Ham Sandwich is Equivalent to Borsuk-Ulam

Karthik C. S.

Weizmann Institute of Science

July 4th 2017
Ham Sandwich is Equivalent to Borsuk-Ulam

Karthik C. S.

Weizmann Institute of Science

July 4th 2017

Joint work with Arpan Saha
(University of Hamburg)
Ham Sandwich Theorem

Borsuk-Ulam Theorem

Brouwer’s Fixed-Point Theorem

Ham Sandwich is Equivalent to Borsuk-Ulam
Fixed-Point Theorems and Computation

- Ham Sandwich Theorem
- Borsuk-Ulam Theorem
- Brouwer’s Fixed-Point Theorem

Ham Sandwich is Equivalent to Borsuk-Ulam
Ham Sandwich Theorem

Borsuk-Ulam Theorem

Brouwer’s Fixed-Point Theorem

Ham Sandwich is Equivalent to Borsuk-Ulam
Ham Sandwich Theorem

Borsuk-Ulam Theorem

Brouwer’s Fixed-Point Theorem

Ham Sandwich is Equivalent to Borsuk-Ulam
Theorem (Borsuk, 1933)

Let S^n denote the set of all points on the unit n-dimensional sphere. For any odd continuous mapping $f : S^n \rightarrow \mathbb{R}^n$ there is a point $x \in S^n$ for which $f(x) = 0$.

Ham Sandwich is Equivalent to Borsuk-Ulam
Borsuk-Ulam Theorem

Theorem (Borsuk, 1933)

Let S^n denote the set of all points on the unit n-dimensional sphere. For any odd continuous mapping $f : S^n \to \mathbb{R}^n$ there is a point $x \in S^n$ for which $f(x) = \vec{0}$.

$n = 1$
Borsuk-Ulam Theorem

Theorem (Borsuk, 1933)

Let S^n denote the set of all points on the unit n-dimensional sphere. For any **odd** continuous mapping $f : S^n \rightarrow \mathbb{R}^n$ there is a point $x \in S^n$ for which $f(x) = \vec{0}$.

$n = 1$

![Diagram](image-url)
Ham Sandwich Theorem

Theorem (Stone and Tukey, 1942)

Given n compact sets in \mathbb{R}^n there is a $(n - 1)$-dimensional hyperplane which bisects each set into two sets of equal measure.
Ham Sandwich Theorem

Theorem (Stone and Tukey, 1942)

Given \(n \) compact sets in \(\mathbb{R}^n \) there is a \((n - 1)\)-dimensional hyperplane which bisects each set into two sets of equal measure.
Ham Sandwich Theorem

Theorem (Stone and Tukey, 1942)

Given \(n \) compact sets in \(\mathbb{R}^n \) there is a \((n - 1)\)-dimensional hyperplane which bisects each set into two sets of equal measure.
Ham Sandwich Theorem

Theorem (Stone and Tukey, 1942)

Given \(n \) compact sets in \(\mathbb{R}^n \) there is a \((n – 1)\)-dimensional hyperplane which bisects each set into two sets of equal measure.
Ham Sandwich Theorem

Theorem (Stone and Tukey, 1942)

Given \(n \) compact sets in \(\mathbb{R}^n \) there is a \((n - 1)\)-dimensional hyperplane which bisects each set into two sets of equal measure.

Ham Sandwich is Equivalent to Borsuk-Ulam
Borsuk-Ulam \iff Ham Sandwich

Theorem (Our Result)

Ham Sandwich theorem is equivalent to Borsuk-Ulam theorem.
Query Model

\(A \) \(B \)

\textbf{Input} \\
\textbf{Output} \\

Specific Queries \\
Specific Answers
Query Model

Input

Specific Queries

Specific Answers

Output

A

B
Query Model

Input → \(A \) → Output

Ham Sandwich is Equivalent to Borsuk-Ulam
Query Model

Input A \rightarrow \rightarrow \rightarrow \rightarrow B \leftarrow \leftarrow \leftarrow \leftarrow Output

Specific Queries \rightarrow Specific Answers

QC_p: Number of queries to find correct answer with probability p.

Ham Sandwich is Equivalent to Borsuk-Ulam
Query Model

\[QC_p : \text{Number of queries to find correct answer with probability } p. \]
ABH(\(n, k, \varepsilon\)) Problem:

• Input: \(n\) compact sets \(A_1, \ldots, A_n \subseteq [−nk, nk]\).

• Output: \((n − 1)\)-dimensional hyperplane \(H\) such that:

\[\forall i \in [n], |\text{vol} (A_i \cap H^+ − \text{vol} (A_i \cap H^-)| \leq \varepsilon.\]

• Queries: Each query is an oriented hyperplane \(H\) and the answer is \(\text{vol} (A_i \cap H^+) − \text{vol} (A_i \cap H^-)\), for every \(i \in [n]\).

From Rubinstein (2016), Su’s construction (1997), and Ham Sandwich theorem ⇒ Borsuk-Ulam theorem:

Theorem (Our Result)

For large \(n\), \(\varepsilon \leq \frac{1}{\text{poly}(n)}\), and for \(p = 2^{−Ω(n)}\) and \(k \geq 5\) we have:

\[\text{QC}_p(\text{ABH}(n, k, \varepsilon)) = 2^{Ω(n)}.\]
Ham Sandwich Problem

\(\text{ABH}(n, k, \varepsilon) \) Problem:

- **Input:** \(n \) compact sets \(A_1, \ldots, A_n \subseteq [-n^k, n^k]^n \).

\(\text{From Rubinstein (2016), Su's construction (1997), and Ham Sandwich theorem} \Rightarrow \text{Borsuk-Ulam theorem:} \)

Theorem (Our Result)

For large \(n \), \(\varepsilon \leq \frac{1}{\text{poly}(n)} \), and for \(p = 2 - \Omega(n) \) and \(k \geq 5 \) we have:

\[\text{QC}_p(\text{ABH}(n, k, \varepsilon)) = 2^{\Omega(n)} \]
Ham Sandwich Problem

\textbf{ABH}(n, k, \varepsilon) \text{ Problem:}

- **Input:** \(n \) compact sets \(A_1, \ldots, A_n \subseteq [-n^k, n^k]^n \).

- **Output:** \((n - 1)\)-dimensional hyperplane \(H \) such that:
 \[\forall i \in [n], \quad |\text{vol}(A_i \cap H^+) - \text{vol}(A_i \cap H^-)| \leq \varepsilon. \]
Ham Sandwich Problem

ABH(n, k, ε) Problem:

- **Input**: n compact sets $A_1, \ldots, A_n \subseteq [-n^k, n^k]^n$.
- **Output**: $(n - 1)$-dimensional hyperplane H such that:
 \[\forall i \in [n], \quad |\text{vol}(A_i \cap H^+) - \text{vol}(A_i \cap H^-)| \leq \varepsilon. \]
- **Queries**: Each query is an oriented hyperplane H and the answer is $\text{vol}(A_i \cap H^+) - \text{vol}(A_i \cap H^-)$, for every $i \in [n]$.

From Rubinstein (2016), Su's construction (1997), and Ham Sandwich theorem:

Theorem (Our Result)

For large n, $\varepsilon \leq 1/poly(n)$, and for $p = 2 - \Omega(n)$ and $k \geq 5$ we have:

$\text{QC}_p(\text{ABH}(n, k, \varepsilon)) = 2^{\Omega(n)}$.

Ham Sandwich Problem

\(\text{ABH}(n, k, \varepsilon) \) Problem:

- **Input:** \(n \) compact sets \(A_1, \ldots, A_n \subseteq [-n^k, n^k]^n \).
- **Output:** \((n - 1)\)-dimensional hyperplane \(H \) such that:
 \[
 \forall i \in [n], \quad |\text{vol}(A_i \cap H^+) - \text{vol}(A_i \cap H^-)| \leq \varepsilon.
 \]
- **Queries:** Each query is an oriented hyperplane \(H \) and the answer is \(\text{vol}(A_i \cap H^+) - \text{vol}(A_i \cap H^-) \), for every \(i \in [n] \).

From Rubinstein (2016), Su’s construction (1997), and Ham Sandwich theorem \(\Rightarrow \) Borsuk-Ulam theorem:

Theorem (Our Result)

For large \(n \), \(\varepsilon \leq 1/poly(n) \), and for \(p = 2^{-\Omega(n)} \) and \(k \geq 5 \) we have:

\[
QC_p(\text{ABH}(n, k, \varepsilon)) = 2^{\Omega(n)}.
\]
Borsuk-Ulam \iff Ham Sandwich

- Given $A_1, \ldots, A_n, A_{n+1}$ compact sets in \mathbb{R}^{n+1}
- Build odd $f : S^n \to \mathbb{R}^n$ such that:

 vanishing points \iff bisecting hyperplanes
Borsuk-Ulam \iff Ham Sandwich

- Given $A_1, \ldots, A_n, \{\vec{0}\}$ compact sets in \mathbb{R}^{n+1}
- Build odd $f : S^n \rightarrow \mathbb{R}^n$ such that:

 vanishing points \iff bisecting hyperplanes
Borsuk-Ulam \iff Ham Sandwich

- Given $A_1, \ldots, A_n, \{\vec{0}\}$ compact sets in \mathbb{R}^{n+1}
- Build odd $f : S^n \to \mathbb{R}^n$ such that:

 vanishing points \iff bisecting hyperplanes

- $f(x) = (f_1(x), f_2(x), \ldots, f_n(x))$, where $f_i(x) : S^n \to \mathbb{R}$
Borsuk-Ulam \iff Ham Sandwich

- Given $A_1, \ldots, A_n, \{\vec{0}\}$ compact sets in \mathbb{R}^{n+1}
- Build odd $f : S^n \to \mathbb{R}^n$ such that:

 vanishing points \iff bisecting hyperplanes

- $f(x) = (f_1(x), f_2(x), \ldots, f_n(x))$, where $f_i(x) : S^n \to \mathbb{R}$
- Every $x \in S^n$ is the normal of unique linear hyperplane H_x
Borsuk-Ulam \iff Ham Sandwich

- Given $A_1, \ldots, A_n, \{\vec{0}\}$ compact sets in \mathbb{R}^{n+1}

- Build odd $f : S^n \to \mathbb{R}^n$ such that:

 vanishing points \iff bisecting hyperplanes

- $f(x) = (f_1(x), f_2(x), \ldots, f_n(x))$, where $f_i(x) : S^n \to \mathbb{R}$

- Every $x \in S^n$ is the normal of *unique* linear hyperplane H_x
Borsuk-Ulam \iff Ham Sandwich

- Given $A_1, \ldots, A_n, \{\vec{0}\}$ compact sets in \mathbb{R}^{n+1}
- Build odd $f : S^n \to \mathbb{R}^n$ such that:
 - vanishing points \iff bisecting hyperplanes
- $f(x) = (f_1(x), f_2(x), \ldots, f_n(x))$, where $f_i(x) : S^n \to \mathbb{R}$
- Every $x \in S^n$ is the normal of unique linear hyperplane H_x
Borsuk-Ulam \iff Ham Sandwich

- Given $A_1, \ldots, A_n, \{\vec{0}\}$ compact sets in \mathbb{R}^{n+1}
- Build odd $f : S^n \to \mathbb{R}^n$ such that:
 - vanishing points \iff bisecting hyperplanes

- $f(x) = (f_1(x), f_2(x), \ldots, f_n(x))$, where $f_i(x) : S^n \to \mathbb{R}$
- Every $x \in S^n$ is the normal of unique linear hyperplane H_x
- For every $x \in S^n$:
 \[
 f_i(x) = \text{vol}(A_i \cap H_x^+) - \text{vol}(A_i \cap H_x^-)
 \]
Observation (From Previous Proof)

Let A be a compact set in \mathbb{R}^{n+1}. Then, there is a continuous odd function $f : S^n \to \mathbb{R}$ such that $\forall x \in S^n$, $f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x)$.
Our Result: Borsuk-Ulam \iff Ham Sandwich

Observation (From Previous Proof)

Let A be a compact set in \mathbb{R}^{n+1}. Then, there is a continuous odd function $f : S^n \to \mathbb{R}$ such that $\forall x \in S^n$, $f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x)$.

Conjecture (Wishful Thinking)

Let $f : S^n \to \mathbb{R}$ be a polynomial odd function. Then, there is a compact set A in \mathbb{R}^{n+1} such that $\forall x \in S^n$, $f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x)$.
Our Result: Borsuk-Ulam \iff Ham Sandwich

Observation (From Previous Proof)

Let A be a compact set in \mathbb{R}^{n+1}. Then, there is a continuous odd function $f : S^n \to \mathbb{R}$ such that $\forall x \in S^n$, $f(x) = \text{vol}(A \cap H_x^+) - \text{vol}(A \cap H_x^-)$.

Lemma (Our Result)

Let $f : S^n \to \mathbb{R}$ be a polynomial odd function. Then, there is a compact set A in \mathbb{R}^{n+1} such that $\forall x \in S^n$, $f(x) = \text{vol}(A \cap H_x^+) - \text{vol}(A \cap H_x^-)$.
Lemma (Our Result)

Let $f : S^n \rightarrow \mathbb{R}$ be a polynomial odd function. Then, there is a compact set A in \mathbb{R}^{n+1} such that $\forall x \in S^n$, $f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x)$.

Proof Outline.

$$f : S^n \rightarrow \mathbb{R}$$
Lemma (Our Result)

Let \(f : S^n \to \mathbb{R} \) be a polynomial odd function. Then, there is a compact set \(A \) in \(\mathbb{R}^{n+1} \) such that \(\forall x \in S^n, \ f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x) \).

Proof Outline.

\[
\begin{align*}
 f : S^n & \to \mathbb{R} \\
r : S^n & \to \mathbb{R}^+
\end{align*}
\]
Lemma (Our Result)

Let $f : S^n \to \mathbb{R}$ be a polynomial odd function. Then, there is a compact set A in \mathbb{R}^{n+1} such that $\forall x \in S^n$, $f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x)$.

Proof Outline.

\[
\begin{align*}
 f &: S^n \to \mathbb{R} \\
 r &: S^n \to \mathbb{R}^+ \\
 &\downarrow \\
 A_r &: \mathbb{R}^{n+1}
\end{align*}
\]
Lemma (Our Result)

Let $f : S^n \to \mathbb{R}$ be a polynomial odd function. Then, there is a compact set A in \mathbb{R}^{n+1} such that $\forall x \in S^n$, $f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x)$.

Proof. Given $r : S^n \to \mathbb{R}^+$. A_r is a compact set given by:

$$A_r = \left\{ k \cdot r(x) \cdot \vec{x} \mid x \in S^n, 0 \leq k \leq 1 \right\}.$$
Borsuk-Ulam ⇐ Ham Sandwich: Proof

Lemma (Our Result)

Let $f : S^n \rightarrow \mathbb{R}$ be a polynomial odd function. Then, there is a compact set A in \mathbb{R}^{n+1} such that $\forall x \in S^n$, $f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x)$.

Proof. Given $r : S^n \rightarrow \mathbb{R}^+$. A_r is a compact set given by:

$$A_r = \left\{ k \cdot r(x) \cdot \vec{x} \middle| x \in S^n, 0 \leq k \leq 1 \right\}.$$
Lemma (Our Result)

Let \(f : S^n \rightarrow \mathbb{R} \) be a polynomial odd function. Then, there is a compact set \(A \) in \(\mathbb{R}^{n+1} \) such that \(\forall x \in S^n, f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x) \).

Proof. Given \(r : S^n \rightarrow \mathbb{R}^+ \). \(A_r \) is a compact set given by:

\[
A_r = \left\{ k \cdot r(x) \cdot \vec{x} \mid x \in S^n, 0 \leq k \leq 1 \right\}.
\]
Borsuk-Ulam ⇐ Ham Sandwich: Proof

Lemma (Our Result)

Let \(f : S^n \to \mathbb{R} \) be a polynomial odd function. Then, there is a compact set \(A \) in \(\mathbb{R}^{n+1} \) such that \(\forall x \in S^n, f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x) \).

Proof. Given \(r : S^n \to \mathbb{R}^+ \). \(A_r \) is a compact set given by:

\[
A_r = \left\{ k \cdot r(x) \cdot \vec{x} \mid x \in S^n, 0 \leq k \leq 1 \right\}.
\]

\[
\text{vol}(A_r) = \int_{y \in S^n} (r(y))^{n+1} / (n + 1) \, dy
\]
Lemma (Our Result)

Let \(f : S^n \to \mathbb{R} \) be a polynomial odd function. Then, there is a compact set \(A \) in \(\mathbb{R}^{n+1} \) such that \(\forall x \in S^n, \ f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x) \).

Proof. Given \(r : S^n \to \mathbb{R}^+ \). \(A_r \) is a compact set given by:

\[
A_r = \left\{ k \cdot r(x) \cdot \vec{x} \mid x \in S^n, 0 \leq k \leq 1 \right\}.
\]

\[
\text{vol}(A_r) = \int_{y \in S^n} (r(y))^{n+1}/(n + 1) \ dy
\]

\[
\text{vol}(A_r \cap H^+_x) - \text{vol}(A_r \cap H^-_x) = \int_{y \in S^n} \text{sgn}(\langle x, y \rangle) \cdot (r(y))^{n+1}/(n + 1) \ dy
\]
Borsuk-Ulam \iff \text{Ham Sandwich: Proof}

\textbf{Lemma (Our Result)}

Let \(f : S^n \to \mathbb{R} \) be a polynomial odd function. Then, there is a compact set \(A \) in \(\mathbb{R}^{n+1} \) such that \(\forall x \in S^n, \ f(x) = \text{vol}(A \cap H_x^+) - \text{vol}(A \cap H_x^-) \).

Proof. Given \(r : S^n \to \mathbb{R}^+ \). \(A_r \) is a compact set given by:

\[
A_r = \left\{ k \cdot r(x) \cdot \vec{x} \mid x \in S^n, 0 \leq k \leq 1 \right\}.
\]

\[
\text{vol}(A_r) = \int_{y \in S^n} (r(y))^{n+1}/(n+1) \ dy
\]

\[
\text{vol}(A_r \cap H_x^+) - \text{vol}(A_r \cap H_x^-) = \int_{y \in S^n} \text{sgn}(\langle x, y \rangle) \cdot (r(y))^{n+1}/(n+1) \ dy
\]

\[
\text{vol}(A_r \cap H_x^+) - \text{vol}(A_r \cap H_x^-) = \int_{y \in S^n} \text{sgn}(\langle x, y \rangle) \cdot r'(y) \ dy
\]
Lemma (Our Result)

Let \(f : S^n \to \mathbb{R} \) be a polynomial odd function. Then, there is a compact set \(A \) in \(\mathbb{R}^{n+1} \) such that \(\forall x \in S^n, \ f(x) = vol(A \cap H^+_x) - vol(A \cap H^-_x) \).

Proof (continued). Let \(p_1, p_2, \ldots, p_{m(d)} \) be a basis of polynomials of degree \(d \) over the hypersphere.
Lemma (Our Result)

Let \(f : S^n \to \mathbb{R} \) be a polynomial odd function. Then, there is a compact set \(A \) in \(\mathbb{R}^{n+1} \) such that \(\forall x \in S^n, f(x) = \text{vol}(A \cap H_x^+) - \text{vol}(A \cap H_x^-) \).

Proof (continued). Let \(p_1, p_2, \ldots, p_{m(d)} \) be a basis of polynomials of degree \(d \) over the hypersphere. If \(r' = \sum_i \alpha_i \cdot p_i \) then we have:

\[
\text{vol}(A_r \cap H_x^+) - \text{vol}(A_r \cap H_x^-) = \sum_i \left(\alpha_i \cdot \int_{y \in S^n} \text{sgn}(\langle x, y \rangle) \cdot p_i(y) \, dy \right)
\]
Lemma (Our Result)

Let \(f : S^n \rightarrow \mathbb{R} \) be a polynomial odd function. Then, there is a compact set \(A \) in \(\mathbb{R}^{n+1} \) such that \(\forall x \in S^n, f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x) \).

Proof (continued). Let \(p_1, p_2, \ldots, p_{m(d)} \) be a basis of polynomials of degree \(d \) over the hypersphere. If \(r' = \sum_i \alpha_i \cdot p_i \) then we have:

\[
\text{vol}(A_r \cap H^+_x) - \text{vol}(A_r \cap H^-_x) = \sum_i \left(\alpha_i \cdot \int_{y \in S^n} \text{sgn}(\langle x, y \rangle) \cdot p_i(y) \, dy \right)
\]

\[
f = \sum_i \beta_i \cdot p_i
\]
Lemma (Our Result)

Let \(f : S^n \rightarrow \mathbb{R} \) be a polynomial odd function. Then, there is a compact set \(A \) in \(\mathbb{R}^{n+1} \) such that \(\forall x \in S^n, f(x) = \text{vol}(A \cap H^+_x) - \text{vol}(A \cap H^-_x) \).

Proof (continued). Let \(p_1, p_2, \ldots, p_m(d) \) be a basis of polynomials of degree \(d \) over the hypersphere. If \(r' = \sum_i \alpha_i \cdot p_i \) then we have:

\[
\text{vol}(A_r \cap H^+_x) - \text{vol}(A_r \cap H^-_x) = \sum_i \left(\alpha_i \cdot \int_{y \in S^n} \text{sgn}(\langle x, y \rangle) \cdot p_i(y) \ dy \right)
\]

\[
f = \sum_i \beta_i \cdot p_i
\]

We need to find a basis such that:

\[
\int_{y \in S^n} \text{sgn}(\langle x, y \rangle) \cdot p_i(y) \ dy = \lambda_i \cdot p_i(x)
\]
Remarkable Objects: Hyperspherical Harmonics

- Homogeneous polynomials restricted to hypersphere
Remarkable Objects: Hyperspherical Harmonics

- Homogeneous polynomials restricted to hypersphere
- For every polynomial p there is a hyperspherical harmonic h such that $p|_{S^n} = h$ (Folklore, 1800s)
Remarkable Objects: Hyperspherical Harmonics

- Homogenenous polynomials restricted to hypersphere
- For every polynomial p there is a hyperspherical harmonic h such that $p|_{S^n} = h$ (Folklore, 1800s)
- Eigen functions of the following operator T (Funk and Hecke, 1917):

\[T(f)(x) := \int_{y \in S^n} u(\langle x, y \rangle) \cdot f(y) \, dy, \]

where $u : [-1, 1] \to \mathbb{R}$ is bounded and measurable
Key Takeaways

• Borsuk-Ulam Theorem is **Equivalent** to Ham Sandwich Theorem!
Key Takeaways

- Borsuk-Ulam Theorem is **Equivalent** to Ham Sandwich Theorem!
- Ham Sandwich Problem in high dimensions is **Hard**!
Thank you!