random walk and in particular hyperfinite. A collection of graphs is hypefinite if for every
ε > 0 there is some finite k such that each graph G in the collection can be broken into connected
components of size at most k such that each has a boundary of size at most ε of its size. What about
a hyperbolic nonhyperfinite counterpart?

Hyperbolic analog? Guth, Parlier and Young [32] studied pants decomposition of random closed
surfaces obtained by randomly gluing N Euclidean triangles (with unit side length) together. They
gave bounds on the size of pants decomposition of random compact surfaces with no genus restriction
as a function of N . Their work indicates that the injectivity radius around a typical point is growing
to infinity. Gamburd and Makover [28] showed that as N grows the genus will converge to N/4 and
by Euler’s characteristic the average degree will grow to infinity. What about a local limit of random
finite triangulation/quadrangulation with genus growing linearly in the number of quadrangulation.

In the quadrangulation bijective techniques help a lot see [48]. In particular, Chassaing and
Durhuus constructed the UIPQ from an random infinite labeled tree, following by another con-
struction in [20] from a labeled critical geometric Galton-Watson tree conditioned to survive. With
Nicolas Curien we propose a model of infinite random quadrangulation constructed similarly from
a labeled super critical Galton-Watson tree. We conjecture that such a stochastic hyperbolic infinite
quadrangulation describes the limit of random finite quadrangulations with genus growing linearly
in the number of quadrangulation. The Shiq is not hyperfinite and the simple random walk on the
Shiq has positive speed almost surely.

Kaibel and Ziegler [34] survey a model of random lattice triangulations. Proving existence of
local limit and studying its properties, such as volume growth, seems interesting.

8.2 Global convergence

Scaling limits of random triangulations were also studied, see Le Gall [40] and Miermont [42] advanc-
ing over [19], who proved that the random triangulations scaled Gromov-Hausdorff converge to a
random compact metric space of dimension 4. This limiting surface called the Brownian map can be
seen as the two-dimensional sphere equipped with a random metric which induces the usual topology
but makes it a fractal space of Hausdorff dimension 4. It is of interest to obtain a quantitative esti-
mates on the rate of convergence as in the Hungarian coupling of random walks and Brownian motion
[37]. Also this theory is believe to be connected to 2D quantum gravity and conformal invariance
via the following construction:
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Conformal invariance If Tn is a uniform triangulation of the sphere with n faces. It is possible to
get a “canonical” drawing of Tn on the sphere by conformal tools. E.g. if Tn has no loops or multiple
edges, we can use the well known circle packing theorem (see Wikipedia, [25]):

Theorem 8.1. If T is a finite triangulation without loops or multiple edges then there exists a circle
packing P = (Pc)c∈C in the sphere S2 such that the contact graph of P is T . This packing is unique
up to Möbius transformations.

The circle packing enables us to take a“nice”representation of a triangulation T ∈ Tn, nevertheless
the non-uniqueness is somehow disturbing because to fix a representation we can, for example, fix
the images of three uniformly chosen vertices of Tn. Once this is done, we form the atomic measure
µTn formed by the Dirac’s at centers of the circles of the packing of Tn renormalized to have mass
one. This constitutes a canonical discrete conformal random probability on the sphere. By standard
arguments there exist weak limits µ∞ of µTn . Here are some tougher questions:

Questions

1. (Schramm [Talk about QG]) Determine coarse properties (invariant under SO3(R)) of µ∞, e.g.
what is the dimension of the support? Start with showing singularity.

2. Uniqueness (in law) of µ∞? In particular can we describe µ∞ in terms of GFF?
Is it exp((8/3)1/2GFF ), does KPZ hold? See [23].

3. The random measure µ∞ can come together with d∞ a random distance on S2 (in the spirit
of [39]). Can you describe links between µ∞ and d∞? Does one characterize the other? Is it a
path metric space?

8.3 Recursive subdivision

Important properties of the UIPT holds for a larger family of planar graphs. Start with a finite
directed graph and two marked vertices, one with one edge going out and one with one edge coming
in and no other edges. Recursively replace each edge with a copy of the graph with the marked edges
mapped to the two vertices defining the edge. Extension of these scheme by recursively replacing
fixed subgraphs results in infinite graphs admitting the doubling property: There is C < ∞, such
that for any r, the size of any ball of radius 2r in G is bounded by C times the size of a ball of radius
r. For example the graph of the Sierpinski gasket satisfies this property.

By recursive subdivision one can construct planar graphs that have polynomial growth with
arbitrarily large exponent. Still all these graphs are small in the following two senses. First, local
limits of sequences of bounded degree planar graphs obtained by taking consecutive subdivisions are
recurrent [13]. Second, in [12] it is proved that,
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Theorem 8.2. Let G be a planar graph such that the volume function of G satisfies the doubling
property. Then for every vertex v of G and radius r, there is a connected subset Ω such that B(v, r) ⊂
Ω, Ω ⊂ B(v, 6r) and the size of the boundary of Ω is at most of order r.

Try to imagine the geometry of a planar recursive subdivision graph, when the volume growth
of is faster than quadratic. The facts above suggest heuristically that volume is generated by large
fractal mushrooms, and that the complements of balls have many connected components.

In particular we conjecture that the simple random walk spends a long time is such traps and
hence is subdiffusive (that is, dist(o,Xn) ³ nα where Xn denotes the simple random walk starting
at o and α < 1/2) ?

Here is a sketch of the proof of theorem 8.2. Let v be any vertex of Γ. Consider the balls
B(v, n), B(v, 3n). Let N be an n-net of the boundary ∂B(v, 3n). For each vertex w of N consider
B(w, n/2). Note that all such balls are disjoint since N is an n-net. Also all these balls are contained
in B(v, 4n). So, by the doubling property, we can have only boundedly many such balls, that is
|N | ≤ β, where β does not depend on n. Consider now the balls B(w, 2n) for all w ∈ N . ∂B(v, 3n) is
contained in the union of these balls. Construct a closed curve that ‘blocks’ v from infinity as follows:
if w1, w2 ∈ N are such that d(w1, w2) ≤ 2n then we join them by a geodesic. So replace ∂B(v, 3n) by
the ‘polygonal line’ that we define using vertices in N . This ‘polygonal line’ blocks v from infinity
and has length at most 2nβ. There are some technical issues to take care of, for example ∂B(v, 3n)
might not be connected (and could even have ‘large gaps’) and the geodesic segments have to be
chosen carefully.

9 Random subdivision

There is growing interest in establishing a rigorous theory of two dimensional continuum quantum
gravity. Heuristically, quantum gravity is a metric chosen on the sphere uniformly among all possible
metrics. Although there are successful discrete mathematical quantum gravity models, we do not
yet have a satisfactory continuum definition of a planar random length metric space (rather than
random measure). One possible toy model is to start with a unit square divide it four squares and
now recursively at each stage pick a square uniformly at random from the current squares (ignoring
their sizes) and divide it to four squares and so on. Look at the minimal number of squares needed in
order to connect the bottom left and top right corner with a connected set of squares. We conjecture
that there is a deterministic scaling function, such that after dividing the random minimal number of
squares needed after n subdivisions by it, the result is a non degenerate random variable. Establishing
the conjecture will provide a random planar length metric space.

Since the conjecture seems hard, we start by studying the simplest recursive constructions after
trees. As you will see below even here we mostly have questions and conjectures. The section is
based on an on going project with Nicolas Curien.
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9.1 (Fixed) Hierarchical graphs

Let us introduce the graphs we will work with. We start with a pattern, that is a finite connected
graph G1 with two distinguished point “source” and “sink” and such that the edges are oriented
from source to sink. Inductively, the graph Gn is constructed from Gn−1 by replacing each of its
(oriented) edge by a copy of G1 (source and sink respectively on the origin and target of the edge),
see Fig. below.

Figure 1: A few examples of hierarchical graphs

9.2 Distance

Fix a pattern G1 and consider the sequence of hierarchical graphs G1, G2, ... constructed as above.
We endow these graphs with a random distance (or first passage percolation) model on them: assign
a positive weight (e.g. uniform over [0, 1]) independently for each edge of Gn. Recall that Gn has
two distinguished points “source” and “sink” and put

Dn := Weight of a minimal path linking source and sink in Gn.
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Obviously the Dn’s satisfy a recursive distributional equation that is closely related to the initial
pattern, e.g. for the three examples presented above we have for all n ≥ 2

Dn
(d)
= min(Dn−1, D

′
n−1)

Dn
(d)
= Dn−1 + D′

n−1

Dn
(d)
= Dn−1 + min(D′

n−1, D
′′
n−1), (1)

where Dn−1, D
′
n−1, D

′′
n−1 are independent copies of Dn−1. The first two equations are straightforward

to analyze but the last one is thorny because the recursive distributional equation combines + (adding
an edge in series) and min (presence of cycles). We focus on the last case. Let us consider a (well-
known) simplified model for the sake of comparison:

Comparison with branching random walk. Consider Tn the full binary tree starting with an
edge up to level n where each edge has been given an independent weight as above. In this case, the
weight of the shortest path Mn up to level n satisfies

Mn = ξ + min(Mn−1,M
′
n−1)

where ξ denotes the law of the weights on the edges. In this model (first passage percolation on a
tree) we know that Mn ≈ γbrwn with γbrw explicit in terms of ξ as well as the lower order terms. This
is due to the fact that the geometry of the tree does not constrain the model too much and in that
case Mn is nearly obtained by considering all paths as independent. Also, a fairly simple argument
due to Dekking and Host [22] shows that Mn is strongly concentrated (order O(1)) around its mean.
Let us sketch it. Provided that ξ is bounded we can write

Mn ≤ C + min(Mn−1,Mn−1).

Assume now that Mn−1 is not concentrated around its mean, the key is to notice that in this case
we have

E[min(Mn−1,Mn−1)] sensibly less than E[Mn−1].

Taking expectation we deduce that E[Mn] is noticeably less than E[Mn−1] + C however this cannot
be the case since E[Mn] ≥ E[Mn−1].

Coming back to (1). We will compare Dn with M2n (the 2n comes from the fact that the height
of the graph Gn is 2n compared to the height n of Tn). Clearly we have Dn ≤ 2n and one can also
show by induction that Dn ≥ M2n , indeed notice that

M2n ≤ M2n−1 + min(M ′
2n−1 ,M

′′
2n−1),

and then use (1). Hence we have γbrw2n ≤ E[Dn] ≤ 2n and a simple monotonicity argument shows
that if ξ is non-degenerate then γrec := lim 2−nE[Dn] exists and is in [γbrw, 1). In view of these
remarks we have
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Question 9.1. Compute γrec in terms of ξ in particular show (if true) γrec > γbrw.

We think that the convergence in mean of Dn implies (thanks to (1)) its convergence in probability.
However subtle questions about Dn remain open:

Question 9.2. What is the concentration of Dn around its mean? Lower order terms? More
generally, ask the same questions as for the minimal position in a branching random walk.

For background on branching random walks see e.g. [50]

9.3 External DLA

In the hierarchical graph Gn we launch particles from the sink that move (SRW) in the graph. As
soon as a particle neighbors the source or a previously settle particle it settles. This is the standard
model of External Diffusion Limited Aggregation on Gn. This process ends when a particle settles
at the sink.

What is the proportion of Gn that is covered?

We denote by Pn the number of particles launched before the end of the process. Using the recursive
structure of the graph Gn we can also write a recursive distributional equation for Pn e.g. in the third
case of Fig. 1 neglecting a few terms we have

Pn = Pn−1 + 2 min(P ′
n−1, P

′′
n−1). (2)

Compare with (1) (the presence of the“2” stems from the fact that the particles starting from the sink
in Gn are (roughly speaking) split into two equal groups of particles in the two branches of the initial
G1). Note that the number of edges in Gn is 3n so knowing whether Gn is almost full of particles is
the same as knowing whether E[Pn] is sensibly less than 3E[Pn−1] or not. Notice that if Pn−1 is not
concentrated then min(P ′

n−1, P
′′
n−1) is say less than (2 − ε)E[Pn−1] thus E[Pn] < (3 − ε)Dn. But if

Pn−1 is concentrated we cannot say anything.

Question 9.3. What is limn−1 log(E[Pn]) ?

9.3.1 The win-win situation

Knowing whether the graph is full or not can be answered for a special type of recursive graph
where “a shadowing effect”c© takes place. Indeed, consider the sequence of graphs Gn with initial
pattern , its fourth iteration is the figure below. In this case we can still write recursive distributional
equations for the Pn but the heuristic argument goes as follows. Notice first that the volume of the
graph grows like 7n so we have to compare E[Pn] with 7E[Pn−1]. If Pn−1 is not concentrated then
E[Pn] < (7 − ε)E[Pn−1] as above and we are done. So assume that Pn−1 is concentrated. In the
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Figure 2: Naomi’s fractal

filling process of Gn the (offspring of the) first branch in G1 linked to the source will be filled first
which takes a time Pn−1 and then the two branches adjacent to this one start to be filled. The key
point is to notice that since Pn−1 is concentrated, these two branches will be totally full at roughly
the same time. In which case the branch of the ”middle” will receive no particles due to a shadowing
effect of the last two branches. Finally in this case we expect E[Pn] ≈ 6E[Pn−1]. We thus see that
in all situations E[Pn] < (6− ε)E[Pn−1] and we almost proved

Proposition 9.4 (with Nicolas Curien). We have lim supn−1 log(E[Pn]) < 7 and hence the graph
Gn is not totally filled during the EDLA process, more precisely the aggregate covers a fractal portion
of it.

9.4 Random hierarchical graphs

In this section, the graph we build are themselves random but still based on a hierarchical procedure.
Let us describe one possible model. We start with a pattern G1. To get Gn from Gn−1 we first
pick one edge of Gn−1 uniformly at random and replace it by a copy of the initial pattern G1. See
Fig. ref below for an example. Using connection with branching processes, Thomas Duquesne (private

Figure 3: Construction with the third pattern of Fig. 1

communication) has been able to compute exactly the expectations of the number of oriented paths
going from left to right in Gn. We denote by Dn the distance between the two extremal points in
Gn. Trivially Dn ≤ n + 1. A fairly simple sub-additivity argument shows that in fact

log(E[Dn])
log(n)

−−−→
n→∞ γ ∈ [0, 1].

Ad-hoc calculations show that γ ∈ (ε, 1/2 − ε). But the true value of γ remains mysterious. This
model is intimately connected to a urn model : The volume of the graphs offspring of the three
original edges form a standard Polya urn1. So the limiting proportions of edges in these graphs
(α1, α2, α3) is distributed as a Dirichlet distribution of parameters (1/2, 1/2, 1/2). Thus, loosely

1three balls of three colors initially, when a ball is picked it is replaced in the urn together with 2 balls of the same

color
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speaking, the recursive distributional equations satisfied by the Dn’s are the following

Dn
(d)
= Dα1n + min(D′α2n,D′′α3n),

where (Dn), (D′
n) and (D′′

n) are copies of the original process and independent of the (α1, α2, α3). In
this model, the non-concentration of Dn is granted so the interesting questions are the following:

Question 9.5. What is the value of γ? Can we rescale Dn to have convergence in distribution? (this
is equivalent to the Gromov-Hausdorff convergence of the rescaled graphs).

Finally, we mention a last model in the same spirit. This is the series-parallel random graph
introduced by Hambly and Jordan [33]. Fix a parameter p ∈ [0, 1]. The construction goes as follows.
We start with a single edge. Then inductively at each stage, all the edges of the graph are replaced
by two edges in series with probability p or two edges in parallel with probability 1− p. If ∆n is the
distance between the two extremal points in this graph then the recursive distributional equations
are now

∆n
(d)
=

{
with proba p, ∆n−1 + ∆′

n−1

with proba 1− p, min(∆n−1, ∆′
n−1).

It is easy to see that when p < 1/2 then ∆n remains bounded. However, when p > 1/2 this distance
grows exponentially with n and (subadditivity argument) we have

E[∆n] ≈ enδ(p)+o(n).

Question 9.6. What is the shape of p ∈ [1/2, 1] 7→ δ(p). In particular, do we have δ(1/2) = 0?

10 Self avoiding walk

We would like to end with a comment on a graph parameter which is conjecturally continuous with
respect to local convergence, in the space of infinite vertex transitive graphs. Connective constants
for self avoiding walks admit some partial analogy with the critical probability of percolation. Both
monotone with respect to inclusion and graph covering. With Hugo Duminil-Copin we briefly for-
mulate the analogous conjectures in the context of self avoiding walks:

Let G be a graph (for concreteness one can think on Zd). Self avoiding walk (SAW) is a random
walk that does not return to a vertex that he already visits.

Define SAW (n) as the uniform measure on all the avoiding paths walk of length n from a fixed
root. By sub multiplicativity µ = lim |SAW (n)|1/n exists and is called the connective constant of the
graph.

Conjecture 10.1. There is c > 1, µ > c for all infinite connected vertex transitive graphs excluding
Z.

17



Maybe the ladder is a graph with the smallest connective constant other than Z, among all vertex
transitive graphs with no double edges? Otherwise consider an infinite path and add a parallel edge
to every second edge, to get µ =

√
2.

One way to establish the conjecture is to show that every infinite vertex transitive graph covers
an infinite vertex transitive graph of girth bounded by a fixed constant. As for all such graph it
easy to show a uniform lower bound, yet large girth seems only to help. This is likely not the case
but hopefully leaves a small family of graphs to be studied. (Yair Glasner suggested that, due to
Margulis super rigidity, maybe Cayley graphs of SL3(Z) do not cover other infinite graphs?)

A stronger conjecture is,

Conjecture 10.2. µ is continuous with respect to local convergence of infinite vertex transitive
graphs.

Given a Cayley graph, to any generating set corresponds a connective constant µ. This suggests
a canonical generating sets minimizing µ. Gady Kozma conjectured that for planar Cayley graphs µ

is algebraic, and he showed that the set of all connective constants of groups contains an interval.

Acknowledgements: Thanks to Nicolas Curien for substantial help with the writing and Naomi
Benjamini for the drawing.

References

[1] D. Aldous, Scale-Invariant Random Spatial Networks, arXiv:1204.0817

[2] D. Aldous and R. Lyons, Processes on unimodular random networks, Electron. J. Prob. paper
54, pages 1454-ñ1508 (2007).
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