
An S2A Case Study: Phone Book MVC

Asaf Kleinbort and Shahar Maoz

The Weizmann Institute of Science
{asaf.kleinbort,shahar.maoz}@weizmann.ac.il

1 Introduction

We present a case study application constructed using the S2A compiler. The
case study shows how S2A realizes MUSD behavioral contract enforcement and
reuse across class hierarchies and interface implementations. For more informa-
tion on the S2A compiler see the Scenarios in Action website at:
http://www.wisdom.weizmann.ac.il/~maozs/s2a/.

2 The Phone Book MVC

We describe a simple desktop phone book application1. It includes a text-based
interface that allows the user to add name/phone pairs and search for phone by
name. The data persist in a text file. Fig. 1 shows the Phone Book GUI.

Fig. 1. A snapshot of the Phone Book GUI.

The application’s architecture is based on the popular Model-View-Controller
(MVC) architectural design pattern; the Model is responsible for data processing
and persistence, the View is responsible for the user interface (presentation and
collection of user input), and the Controller is responsible for executing actions
according to user input and current state of the application. Most significant
1 The case study was inspired by an example given in an IBM tutorial document for

Rational Software Architect written by Tinny Ng, available from http://www.ibm.

com/developerworks/.



2 Kleinbort and Maoz

<<interface>>
IModel

int getState ()
void setState (state: int)

PhoneBookModel

int getState ()
void setState (state: int)
void setName (name: String)
void addAnEntry (number: String)
void saveAll ()
void searchPhoneByName (name: String)

PhoneBookView

void stateHasChanged (state: int)
void changeView ()

<<interface>>
IView

void stateHasChanged (state: int)

PhoneBookController

void userHasInput (s: String)

<<interface>>
IController

void userHasInput (s: String)

PhoneBookGUIView

Fig. 2. The Phone Book application’s Class Diagram.

to our work is that we use MUSDs to specify (and thus actually to program!)
all communications between the three components. These include both generic
behavior at the abstract interfaces level and application specific behavior at the
concrete classes level, as we demonstrate next.

Fig. 2 shows the Phone Book application UML class diagram; it includes
three interfaces and three concrete classes that implement them, plus another
class, PhoneBookGUIView, which extends PhoneBookView.

The SetState MUSD shown in Fig. 3 includes three methods:
setState() (cold/monitoring), stateHasChanged() (hot/execution), and
changeView() (cold/monitoring). It specifies that whenever the IModel method
setState() is called from an IController (more precisely, whenever an object
that implements the IController interface calls the setState() method of an
object that implements the IModel interface), with whichever int argument, the
IModel should eventually call the IView method stateHasChanged() with the
same integer as argument. The IView may then call its changeView() method.
The behavior is specified at the interface level since it is generic and independent
of a specific MVC-based application.

The application specific inter-object behavior of the Phone Book is specified
in the UserInput MUSD shown in Fig.4. It specifies that whenever the con-
troller’s userHasInput() method is called by the viewer, and the input is not



An S2A Case Study: Phone Book MVC 3

empty, one of several alternative scenarios should happen, depending on the cur-
rent state of the application and the input2. For example, if the current state is
STATE IDLE and the input is COMMAND QUIT STRING (defined as “quit”), the con-
troller should call the model’s saveAll() method and then call its setState()
method with the new state STATE EXIT as argument.

3 Conclusions

The Phone Book case study shows how S2A realizes MUSD behavioral contract
enforcement and reuse across class hierarchies and interface implementations.
Since the lifelines in the SetState MUSD represent interfaces, this diagram can
be explicitly reused, as is, together with the three interfaces, in other applica-
tions that employ the MVC design pattern. Reusing the SetState MUSD enforces
the correct use of the pattern; S2A generates the code that actually performs
the required behavior and thus ensures that the behavioral aspect of the pat-
tern is indeed preserved in the implementation. As future work we thus envision
assembling a repository of reusable MUSD specifications of popular behavioral
patterns, such as MVC, from which one could choose and then reuse when con-
structing new applications.

The Phone Book application uses the PhoneBookGUIView class to implement
a Java Swing interface. The main() method of the application initiates this class.
Since it extends the PhoneBookView class (and thus implicitly also implement
the IView interface), the corresponding lifelines in the two MUSDs bind to it at
runtime. Thus, the diagrams can be reused both with new interface implemen-
tations and with subclassing.

Finally, the case study shows the applicability of MUSD to popular frame-
works that implement the MVC pattern, most importantly, to server-side pro-
gramming frameworks of web-based applications (e.g., Struts, Spring). Specify-
ing such a server-side application using MUSD and constructing it using S2A is
a project we plan to pursue.

The Phone Book MVC UML model, source, generated aspect code, and exe-
cutable, can be downloaded from the Scenarios in Action web site at:
http://www.wisdom.weizmann.ac.il/~maozs/s2a/.

2 To specify different alternatives and to choose between them using guards we use
the UML 2 standard ALT combined interaction fragment.



4 Kleinbort and Maoz

MUSD: SetState

setState(state: int)

iController:IControlleriView:IView iModel:IModel

stateHasChanged(state: int)

changeView()

Fig. 3. SetState MUSD.

MUSD: UserHasInput

userHasInput (input: String)

controller:PhoneBookControllerview:PhoneBookView model:PhoneBookModel

setState(PhoneBookConstants.STATE_ADD)

{ input != null && input.length() != 0 }

alt

[model.getState()==PhoneBookConstants.STATE_IDLE]

alt

[input.equals(PhoneBookConstants.COMMAND_ADD_STRING)]

[input.equals(PhoneBookConstants.COMMAND_QUIT_STRING)]

setState(PhoneBookConstants.STATE_EXIT)

saveAll()

Fig. 4. UserHasInput MUSD.


