
From Multi-Modal Scenarios to Code:
Compiling LSCs into AspectJ ∗

(preliminary version)

Shahar Maoz
shahar.maoz@weizmann.ac.il

David Harel
dharel@weizmann.ac.il

The Weizmann Institute of Science, Rehovot, Israel

ABSTRACT
We exploit the main similarity between the aspect-oriented
programming paradigm and the inter-object, scenario-based
approach to specification in order to construct a new way
of executing systems based on the latter. Specifically, we
show how to compile multi-modal scenario-based specifica-
tions, given in the visual language of Live Sequence Charts
(LSC), into what we call Scenario Aspects, implemented in
AspectJ. Unlike synthesis approaches, which attempt to take
the inter-object scenarios and construct intra-object state-
based specifications, we follow the ideas behind the LSC
play-out algorithm to coordinate the simultaneous moni-
toring and direct execution of the specified scenarios. We
demonstrate our compilation scheme using a small applica-
tion whose inter-object behaviors are specified using LSCs.

Categories and Subject Descriptors: D.2.2 [Software
Engineering]: Design Tools and Techniques ; D.1.7 [Pro-
gramming Techniques]: Visual Programming

General Terms: Design, Languages.

Keywords: Aspect Oriented Programming, Code Genera-
tion, Inter-object Approach, Live Sequence Charts, Scenario-
based Programming, Scenarios, UML Sequence Diagrams,
Visual Formalisms.

1. INTRODUCTION
Interest in inter-object, scenario-based specifications has

increased in recent years. The underlying idea is based on
the belief that these provide an intuitive and natural way to
think about and capture complex reactive behavior; see [13,
23]. Also, the extremely popular concept of use cases [27]
has an underlying inter-object flavor, and in a way, calls for
formalization and instantiation using scenarios.
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An important challenge of the inter-object, scenario-based
approach to software specification is to find ways to con-
struct executable systems based on it [18]. Many researchers
have dealt with this challenge as a synthesis problem; see,
e.g., [4, 19, 33, 50], where inter-object specifications, given in
variants of Message Sequence Charts (MSC) [26], are trans-
lated into intra-object state-based executable specifications
for each of the participating objects or components.

“Play-out” [24] is a recent example of a different approach.
Instead of synthesizing intra-object state-based specifica-
tions for each of the components, the play-out algorithm
executes the scenarios directly, keeping track of all user and
system events for all objects or components simultaneously,
and causing other events and actions to occur as dictated
by the specified scenarios. No intra-object model for any of
the participating components is built in the process.

Play-out is not really relevant to classical MSC or UML
Sequence Diagrams [48], as these are expressively weak, merely
specifying existential scenarios that may occur in runs of the
real system (which is specified in a more standard, intra-
object fashion). For example, they cannot specify what must
occur, what may not occur, etc. Rather, play-out was devel-
oped for the multi-modal language of Live Sequence Charts
(LSC) [13], which extends classical MSC with a distinc-
tion between mandatory-universal behavior and provisional-
existential behavior. As a specification language, LSC’s ex-
pressive power is comparable to that of various temporal
logics [36], and it has been used in the context of testing
and formal verification (see, e.g., [12, 37]). However, the
feature of LSC most relevant to the present paper is the
fact that its semantics and expressive power are rich enough
to give rise to full executability. Thus, LSC can really be
viewed as a high-level visual programming language for re-
active systems.1

To date, the Play-Engine tool [23] contains the two imple-
mentations of play-out available, näıve play-out (or simply
play-out) and smart play-out [20]. Both essentially work
as LSC interpreters and can drive the simulation of an ap-
plication execution, provided it implements certain custom
interfaces. Hence, they do not integrate with a standard de-
velopment environment nor can they produce a standard
executable program. This limits the applicability of the
play-out execution mechanism, and hence of scenario-based
programming in general, in real world software development.

1In [21], we have shown how UML 2.0 Sequence Diagrams
can be extended to encompass the multi-modal nature of
LSCs, leading to executability for them too.



Aspect-Oriented Programming (AOP) has been proposed
as a mechanism that enables the modular implementation
of crosscutting concerns [30]. Separation of concerns pro-
vides better comprehensibility, reusability, traceability, and
evolvability of software artifacts [15], and its realization is an
important achievement of the software engineering commu-
nity. Most relevant to our work, though, is that the aspect-
oriented paradigm and the scenario-based approach to soft-
ware specification are inherently similar: in both, part of
the system’s behavior is specified in a way that explicitly
crosses the boundaries between objects.

One may view the current paper as taking advantage of
this similarity in order to construct a new way of executing
systems that are based on the inter-object, scenario-based
paradigm. More specifically, we show how to compile LSCs
onto AspectJ, thus providing a non-interpreted means for
executing multi-modal scenarios. As such, our compilation
can also be viewed as full code generation from a visual
formalism, similar to that carried out by tools like StateM-
ate, Rhapsody [25], and RoseRT [43]. This is in contrast to
the skeletal, template code generated by many other CASE
tools, requiring the reactive behavior to be coded separately.
In addition, compiling LSCs into runnable code in an ac-
cepted programming language has the advantage of making
it possible to include the scenario-based approach in an over-
all system development effort, among other things enabling
the formalization of crosscutting use cases (see [28]), and
enabling links with standard tools and development envi-
ronments.

In the rest of the paper, we assume a hybrid approach
to system modeling and execution, where each component
may have its own intra-object behavior specified and im-
plemented, and where scenario-based inter-object specifica-
tions are intended to specify additional behaviors of the sys-
tem. Thus, unlike the common approach to synthesis, where
scenario-based specifications are translated into state-based
specifications for each participating component before they
are simulated or executed, we follow the ideas behind the
play-out algorithm from [23] to coordinate the simultane-
ous direct execution of the scenarios together with the ex-
ecution of the separately specified and implemented intra-
object, possibly state-based, behaviors.

Our process of high-level compilation takes scenario-based
specifications given in LSC and compiles them into what we
shall be calling Scenario Aspects, implemented as AspectJ
aspects.2 The generated code is then compiled/linked with
an existing or separately implemented Java program to cre-
ate a single executable application. The use of aspects al-
lows us to carry the scenario-based specification over from
the model to the code, while still eventually producing a
single standard executable program.

The paper is organized as follows. We start with a short
review of the LSC language and the key concepts of Aspect-
Oriented Programming. We then introduce the compila-
tion scheme main idea. Section 4 gives a short overview of
the compilation scheme implementation. In Section 5 we
demonstrate the compilation scheme using an example ap-

2We chose AspectJ because it is the most popular implemen-
tation of aspects to date and it suffices for our needs. How-
ever, our compilation scheme is general and can be adopted
to compile to other AOP languages. A comparative discus-
sion of other AOP languages with regard to our compilation
scheme is outside the scope of this paper.

plication. We conclude with related work, discussion, and
future work.

2. PRELIMINARIES

2.1 Live Sequence Charts
The language of LSCs [13] is a scenario-based visual for-

malism, which extends classical Message Sequence Charts
(MSC [26]) with universal/existential modalities, thus al-
lowing the specification of mandatory scenarios (“what must
happen”), possible scenarios (“what may happen”), and neg-
ative scenarios (“what should never happen”). It has been
extended with various rich features and the first executable
semantics for it is described in [23].

2.1.1 The LSC Language
We use here a restricted subset of the LSC language,

adopted to our needs, i.e., pragmatically geared towards
code generation.3 The presentation below is deliberately
somewhat informal to make it accessible and to allow us to
concentrate on the relevant parts to this paper, i.e., the ex-
ecution mechanism. For a thorough definition of the LSC
language and its operational semantics we refer the reader
to [23].

We consider a system-model consisting of a set of classes
C, where each class exposes a set of public attributes CA

and methods CM (to keep the presentation below simple, we
ignore types, and assume attributes are accessed by setter
and getter methods). An LSC L is defined to be

L = 〈IL, ML, CondL〉

where IL is a set of instance references over C (which also
may include special references representing the environment,
e.g., the user), ML is a set of methods, and CondL is a set of
guards, each of which is a boolean expression over attributes
and methods from (a subset of) the instances IL (we as-
sume expression evaluation to be side effect free). There
are two types of instance references: concrete instance-level
and symbolic class-level. Instance-level references refer (sta-
tically) to specific objects, while class-level references may
stand for any instance of the associated class. Instance ref-
erences are drawn as vertical lines and methods are drawn as
horizontal lines. Time is assumed to go from top to bottom.
An LSC event is either an actual method (for simplicity, we
consider here a synchronous interpretation where calling a
method and executing it are considered a single LSC event),
or the act of evaluating a condition. That is:

EL = ML ∪ CondL

Every instance line contains locations, each of which is an
intersection of an instance line with an event from L. A
method event defines two locations (one location in case of
a self call). A condition event defines one or more loca-
tions (all instance references whose attributes or methods
are used in the condition expression must synchronize on its
evaluation, other instance references may synchronize too).
Naturally, we require that method events end on instance
reference lines that refer to instances or classes that have
them as public methods. Conditions’ expressions are speci-
fied in Java syntax. We omit here obvious syntactic require-
ments.
3Expressions are specified directly in Java, and not in, e.g.,
OCL [41].



mc1:MemoryCard

LSC: Match

! mc1.match(mc2)

flipUp()

flipUp()

mc2:MemoryCard

flipDown ()

flipDown()

MemoryPanel

soundBeep()

Figure 1: The LSC for Match.

Every LSC induces a partial order between locations: lo-
cations along a single instance line are ordered top-down,
and locations that belong to the same LSC event (a method
call and execution, or a condition evaluation) are at the
same place in the partial order (the special case of a self
method is regarded as a single location on the relevant life-
line). The partial order then, extends naturally from loca-
tions to events. Lastly, every location may be hot or cold;
an event is hot if at least one of its locations is hot and is
cold otherwise (see the use of the hot/cold distinction in the
LSC execution mechanism described in the next subsection).
Cold events are denoted by dashed lines and hot events by
solid ones.

An LSC may be universal or existential. A universal LSC
is associated with a pre-chart that specifies the scenario
which, if successfully completed, forces the system to sat-
isfy the scenario given in the actual chart body, the main
chart. Thus, operationally, pre-chart scenarios are moni-
tored while main chart scenarios, when reached, need to be
executed. This distinction between monitoring and execu-
tion modes is key to our compilation and execution scheme
as we shall show in the next section.

Existential LSCs specify sample scenarios. They can be
used to specify system tests that should be monitored, but
they do not affect the execution. We discuss the compilation
of existential charts in Subsection 4.4.

Figure 1 shows an example universal LSC (borrowed from
our initial case study, a Memory Game, described in detail
in Section 5), which specifies the following requirement:
Whenever the MemoryPanel calls the flipUP() method of
one card, and then calls the flipUP() method of another
card, it should call its soundBeep() method, and the system
must call the first card match function to check whether the
two cards match. If they do not match, the memory panel
must call the flipDown() method of the first card and the
flipDown() method of the second card.

2.1.2 The Play-Out Execution Mechanism
An LSC cut is a mapping of every instance to one of its

possible locations in the LSC. An LSC cut is hot if one of its

locations is hot and is cold otherwise. An event is minimal
in a chart if no other event in the chart comes before it in
the partial order induced by the chart. Minimal events are
important in our execution mechanism: whenever an event e
occurs, a new copy of each chart that features e as a minimal
event is instantiated and start being monitored to see if its
pre-chart completes successfully. An event e is enabled with
respect to a cut Cut if the location in Cut of every instance
participating in the event e is the one exactly prior to e. An
event e violates a chart L in a cut Cut if e is in ML but is
not enabled with respect to Cut.

The execution mechanism reacts to the events that are
(statically) referenced in one or more of the LSCs (see [23]).
For each LSC instance copy, instantiated following the oc-
currence of a minimal event, the mechanism checks whether
the event is enabled with regard to the current cut; if it is, it
advances the cut accordingly; if it is violating and the cur-
rent cut is cold, it discards this LSC copy; if it is violating
and the current cut is hot, program execution aborts; if it
does not appear in the LSC, it is ignored. Conditions are
evaluated as soon as they are enabled in a cut; if a condi-
tion is evaluated to true, the cut advances accordingly; if it
evaluates to false and the current cut is cold, the LSC copy
is discarded; if it evaluates to false and the current cut it
hot, program execution aborts. If the cut of an LSC copy
reaches maximal locations on all instance reference lifelines,
the LSC copy is discarded. We consider all events in pre-
charts to be cold. Once all LSC’s cuts have been updated,
the execution mechanism chooses an event to execute from
among the execution-enabled methods (main chart events)
that are not violating any chart, if any.

Note that play-out requires careful event unification and
dynamic binding mechanism. Roughly, two methods are
unifiable if their senders (receivers) are concrete instance-
level (or already bound) and equal, or symbolic class-level of
the same class and at least one is still unbound. When meth-
ods with arguments are considered, an additional condition
requires that corresponding arguments have equal concrete
values, or at least one of them is free. The formal definitions
of unification for LSCs can be found in [23, 40]. Our compi-
lation scheme exploits the similarity between the unification
semantics of play-out and that of AOP.

2.2 Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) has been proposed

as a mechanism that enables the modular implementation
of crosscutting concerns [30]. An aspect can be thought of
as a special kind of object that observes a base program and
reacts to certain actions by running extra code of its own.
The most popular implementation of AOP is AspectJ [1,
29], an extension of Java. Since we are using AspectJ in our
current work, we very briefly describe the key features of
AOP used in our current work, using AspectJ terminology.

Dynamic crosscutting is the weaving of new behavior into
the execution of a program. A join point is a certain well-
defined point in the execution of a program, such as a call
to a method or an assignment to a member of an object. A
pointcut is a program construct which designates a set of join
points, plus, optionally, values from the execution context
of those join points. For example, a pointcut can capture
the execution of a certain method along with its arguments
and a reference to its target object (the instance which ex-
ecutes it). Pointcuts can be combined using Boolean oper-



ators. Wildcard-based syntax is used in order to construct
pointcuts that capture join points that share common char-
acteristics.

To declare the code that should execute at a join point
that has been selected by a pointcut, AspectJ supports method-
like constructs for before, after, and around advice; before
advice executes prior to the join point, after advice exe-
cutes following the join point, and around advice surrounds
the join point’s execution and allows to bypass execution,
continue the original execution, or cause execution with an
altered context. An advice may have access to the context
captured by its pointcut.

Static crosscutting is the weaving of modifications to the
static structure of the program. An inter-type declaration is
a static crosscutting construct which enables the introduc-
tion of new methods or members to a class.

Finally, the aspect is the central unit of AspectJ. It is
defined by an aspect declaration, similar to that of a class
declaration. An aspect typically includes pointcuts, advice,
and inter-type declarations, as well as other kinds of dec-
larations such as members and methods permitted in class
declarations.

3. THE COMPILATION SCHEME
We are now ready to present our compilation scheme. The

key to the compilation scheme is the translation of each
LSC into a Scenario Aspect that simulates an abstract au-
tomaton whose states represent cuts along the LSC lifelines
and whose transitions are triggered by pointcuts. Each sce-
nario aspect is locally responsible for listening for relevant
events and advancing its cut state accordingly. Most impor-
tantly, the compilation scheme generates a coordinator, im-
plemented as a separate aspect, which observes the cut state
changes of all active scenario aspects, chooses a method, and
executes it.

In order to build the automaton representation, the LSC
must be statically analyzed. The analysis involves simu-
lating a ‘run’ over the LSC, which captures all possible
cuts. Each cut is represented by a state. Transitions be-
tween states correspond to enabled events. An additional
transition from each cold cut state to a designated ‘com-
pletion’ state corresponds to all possible violations at this
cut. An additional transition from each hot cut state to
a designated ‘error’ state corresponds to all possible vio-
lations at this cut. During code construction, the sets of
execution-enabled, monitoring enabled, cold violation, and
hot violation events at each cut are computed and ‘stored’
in the state.

An LSC cut that includes an enabled condition is not
represented as a state of the scenario aspect. Instead, the
generated code ensures that as soon as the condition is en-
abled it will be evaluated, and the next cut state will be set
accordingly.

Note that since the construction of the automaton does
not require information from other LSCs, the compilation
of each LSC is independent of the rest of the specification.
Thus, scenario aspect code generation can be carried out
‘locally’. Note also that the distinction between monitoring
(pre-chart) and executing (main chart) events is not repre-
sented in the structure of the automaton, only in the infor-
mation stored in each state.

Analogous automaton representations of LSC for the use
in the context of formal verification were given in, e.g., [11,

m1

m2

m4

m5

M \ m2

M \m5

M \ m4

ΣΣΣ

Σ

cond1 == false

cond1 == true

∧∧∧∧

m3

M \ m3

Figure 2: The automaton for LSC Match.
M is the set of messages in the LSC. m1

stands for MemoryPanel:mc1.flipUp(), m2 stands for
MemoryPanel:mc2.flipUp(), etc. cond1 stands for
!mc1.match(mc2). Self transitions labeled Σ \ M have
been omitted.

32]. In [21], we used a similar automaton construction to de-
fine the semantics of Modal UML Sequence Diagrams. The
construction yields an alternating weak automaton, where
the partition of the states is induced by the partial order of
events specified in the LSC.

Fig. 2 shows the automaton representing the universal
LSC Match from Fig. 1. Note the universal quantification on
the outgoing transitions of the initial state. This quantifica-
tion reflects the fact that ‘multiple copies’ of the automaton
may be active simultaneously.

As explained above, the automata are responsible for lis-
tening for system events and advancing their cut accord-
ingly. However, they do not drive the execution. Rather,
the coordinator that observes all cut state changes in ac-
tive LSCs is the one responsible for choosing a method for
execution and executing it.

4. IMPLEMENTATION OVERVIEW
We now give a short overview of the key features of the

code generation scheme and related architecture. This con-
ference version of the paper is limited in space hence we
must leave out many implementation details.

4.1 From an LSC to a Scenario Aspect
Each LSC is compiled into a Scenario Aspect, implemented

as an AspectJ aspect. LSC lifelines are translated into mem-
bers of the relevant type. Each LSC method is translated



into a pointcut that captures the execution of the corre-
sponding method, together with the context of the calling
object this, the receiving object target, and arguments (as
applicable).

An after advice is associated with each pointcut. The ad-
vice binds the context of the pointcut to the corresponding
members (of the respective active copies), when applicable,
and calls a private method changeCutState. This method,
built as a series of switch case statements, is responsible for
advancing the scenario aspect cut state along the locations
of each lifeline, and for identifying cold and hot violations
as necessary. In case of a cold violation, or a successful
LSC completion, all lifeline locations and bindings (of the
respective active copy) are reset, and the active copy is dis-
carded. In case of a hot violation, an appropriate exception
is thrown.

Finally, each scenario aspect implements a public method
getCutState, which assigns instances of LSC methods, in-
cluding context, between four sets (monitoring enabled, execution-
enabled, cold violation, and hot violation), according to the
current cut state of the scenario. The getCutState method
is called by the LSC Coordinator, described next.

4.2 The LSC Coordinator
The LSC Coordinator is implemented as another gener-

ated aspect, declared with top precedence. It is responsible
for collecting cut state information from the active scenario
aspects: this sums up to the four sets of LSC methods de-
scribed above, including the dynamic context information
of each method, when applicable. The coordinator uses a
Strategy (see Subsection 4.3) to choose a method for execu-
tion. If and when a method is chosen, the coordinator ex-
ecutes it using (generated) inter-type declarations of imple-
mented wrapper methods. Thus, the method is called by the
actual object rather than by the coordinator aspect per se.

4.3 The Play-Out Strategy
To allow easy interchange between different play-out al-

gorithms, we use an abstract play-out strategy class (using
the Strategy design pattern [16]). Thus, a play-out algo-
rithm needs to be encapsulated into a concrete strategy in
order to be used by the LSC Coordinator.

The play-out algorithm currently implemented in our setup
is the näıve play-out of [24]. Roughly, as explained above,
this means making a nondeterministic choice between execution-
enabled methods that are not violating any currently active
LSC (see Section 7 for references to other play-out algo-
rithms).

4.4 Compiling Existential Charts
The compilation scheme for existential charts is similar.

Each existential LSC is translated into a monitoring sce-
nario aspect. A monitoring scenario aspect does not affect
execution and thus does not implement the getCutState

method. It monitors the relevant system events, advances
its cut state accordingly, and throws appropriate exceptions
when completed or violated.

5. INITIAL CASE STUDY
We demonstrate our approach using a simple example of a

Memory Game desktop application.4 While the example is
4Writing a small memory game application is a popular pro-
gramming exercise. Ours was inspired by a lab exercise given

Figure 3: The GUI of the Memory Game applica-
tion.

MemoryApplication

main(String[] args)

MemoryPanel

MemoryPanel()
void soundBeep()

MemoryCard

MemoryCard(String dsc, Color color)
void flipUp()
void flipDown()
void reDraw()
boolean match(MemoryCard mc)

boolean faceUp

JPanel

JComponent

*

Figure 4: The class diagram for the Memory Game
application.



Environment

LSC: ReDraw

mouseClicked ()

mc1:MemoryCard

reDraw()

Figure 5: The LSC for ReDraw.

deliberately small to fit in a conference paper, it shows the
key features of our approach, namely the scenario aspect
generated code, the coordinated simultaneous execution of
multiple scenario aspects, and the power of symbolic class-
level (as opposed to instance-level) scenario-based specifica-
tions when used not only for requirements documentation
but also for monitoring and direct execution. Overall, it
shows the applicability of our approach to creating ‘real’, al-
beit small, actual applications, as opposed to ‘simulations’.

Figure 3 shows the GUI of the Memory Game applica-
tion, during a game session. It consists a panel and sixteen
cards, each of which has a description and a color attached
to it. The cards are instances of class MemoryCard. The
UML class diagram in Figure 4 shows the architecture of
the system. Each class defines a public interface and is in-
ternally implemented. The classes do not implement any
inter-object behavior, however; i.e., the code in each class
does not contain references to public members or calls to
public methods of another class or between instances of the
same class (except initialization during constructors execu-
tion). The three classes constitute the ‘base program’, on
top of which the scenario aspects will be defined. We give
partial informal requirements for the inter-object behavior
of the Memory Game in a scenario-based fashion. These
include three scenarios:

• ReDraw: Whenever a card is clicked, it should redraw
itself.

• FlipUp: Whenever a card is clicked and its face is
down, the panel should tell it to face up and then it
should redraw itself.

• Match: Whenever the panel tells one card to turn face
up and then tells another card to turn face up, the
panel should play a beep sound, and the cards should
be compared. If they do not match, the panel should
tell both cards to turn face down.

Note that these scenario-based requirements are, to a large
extent, overlapping: the event of clicking a card appears in

by instructor Audrey Lee in CSC112 at Smith College, avail-
able at http://maven.smith.edu/∼alee/classes/112a/labs/.

LSC: FlipUp

mouseClicked ()

flipUp()

! mc1.faceUp

mc1:MemoryCardEnvironment MemoryPanel

reDraw ()

Figure 6: The LSC for FlipUp.

ReDraw and in FlipUp, and must be monitored by both; the
event where a card redraws itself appears in both require-
ments too, so play-out must try to synchronize its execution
between them; finally, the event where the panel tells a card
to face up appears in FlipUp and in Match: it must be exe-
cuted by the former and monitored by the latter, synchron-
ically. Figures 5, 6, and 1 show the translation of the above
requirements to LSCs, respectively. Note that the lifelines
representing the cards are symbolic class-level instance ref-
erences; i.e., they allow the same LSC to be activated with
different card (or cards) each time. This is critical in making
the scenario-based LSC specification concise and reusable.

The code generation process produces three scenario as-
pects, one for each specified LSC, and a single LSC Coor-
dinator aspect. Fig. 7 shows a snippet of the code from
LSCMatchAspect.aj scenario aspect including a pointcut, a
corresponding advice, and excerpts from the changeCutState
and getCutState methods.

Let us now trace the first few events in a possible execution
of the Memory Game, to better illustrate the play-out al-
gorithm, the event unification mechanism, and the concepts
of minimal events, enabled events, and violations. A call to
the method mouseClicked() on a card is a minimal event in
both ReDraw and FlipUp. Thus, when the user clicks a card,
a new copy of ReDraw is created, its class-level MemoryCard
lifeline binds to the actual card instance that was clicked
(target), and its cut advances to the point where the self
method reDraw() is execution-enabled. At the same time,
a copy of FlipUp is created, and its class-level MemoryCard
lifeline binds to the actual card instance that was clicked.
Its cut then advances to the point where the cold condition
is enabled and the condition is immediately evaluated.

If the cold condition evaluates to false, the copy of FlipUp
is discarded. The coordinator receives the cut state infor-
mation from the active scenarios (only ReDraw has an active
copy), discovers that reDraw() is execution-enabled and is
not violating in any other active chart, and executes it (on
the bound card). As the reDraw() method is not minimal in
any chart, no new copies are activated. The active copy of
ReDraw then advances its cut and thus reaches completion
and closes.



pointcut MemoryPanelMemoryCardFlipUp(MemoryPanel s, MemoryCard t):
call(void MemoryCard.flipUp())
&& this(s) && target(t);

after (MemoryPanel s, MemoryCard t): MemoryPanelMemoryCardFlipUp(s, t) {
changeCutState(LSCMethod.MEMORYPANEL_MEMORYCARD_FLIPUP, s, t);

}

private void changeCutState(int lscMethod, Object sourceObject, Object targetObject) {

//...
switch (lscMethod) {

case LSCMethod.MEMORYPANEL_MEMORYCARD_FLIPUP:
if (isInCut(0,0,0)) {

mc1 = (MemoryCard)targetObject;
setCut(1,0,1);
return;

}
if (isInCut(1,0,1)) {

mc2 = (MemoryCard)targetObject;
setCut(1,1,2);
return;

}
break;

case LSCMethod.MEMORYPANEL_MEMORYPANEL_SOUNDBEEP:
if (isInCut(1,1,2)) {

setCut(1,1,3);
if (!mc1.match(mc2)) {

setCut(2,2,4);
return;

}
}
break;

case LSCMethod.MEMORYPANEL_MEMORYCARD_FLIPDOWN:
//...

}
LSCCompletion();
//...

}

public static void getCutState(HashSet mE, HashSet eE, HashSet cV, HashSet hV) {

//...
if (isInCut(2,2,4)) {

// LSCMethod.MEMORYPANEL_MEMORYCARD_FLIPUP from MemoryPanel to mc1 is cold violation
cV.add(LSCMethod_MemoryPanelmc1flipUp);

// LSCMethod.MEMORYPANEL_MEMORYCARD_FLIPDOWN from MemoryPanel to mc1 is execution enabled
eE.add(LSCMethod_MemoryPanelmc1flipDown);

//...
}
//...

}

Figure 7: Code snippet from the LSCMatchAspect.aj scenario aspect including a pointcut, a corresponding
advice, and excerpts from the changeCutState and getCutState methods. The arguments for the isInCut and
setCut methods refer to location numbers on the corresponding lifelines. Bookkeeping code to manage
multiple active copies, handling arguments, and many other details have been omitted from the figure.
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LSC: ReDraw

mouseClicked ()

mc1:MemoryCard

reDraw()

Figure 8: An active copy of the LSC for ReDraw. The
cut is denoted by a comb-like thick line. The method
reDraw() is execution-enabled.

Otherwise, if the cold condition evaluates to true, the
copy of FlipUp advances its cut further, to the point where
the method flipUp() is enabled and reDraw() is a hot vi-
olation (see Figures 8,9). Observing this, the coordinator
discovers that the method flipUp() is the only execution-
enabled method which does not violate any active chart (the
reDraw() method is enabled in the active copy of ReDraw but
is violating in the active copy of FlipUp). Note that the two
reDraw() methods are unified because they are bound to
the same source and target object. So, the coordinator exe-
cutes the flipUp() method (this is done using an inter-type
declaration of a wrapper method; thus the actual call comes
from the MemoryPanel, not from the coordinator per se).

A flipUp() method call from the MemoryPanel to a card
is a minimal event in Match. Thus, as it is executed, a new
copy of Match is created, its mc1 class-level MemoryCard life-
line binds to the actual card that received the call, and its
cut is advanced accordingly. At the same time, the active
copy of FlipUp identifies the execution of its enabled event
and advances its cut accordingly. Next, since reDraw() is
execution-enabled in both FlipUp and ReDraw and is not vi-
olating in any other active copy, the coordinator executes it.

The above should help to better understand the play-out
execution mechanism and its implementation in our scheme.
We leave the analysis of other possible executions to the
interested reader.

6. RELATED WORK
We now discuss related work on LSC play-out, synthe-

sis, aspect modeling, aspect code generation, and other ap-
proaches to AOP.

The Play-Engine [23] is an experimental tool for require-
ments capture and direct execution of LSCs, based on the
play-in/play-out approach [24]. By compiling LSC speci-
fications into AspectJ code we advance the ideas behind
play-out from a tool dependent interpreter to having the
potential of becoming the central part of a standard devel-

LSC: FlipUp

mouseClicked ()

flipUp()

! mc1.faceUp

mc1:MemoryCardEnvironment MemoryPanel

reDraw ()

Figure 9: An active copy of the LSC for FlipUp. The
cut is denoted by a comb-like thick line. The method
flipUp() is execution-enabled while the method
reDraw() constitutes a hot violation.

opment and execution environment.5 InterPlay [8] coordi-
nates the simulation of the Play-Engine and a separately
executed program, such as another Play-Engine, or a tool
like Rhapsody [25] or RoseRT [43], given appropriate cus-
tom interface implementation. It relies on a user defined
bidirectional mapping between LSC events and observable
program events. In contrast, our compilation process inte-
grates the LSC specification into the program code, so the
result is a single executable program, despite the use of dif-
ferent multiple modeling methodologies in the requirements
specification and coding phase.

In [34], Krueger et al. propose a translation of MSCs
into AspectJ in the context of exploring alternative service-
oriented architectures. This work is related to ours, but it
suggests using a synthesis algorithm, adopted from [33], to
project specified behaviors onto each role, ultimately pro-
viding a state-machine for each participating object. As ex-
plained earlier, play-out, and thus our compilation scheme
too, bypasses the need for this kind of synthesis. In more
recent work [35], Krueger et al. translate scenarios into as-
pects and let the weaver resolve some of the resulting non-
determinism in a random fashion. Coordination between
non-disjoint scenarios, i.e., synchronizing the interactions
around common messages, is done statically and only be-
tween overlapping scenarios that the designer has explicitly
specified to be ‘joined’.

Deubler et al.[14] suggest modeling crosscutting services
with UML sequence diagrams enhanced by aspect-oriented
concepts. This work is related to ours in that it uses an
interaction-centric development approach and concentrates
on the behavioral part of aspects. Code generation, however,
is considered in the context of synthesis, as in [34].

5Play-in is a user-friendly high-level way of specifying behav-
ior and automatically generating the specification formally
in LSCs [18, 23]. While it is outside the scope of our work,
it should be clear that play-in can be combined with our
present work too.



Whittle et el.[50] translate requirements given in the form
of MSCs and IPS (Interaction Pattern Specification) into au-
tomata, where inter-dependencies between the scenarios are
handled through the identification of common local states,
explicitly specified by the designer as part of the require-
ments specifications, and by a unification of states with
common incoming and outgoing transitions. In related work
[6], the authors present a requirements level aspect-oriented
modeling approach. Both papers discuss the aspectual na-
ture of crosscutting requirements, but use a synthesis al-
gorithm, which results in a state-machine for each of the
participating components.

Uchitel et al. in [46, 47] promote the use of scenario-
based languages for requirements elicitation and specifica-
tion. They discuss the limitations of existing MSC synthesis
approaches and propose to address them by, e.g., detecting
implied scenarios, or by the use of architectural informa-
tion to synthesize the behavior of components types rather
than that of instances. It seems that we and they agree on
the intuitive nature and usefulness of scenario-based nota-
tions. Our approach differs in that we use a more expressive
formalism and show how to carry over the scenario-based
behavioral specification from requirements to implementa-
tion. From a methodological point of view, they suggest
incremental elaboration using implied scenarios, where we
would add a process that starts from basic scenarios and
incrementally elaborates them with modalities.6

Stolz and Bodden [44] present a nicely built runtime verifi-
cation framework for Java programs, where properties spec-
ified in LTL formulas over AspectJ pointcuts are checked
during program execution by an alternating finite automa-
ton whose transitions are triggered through generated as-
pects. Another runtime verification framework is suggested
by Kiviluoma et al.[31], who use generated aspects to sim-
ulate a small state machine that monitors behavioral re-
quirements given as UML Sequence Diagrams. Since LSCs
can be translated into LTL formulas (see [36]), these two
papers have some similarities with ours, specifically in the
possibility of using our code generation scheme to monitor
existential charts. Since our main motivation is execution,
however, we use the LSC language distinction between mon-
itoring and execution modes, and adopt the mechanism for
simultaneous coordination between the automata from the
play-out algorithm. Coordination between the generated as-
pect automata is irrelevant to these two papers.

In [17], Groher et al. discuss the generation of AspectJ
code skeletons from a UML model. Their approach offers a
mapping between the structure of the model and the struc-
ture of the resulting program. The skeletons, however, can-
not be executed, as the actual behavior is not modeled.

Many researchers consider the interesting question of us-
ing the UML to model aspects, or suggest to use UML like
notations or new profiles specifically for this purpose (see,
e.g., [5, 9, 10, 39]). Our present work differs in that it is not
intended to answer this question; instead, we use a specific
class of aspects in order to execute scenarios. Thus, we do
not aim to create models that cover the expressive power of
aspects.

Jacobson et al. [28] discuss a methodology for aspect-
oriented software development with use-cases, and attempt

6A complete methodology for the use of our compilation
scheme in a development process is, however, outside the
scope of this paper and will be addressed separately.

to achieve use-case modularity through aspect technologies.
The use-case abstraction level is not detailed enough to al-
low formal semantics nor expressive enough for actual code
generation. Indeed, scenarios are viewed in [28] as means to
explicate and formalize use-cases. In contrast, we show how
to actually compile scenarios to code via aspects, and in so
doing provide a new possibility for executable use-cases (in
addition to the play-out of [23]).

Finally, some advanced approaches to AOP are compared
to our work. Tracematches [3] is an extension of the As-
pectJ abc compiler [7], which allows the programmer to
trigger advice execution by specifying a regular pattern of
events in a computation trace. The ability to use free vari-
ables in the matching pattern and the corresponding unifica-
tion semantics is close to our use of parameterized methods
and class-level LSC lifelines. Another relevant approach is
that of Stateful Aspects [49], implemented in the JasCo lan-
guage [45], where pointcuts can declaratively specify proto-
col fragments equivalent to a finite state machine, and sep-
arate advice can be attached to every transition specified
in the pointcut protocol. Our pointcuts are single points,
and we manage the finite state machine explicitly in the as-
pect’s body. Thus, one could consider using Tracematches or
Stateful Aspects to simplify our code generation scheme and
improve the efficiency of the final executable program. How-
ever, the two approaches are limited to regular protocols.
Since non-regular protocols can be specified in LSC (using
variables and unbounded loops), this limits their applicabil-
ity to our work. Moreover, both approaches apply to ‘local’
traces, while play-out, and hence our compilation scheme,
requires, in addition, simultaneous coordination between the
traces, which is not addressed by these approaches.

7. DISCUSSION AND FUTURE WORK
One way of viewing our work is as an attempt to carry

over a significant idea from the aspect-oriented world to the
scenario-based one, exploiting one of the main achievements
of research on aspects, which is the ability to execute aspect
programs by compilation, in order to compile and execute
inter-object scenario-based specifications.

The main contribution of our work is that it translates the
inter-object scenario-based requirements to code that can in-
tegrate seamlessly with existing programs and is compiled
and executed in a standard manner. Thus, it constitutes a
crucial step towards integrating the scenario-based approach
to software specification with mainstream software engineer-
ing.

Still, some possible drawbacks of our approach should be
mentioned and addressed. The use of a high-level program-
ming language necessarily entails some level of suboptimal
performance. Using an inter-object scenario-based language
makes the situation worse, since it seems to require central
coordination at runtime, or alternatively, the construction
of a very large state machine. This may require additional
ideas to our approach when applied to large scale systems
or where performance is of high importance.

The need for a centralized coordinator is a limitation not
only from a performance point of view but also from an
architectural point of view. Thus, an important research
topic, which our group is pursuing at present, is to find
ways to (partially) distribute the play-out execution, not
necessarily between objects but between concurrently active
coordinators.



The original play-out process, as described in [23, 24] and
implemented in our present scheme, is rather näıve. Specifi-
cally, some of the sequences of events possible as a response
to a user event may eventually lead to violations, and these
cannot be avoided by the play-out process. Moreover, the
partial order semantics among events in each chart and the
ability to separate scenarios in different charts without hav-
ing to say explicitly how they should be composed are very
useful in early requirement stages, but can cause under-
specification and nondeterminism when one attempts to exe-
cute them. Smart play-out [20] partially addresses these lim-
itations using model-checking techniques, which, e.g., can
be used to avoid violations within a super-step. Packaging
smart play-out as a play-out strategy that can be used by
the coordinator in our scheme should not be a problem.

Tool support for our compilation scheme is crucial. Specif-
ically, this includes the full automation of the compilation
process, integration with a visual editor, and some more ad-
vanced features such as a run-time animation option, as is
available for example in Rhapsody and the Play-Engine. We
have started this implementation, and plan to package our
tool as an Eclipse [2] plug-in. A detailed presentation of our
tool will be given in a future paper.

Our current compilation scheme does not cover the full
LSC language. For some constructs, such as if-then-else and
switch-case subcharts, various types of loops, and internal
variables, extending the compilation scheme is straightfor-
ward. LSC’s support of symbolic instances and parame-
terized methods, as defined and implemented in the Play-
Engine, does not cover class inheritance. Our compilation
scheme already supports symbolic class-level instances. More-
over, since we use Java as the target language, a unification
mechanism that supports class inheritance is very natural to
our compilation scheme and its implementation is very easy.

Adding support for explicit time and real-time, as was
partly done for the Play-Engine in [22], however, is more
challenging. Specifically, our current compilation scheme
does not support multi-threaded programs and in general,
assumes the system to be infinitely faster than its envi-
ronment. Handling coordination in real-time and multi-
threaded programs is thus an interesting topic for future
research.

Another path for future work involves the compilation
scheme itself. First, further, more global, static analysis
may be performed during compilation to optimize the gen-
erated code. For example, the execution of methods that
appear only in a single LSC can be performed locally, elim-
inating the need for coordination. Second, it is important
to investigate the time and space complexity of the com-
pilation phase as a function of the number of lifelines and
events in each LSC and the number of classes and LSCs in
the specification. We note, though, that as the construc-
tion of the abstract automaton that simulates the runs of
the LSC does not require information from other LSCs, the
compilation of each LSC is independent of the rest of the
specification. Thus, the code generation process can be car-
ried out ‘locally’ and its complexity should not be a major
concern.

As discussed in the previous section, some aspect lan-
guages other than AspectJ, e.g., [42, 49], or extensions of
AspectJ, e.g., [3], include advanced features that could be
exploited by our compilation scheme in order to produce
code that might be more succinct, accessible to a human

programmer, or allow for more efficient execution using var-
ious methods of runtime weaving. Considering other target
languages is thus a possible direction for future research and
implementation work.

With regard to the hybrid approach to system modeling
and execution we experiment with in this paper, we should
carefully consider the question of what is the best way to
specify the distinction between monitoring and execution
modes when using scenario-based specifications. In the sim-
plest case, a clear separation between intra-object and inter-
object specification (disjoint alphabets a la InterPlay [8]) is
assumed. In practice, however, it might be important to re-
lax this assumption, in which case a new pair of modalities,
execute and monitor, would be required. These would gener-
alize the notion of pre-chart/main-chart, since each method
would have a mode: monitor/execute. The new modalities
would be orthogonal to the may vs. must (cold/hot) modal-
ities.

Finally, in [21], we discussed the integration of the key fea-
tures of the LSC language, namely the universal/existential
distinction and hot/cold modalities, into the UML standard,
and proposed Modal UML Sequence Diagrams (MUSD) as
a UML 2.0 profile whose semantics is based on LSCs, and
thus allows the specification of required and forbidden be-
haviors. We are currently working on formalizing the addi-
tion of the monitoring/execution modes suggested above to
MUSD, so as to allow the definition of operational seman-
tics for MUSD based on the operational semantics of LSC.
This generalizes the notion of pre-chart/main-chart to the
monitoring/execution modes at the message and interaction
fragment level. Note that the compilation scheme presented
here already supports this generalization 7. Thus, the result
is a compilation scheme from Multi-modal UML Sequence
Diagrams to AspectJ code.
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[34] I. Krüger, R. Mathew, and M. Meisinger. From Scenarios to
Aspects: Exploring Product Lines. In Proc. 4th Int. Workshop
on Scenarios and State-machines (SCESM’05) at the 27th
Int. Conf. on Soft. Eng. (ICSE’05). ACM Press, 2005.
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