
Hunting a Random Walker on a Low Dimensional Torus

Yariv Yaari

Abstract

We will define a problem regarding locating a simple random walk on a graph, and
give bounds for the optimal solution on toruses of dimension 2,3.

1 Hunting a Random Walker

There are several natural variants of the hunting problem, here is one. A bird performs
a random walk on a graph. At each step a hunter picks a vertex and either catches the
bird or gets to see if the bird visited there before (and possibly when) or not. Will a
clever hunter almost surely catch the bird? In particular when the bird performs a fat tail
symmetric random walk on Z, how big should the tail be to guarantee escaping with positive
probability? Can it escape once transient?

One can study versions of the problem for infinite countable Markov chains (or other
random processes), in which the question is: will the hunter catch the bird almost surely?
Or versions where the hunter is catching the bird almost surely, and the question is how fast
the hunter can do it, this can be studied for finite chains as well. Other aspects to consider
is the amount of information available for the hunter. Does the hunter get to see the time
the bird visited the vertex or just if it ever visited there before, or did the bird visit again
since the last time the hunter inspected the vertex. Further limitations on the hunter can
involve the size of the memory of the hunter. Benjamini and Kozma (2010) (unpublished),
showed that if the underling graph is a d tree and the bird is performing a uniform directed
walk away from the root, then there is a hunter that will almost surely catch the bird iff
d < 4.

In this paper we show an algorithm for the hunter of a SRW on a torus of dimension
2 or 3, and analyze its expected hunting time complexity, comparing it to a simple lower
bound on the complexity for any algorithm. The algorithm will need to know a little more
than whether the walk visited the vertex, namely it will need to know whether it visited the
vertex since the previous examination of this vertex. This is the most limited information
in which we found a non trivial solution. The SRW can be replaced by any symmetric walk
with steps distribution with a second moment.

1

2 Results

2.1 Hunting a Random Walker

2.1.1 Definitions

Let us define the problem more formally. Let d ∈ {2, 3}, and n ∈ N. Let G = (V,E) be a d
dimensional torus of side-length n. Let {Zi} be an SRW on G, Z0 uniform on G. Also let
fm be a function of V m × N<m which we will call the information function. fm will always
be invoked on some ((v1, v2, ..., vm), i1, i2, ...il) where the ij are the set of times s.t. Zij = vm
and ij ≤ m. We will use the information function in the definition of a hunter algorithm,
and there those vi will always be a list of queries the hunting algorithm performed, and the
information will simply be the information it receives from the last query (the m query). We
will work with fm((v1, v2, ..., vm), i1, i2, ...il) being 1 iff ∀j < m, (∀k ≤ lj ≥ ik) → vj 6= vm
and 0 otherwise. This means that fm is 1 iff the walk visited vm after the last query, except
the m, that indicated vm as a vertex. This is a very limited notion of information, but it
continues to generate new information all the time. A hunter is an algorithm A with access
to an oracle H. The oracle has a state, it receives a single vertex of V as Input. Let vj
be the input on the j invocation of H, then H returns f((v1, v2, ..., vm), i1, i2, ...il) on the m
invocation. The hunting time TA is min{i|vi = Zi}.

2.1.2 results

2.2 the 2-dimensional case

In this section, d = 2.

Proposition 2.1. For any hunting algorithm A, E[TA] = Ω(n
√

log n).

Proof. The proof is a simple counting argument. Define T , T = min(t|∃i ≤ t, vt = Zi).
Clearly T ≤ TA, so we will show E[T] = Ω(n

√
log n), by showing that for some c and

sufficiently large n, P[T > cn
√

log n] > 1
2
. To estimate P[T > k] we define v′i to be the

queries of A with the oracle that returns 0 on all invocations. Note that for i ≤ T , vi = v′i.
Therefore P[T > k] = P[T ′ > k], where T ′ is defined exactly as T with vt replaced by v′t.
Now

P[T ′ > k] > P[{v′i}i≤k ∩ {Zi}i≤k = φ],

and since both sets are chosen independently, and {Zi}i≤k is translation invariant we get

P[{v′i}i≤k ∩ {Zi}i≤k = φ] = 1− E[#{v′i}i≤k] · E[#{Zi}i≤k]
n2

.

Now, #{v′i}i≤k = k and E[#{Zi}i≤k] = Θ(k
log k

), so for some c > 0 we get

P[T > cn
√

log n] >
1

2
.

2

Now let us describe a hunting algorithm. We will define the algorithm in terms of four
constants C1, C2, i0, ε1, then show that these can be chosen to achieve a desired hunting
time. We will describe it using two internal variables, the level i and vertex v, they will
always satisfy that the walk was at v at most 2ti before the present, where ti is 22i ,or
i = log2 log2(n(log n)

1
2
−ε1) + 1, it should be obvious from the definition that this hold. First

we will define the ’Grid Search’ operation, we generate {uj}j<C2
1

√
ti , a square grid centred

in v with distances t
1
4
i between adjacent grid points and C1t

1
4
i points along each cardinal

direction. The whole grid is of side length C1

√
ti. We would like to test all nodes of the grid

for a point the walk was in
√
ti before it was tested. Finding such a point is simply a matter

of splitting the grid to sets of size
√
ti, and checking each one once (ignoring the information,

this is just ’resetting’ the points) than checking it again. The number of points in each set
is equal to the time window we are looking at, as it is the temporal distance between two
queries for any point. If we find any such point (visited up to

√
ti before its second query)

we will move to the (i − 1)’th level, setting v as this point. If none was found, the ’Grid

Search’ failed. The algorithm on the i’th level (for i ≤ log2 log2(n(log n)
1
2
−ε1)) is simply

invoking ’Grid Search’ C2 log ti times or until successful (on success, moving to the (i−1)’th

level as noted above). If all the grid searches failed, move to level log2 log2(n(log n)
1
2
−ε1) + 1

around the origin. The algorithm starts on the top level, log2 log2(n(log n)
1
2
−ε1) + 1. The

behaviour on the top level is different, looking for a point visited n(log n)
1
2
−ε1 time ago in

the whole torus. This is done by choosing a random uniform set of size n(log n)
1
2
−ε1 under

the constraint that no two points in the set are closer than
√

n

10(logn)
1
2−ε1

, and checking it in

the same manner (resetting it, then checking). i0 is the minimal level. Once we reach this
level, we make a query to a random uniform vertex within distance ti0 from v then return to
the top level. (Note: the algorithm have no stopping condition, but we are only interested
in the hunting time)

Proposition 2.2. For any ε > 0 there are C1, C2, i0, ε1 such that the hunting algorithm
AC1,C2,i0,ε1 described above has E[TAC1,C2,i0,ε1

] = O(n(log n)
1
2
+ε).

Proof. We will get an upper bound on TAC1,C2,i0,ε1
by estimating the time until a query done

on level i0 will hit the walk. Clearly, whatever i0 is, hitting the walk have a probability
bounded away from 0 every time we get to level i0, so we will have to calculate two things,
the probability that the algorithm will get there starting from level log2 log2(n(log n)

1
2
−ε1),

and the time it takes to get to level log2 log2(n(log n)
1
2
−ε1) from the top level (the time for

all the levels below it is O(

√
(n(log n)

1
2
−ε1) log n), lower order than the time spent on the

top level). Our bound will then be the time on the top level divided by the probability to
get to level i0. i0 itself will be chosen to have behaviour close to the asymptotic bounds of
the SRW.

we will take ε1 to be ε
2
, and show that there are C1, C2, i0 such that on any level i ≥

i0 the probability of moving to a lower level is pi > 2−ε1 − O(2−i), conditioned on the
entire history of the process. Given this, the probability of moving all the way from level
log2 log2(n(log n)

1
2
−ε1) to i0 will be the product of the pis, and is Ω((log n)−ε1). We will also

show that the total time every such attempt takes is O(n(log n)
1
2
+ε1), and so we get the

required total expected hunting time.
The main observation that will allow us to handle this conditioning on the entire history

3

is that on entering level i we know the walk visited v at some time window, from t− ti to t.
If we can show that we get this bound on pi for every time in this window, we could use the
markovian behaviour and ignore the history up to the visit to v. That is for every event A,
if we define Fj for the event Zj = v and ∀k, t− ti ≤ k < j → Zk 6= v (j is the first visit to v
in the window) we get

P[A|entire history] =
t∑

j=t−ti

P[Fj|entire history] ·P[A|Fj ∩ entire history]

=
t∑

j=t−ti

P[Fj|entire history] ·P[A|Zj = v ∩ history after time j]

and since
t∑

j=t−ti
P[Fj|entire history] = 1, we get

P[A|entire history] ≥ min
j∈[t−ti,t]

P[A|Zj = v ∩ history after time j].

There is also a corresponding upper bound using the maximum, of course. We will also use
a similar argument using a space-window. That is conditioning on the walk to be in some
space at a given point in time, and using the same argument we get that bounds that can be
shown for every point in this space-window and without any history before will hold when
conditioning on the space-window with any history.

So now let us start in a ’Grid Search’ with a specific vertex u of the grid and an upper
bound on the probability of the walk visiting any vertex in the grid on its query-window,
conditioned on visiting u in its query-window (conditioning on the history here is irrelevant,
we could condition on the walk being somewhere in the torus at the beginning of the ’Grid
Search’ to justify ignoring the history). We will use this estimate to show that the condi-
tioning on history after time j mentioned above is negligible. To estimate we will first use
an upper bound for two specific vertices, visiting u2, conditioned on visiting u1. First, we
take for an upper bound twice the probability to travel from u1 to u2 in the diameter of the
union of query-window (twice, for order of visits). This we will bound again by the product

of reaching to distance d(u1, u2)− t
1
4
i from u1 in time 2C2

1

√
ti, times the probability to hit u2

from distance t
1
4
i in time 2C2

1

√
ti (taking the point in such distance with maximal probability

to hit u2). The second part is clearly independent of actual choices of u1,u2, and it is O(2−i),

since in that time only O(
√
ti

log ti
) vertices will be visited and there are Θ(

√
ti) that are at least

as likely to be hit as u2. The first part is decaying exponentially in d(u1, u2), and so we
could sum on all possible choices of u2 and get O(1

log ti
), with no dependence on C1 even for

the constant hidden in the O notation (that is, there is a bound independent of C1, which
we get by summing the infinite sum, ignoring the fact that the grid is actually finite). Now,
when entering level i, the only queries after the start of the time-window are those done in
the same ’Grid Search’. All points tested before v were not visited in their query-window,
otherwise v would not have been tested, but the estimate above tells us that the conditioning
on this will only change probabilities by O(1

log ti
) = O(2−i), which is the reason this appear

in the definition of pi. From now on we will therefore ignore the conditioning on the history,
to get the rest of pi.

4

Let us now look at the probability for success in one of the C2 iterations of ’Grid Search’,
conditioned on the walk being in an arbitrary point v′ in a box of side length C1

√
ti centered

in v (a box that matches the grid), at the beginning of the ’Grid Search’. There is a point u

in the grid with d(u, v′) ≤ t
1
4
i , and the probability of the walk visiting it in its query-window

is Ω(1
log ti

), simply because the window is of size
√
ti and starts O(

√
ti) after the walk was

in v′. We will use this as a lower bound on the probability of the walk hitting at least one
query-window and call it qi.

To estimate the probability of successfully moving from level i to level i − 1 we need
to do one last thing. Since we perform multiple ’Grid Search’ attempts (if not successful),
we will estimate the probability of a ’Grid Search’ operation to succeed, conditioned on the
failure of the previous ones. This we can bound by the probability for success conditioned on
being in a box of side length C1

√
ti centred in v at the beginning of the ’Grid Search’ (this

conditioning ’masks’ the conditioning on previous failures), times the probability of being
there conditioned on the failure of previous iterations. The conditioned probability of being
in the box is easily bounded by the unconditioned probability of being in the box at the
correct time minus the probability of succeeding in at least one of the previous iterations.
The unconditioned probability of being in the box can be bounded for all iterations, call this
bound α. So if we call the probability to succeed in at least one of the first j iterations xj
we get the following form:xj+1 ≥ xj + qi(α−xj). Using yj := α−xj we get yj+1 ≤ yj(1− qi),
and yj ≤ α(1− qi)j. so we get

P[successfully moving from level i to level i− 1] = α(1− (1− qi)C2 log ti)

and by a proper choice of C2 we can get it as close to α as we would like. α itself is defined
by C1, and we can get it as close as we like to 1 by choosing a sufficiently large C1.

This completes the proof for the probability of going all the way to level i0, and we
still need to show that it takes only n(log n)

1
2
+ε1 to get to level log2 log2(n(log n)

1
2
−ε1). We

look at the probability that a set chosen in the top level will lead us to the next. First we
estimate the probability, conditioned on one point being visited in its query-window, that
any other point in visited in its query-window. This is done in the same way we estimated
the probability for such a thing in ’Grid Search’, and we get the probability O((log n)−2ε1).
The probability for a single point, uniformly chosen on the torus, to be visited in its query-
window is O(1

n(logn)
1
2+ε1

). If we mark Aj the event of the j’th point visited in it’s query

window we get:

P[
⋃

Aj] ≤ n(log n)
1
2
−ε1P[A1](1−P[

⋃
j 6=1

Aj|A1]) = O((log n)−2ε1)

. The expected time to get to the next level is therefore n(log n)
1
2
+ε1

2.3 the 3-dimensional case

In this section, d = 3. The result is very similar to the previous section.

Proposition 2.3. For any A hunting algorithm E[TA] = Ω(n
3
2).

5

Proof. The proof is a simple counting argument. Define T , T = min(t|∃i ≤ t, vt = Zi).

Clearly T ≤ TA, so we will show E[T] = Ω(n
3
2), by showing that for sufficiently large

n, P[T >
√

n3

2
] > 1

2
. To estimate P[T > k] we define v′i to be the queries of A with

the oracle that returns 0 on all invocations. Note that for i ≤ T , vi = v′i. Therefore
P[T > k] = P[T ′ > k], where T ′ is defined exactly as T with vt replaced by v′t. Now

P[T ′ > k] > P[{v′i}i≤k ∩ {Zi}i≤k = φ],

and since both sets are chosen independently, and {Zi}i≤k is translation invariant we get

P[{v′i}i≤k ∩ {Zi}i≤k = φ] = 1− E[#{v′i}i≤k] · E[#{Zi}i≤k]
n3

.

Now, #{v′i}i≤k = k and E[#{Zi}i≤k] ≤ k + 1, so we get

P[T >

√
n3

2
] >

1

2
.

Now let us describe a hunting algorithm. We will define the algorithm in terms a constant
i0, then show that it can be chosen to achieve a desired hunting time. We will describe it
using two internal variables, the level i and vertex v, they will always satisfy that the walk
was at v at most 2ti before the present, where ti is 22i , or i = log2 log2(n

3), it should be
obvious from the definition that this hold. First we will define the ’Grid Search’ operation,

we generate {uj}
j<t

3
4
i

, a square grid centred in v with distances t
1
4
i between adjacent grid

points and t
1
4
i points along each cardinal direction. The whole grid is of side length

√
ti.

We would like to test all nodes of the grid for a point the walk was in
√
ti before it was

tested. Finding such a point is simply a matter of splitting the grid to sets of size
√
ti, and

checking each one once (ignoring the information, this is just ’resetting’ the points) than
checking it again. The number of points in each set is equal to the time window we are
looking at, as it is the temporal distance between two queries for any point. If we find any
such point (visited up to

√
ti before its second query) we will move to the (i − 1)’th level,

setting v as this point. If none was found, the ’Grid Search’ failed. The algorithm on the i’th

level (for i < log2 log2(n
3)) is simply invoking ’Grid Search’ t

1
4
i times or until successful (on

success, moving to the (i− 1)’th level as noted above). If all the grid searches failed, move
to level log2 log2(n

3) around the origin. The algorithm starts on the top level, log2 log2(n
3).

The behaviour on the top level is different, looking for a point visited n
3
2 time ago in the

whole torus. This is done by choosing a random uniform set of size n
3
2 (log n)−3 under the

constraint that no two points in the set are closer than 1
10

√
n log n, and checking it in the

same manner (resetting it, waiting some time, then checking). i0 is the minimal level. Once
we reach this level, we make a query to a random uniform vertex within distance ti0 from v
then return to the top level. (Note: the algorithm have no stopping condition, but we are
only interested in the hunting time)

Proposition 2.4. There are d, i0 such that the hunting algorithm Ai0 described above has
E[TAi0] = O(n

3
2 (log n)d).

6

Proof. We will get an upper bound on TAi0 by estimating the time until a query done on level
i0 will hit the walk. Clearly, whatever i0 is, hitting the walk have a probability bounded away
from 0 every time we get to level i0, so we will have to calculate two things, the probability
that the algorithm will get there starting from level log2 log2(n

3)−1, and the time it takes to
get to level log2 log2(n

3)−1 from the top level (the time for all the levels below it together is

O(n
3
2), lower order than the time spent on the top level). Our bound will then be the time

on the top level divided by the probability to get to level i0. i0 itself will be chosen to have
behaviour close to the asymptotic bounds of the SRW.

we will show that on any level i ≥ i0 the probability of moving to a lower level is bounded
away from 0 by some constant c, conditioned on the entire history of the process. Given this,
the probability of moving all the way from level log2 log2(n

3)− 1 to i0 will be the product of
those probabilities, and is Ω((log n)(3 − d)) (this is our definition of d). We will also show

that the total time every such attempt takes is O(n
3
2 (log n)3), and so we get the required

total expected hunting time.
The main observation that will allow us to handle this conditioning on the entire history

is that on entering level i we know the walk visited v at some time window, from t − ti
to t. If we can show that the probability to move to the next level is more than c for
every time in this window, we could use the markovian behaviour and ignore the history
up to the visit to v. That is for every event A, if we define Fj for the event Zj = v and
∀k, t− ti ≤ k < j → Zk 6= v (j is the first visit to v in the window) we get

P[A|entire history] =
t∑

j=t−ti

P[Fj|entire history] ·P[A|Fj ∩ entire history]

=
t∑

j=t−ti

P[Fj|entire history] ·P[A|Zj = v ∩ history after time j]

and since
t∑

j=t−ti
P[Fj|entire history] = 1, we get

P[A|entire history] ≥ min
j∈[t−ti,t]

P[A|Zj = v ∩ history after time j].

There is also a corresponding upper bound using the maximum, of course. We will also use
a similar argument using a space-window. That is conditioning on the walk to be in some
space at a given point in time, and using the same argument we get that bounds that can be
shown for every point in this space-window and without any history before will hold when
conditioning on the space-window with any history.

So now let us start in a ’Grid Search’ with a specific vertex u of the grid and an upper
bound on the probability of the walk visiting any vertex in the grid on its query-window,
conditioned on visiting u in its query-window (conditioning on the history here is irrelevant,
we could condition on the walk being somewhere in the torus at the beginning of the ’Grid
Search’ to justify ignoring the history). We will use this estimate to show that the condi-
tioning on history after time j mentioned above is negligible. To estimate we will first use
an upper bound for two specific vertices, visiting u2, conditioned on visiting u1. We bound
this simply by the number of points the walk visits in the query-window of u2, divided by
the number of points closer to u1 than u2. Using l for the distance between u1 and u2 in grid

7

units we get O(t
−1
4
i l−3). Summing over all possible u2 gives us O(log ti

t
1
4
i

). Now, when entering

level i, the only queries after the start of the time-window are those done in the same ’Grid
Search’. All points tested before v were not visited in their query-window, otherwise v would
not have been tested, but the estimate above tells us that the conditioning on this will only
change probabilities by O(log ti

t
1
4
i

), which is negligible compared to a constant. From now on we

will therefore ignore the conditioning on the history, to get that the advancement probability
is indeed greater than some c.

Let us now look at the probability for success in one of the iterations of ’Grid Search’,
conditioned on the walk being in an arbitrary point v′ in a box of side length

√
ti centered

in v (a box that matches the grid), at the beginning of the ’Grid Search’. There are t
3
8
i grid

points within distance ≤ t
3
8
i of v′, and the probability of the walk visiting a specific one of

them in its query-window is Ω(t
−5
8
i), simply because the window is of size

√
ti and starts

O(t
3
4
i) after the walk was in v′. We already know that the probability of hitting another

query-window conditioned on hitting one is low, so if Aj are the events of hitting any of
those points’ query-window we get

P[
⋃

Aj] ≥ t
3
8
i P[A1](1−P[

⋃
j 6=1

Aj|A1]) = O(t
−1
4
i),

call this qi.
To estimate the probability of successfully moving from level i to level i − 1 we need

to do one last thing. Since we perform multiple ’Grid Search’ attempts (if not successful),
we will estimate the probability of a ’Grid Search’ operation to succeed, conditioned on the
failure of the previous ones. This we can bound by the probability for success conditioned

on being in a box of side length t
1
4
i centered in v at the beginning of the ’Grid Search’ (this

conditioning ’masks’ the conditioning on previous failures), times the probability of being
there conditioned on the failure of previous iterations. The conditioned probability of being
in the box is easily bounded by the unconditioned probability of being in the box at the
correct time minus the probability of succeeding in at least one of the previous iterations.
The unconditioned probability of being in the box can be bounded for all iterations, call this
bound α. So if we call the probability to succeed in at least one of the first j iterations xj
we get the following form:xj+1 ≥ xj + qi(α−xj). Using yj := α−xj we get yj+1 ≤ yj(1− qi),
and yj ≤ α(1− qi)j. so we get

P[successfully moving from level i to level i− 1] = α(1− (1− qi)t
1
4
i).

This is clearly bounded away from zero. We can’t control the constant here in the same way
we did in 2 dimensions, because multiplying by a constant will change α, as the time spent
in level i is of the same order as the time window the actions in level i is based on.

This completes the proof for the probability of going all the way to level i0, and we still
need to show that it takes only O(n

3
2) to get to level log2 log2(n

3) − 1. We look at the
probability that a set chosen in the top level will lead us to the next. First we estimate the
probability, conditioned on one point being visited in its query-window, that any other point
in visited in its query-window. This is done in the same way we estimated the probability for

8

such a thing in ’Grid Search’, and we get the probability O((log n)−2). The probability for

a single point, uniformly chosen on the torus, to be visited in its query-window is O(n−
3
2).

If we mark Aj the event of the j’th point visited in it’s query window we get:

P[
⋃

Aj] ≤ n
3
2 (log n)−3P[A1](1−P[

⋃
j 6=1

Aj|A1]) = O(1)

. The expected time to get to the next level is therefore n
3
2 (log n)3

2.3.1 Open Problems

First of all, there is still a gap between the solutions presented and the lower bounds, and
a natural question is for the optimal solution. Then there are related problems. One might
consider other notions of information, we would describe the simplest two. First, full infor-
mation. due to the markovian nature of the walk, this is equivalent to just getting the last
time the walk visited this vertex. In this case we expect the optimal solution to achieve the
lower bounds on 2, 3 dimensional torii. Second, the existence of visits to this vertex. In this
case the walk ceases to generate information at some point, we suspect that any algorithm
will have a bounded probability to catch the walk only in O(nd) time. Another question,
maybe even more natural one, is the behaviour on other graphs. On a torus of dimension
5 or more, we expect no algorithm to do better (up to a constant ratio) than independent
uniform selection, even with full information.

9

