
Appendices for:
S. Maoz, A. Kleinbort, and D. Harel. Towards Trace Visualization and Exploration for Reactive Systems. In Proc. IEEE Symp. on
Visual Languages and Human-Centric Computing (VL/HCC’07), 2007.

Appendix A: Scenario-Based Traces

An important concept in modal scenarios semantics is
the cut, which is a mapping from each lifeline to one of
its locations (note the tiny location numbers along the life-
lines in Fig. 1, used to represent the state of an active
scenario during execution). For example, in the modal
scenario PacManEatsGhost shown in Fig. 1, the cut
(3,4,2,0) comes immediately after the hot evaluation
of the ghost’s state. A cut induces a set of enabled events
— those immediately after it in the partial order defined by
the diagram. In Fig. 1, a single enabled event is induced
by the cut at (3,4,2,0), namely the ghost’s self method
call goToJail(). A cut is hot if any of its enabled events

Figure 1. The modal scenario for PacManEatsGhost
with a cut displayed at (3,4,2,0).

is hot (and is cold otherwise). When a scenario’s minimal
event occurs, a new instance of it is activated. An occur-
rence of an enabled method or TRUE evaluation of an en-
abled condition causes the cut to progress; an occurrence of
a non-enabled method from the scenario or a FALSE evalu-
ation of an enabled condition when the cut is cold (hot) is a
completion (violation) and causes the scenario’s instance to
close.

Given a scenario-based specification consisting of a
number of modal scenarios, a scenario-based execution
trace includes the activation and progress information of the
scenarios, relative to a given program run. A trace may be
viewed as a projection of the full execution data onto the set
of methods in the specification, plus, significantly, the ac-
tivation, binding, and cut-state progress information of all
the instances of the scenarios (including concurrently active
multiple copies of the same scenario).

A snippet from a textual representation of a scenario-
based execution trace is given in Fig. 2. Events (method
calls) are time stamped and include data about the source

and target objects (caller and callee), the method signature,
and the values of parameters. Cut progress data include the
scenario name, instance number, a tuple of integers repre-
senting locations on corresponding lifelines, and the current
cut’s mode (hot or cold). Binding information links scenario
lifelines to objects. Finally, the text includes completion
and violation information, as applicable.

In [6, 13] we presented a compilation scheme and a pro-
totype compiler implementation called S2A for the transla-
tion of modal scenarios into scenario aspects, implemented
in AspectJ . Each scenario aspect simulates an abstract au-
tomaton whose states represent cuts along the partial order
defined by the diagram, and whose transitions represent en-
abled events (we refer the reader to [13] for details). We
thus use these generated scenario aspects to instrument pro-
grams and create traces annotated with scenario-based in-
formation (such as the one shown in Fig. 2, which was cre-
ated using S2A) that serve as the input for the visualization.1

Appendix B: State-Based Trace Visualization

While the main concern of the paper is the visualization
of execution traces induced by inter-object scenario-based
specifications, the ideas can be applied to intra-object state-
based specifications too. We now sketch the adaptation.

We propose to generate state-based execution traces, i.e.,
execution traces that include information about the states of
(selected) objects during a run of the program. These are
then visualized using an appropriate variant of the Tracer,
where the hierarchy reflects the object composition relation,
and the horizontal bars represent the durations of being in
states of specific object instances, as they change over time.
Moreover, if Statecharts [4, 5] are used to describe the intra-
object behavior of the system (as in, e.g., Rhapsody [2]),
the trace visualization would further reflect the orthogonal
components of an object’s statechart as sibling nodes in the
Gantt hierarchy, while the depth of the states would be in-
dicated on the horizontal bars themselves.

This state-based trace visualization may take advantage
of the techniques described in the paper: handling con-
currency, details-on-demand (from a horizontal bar on the
Gantt to a Statechart diagram where the current state is
highlighted), event/time-based tracing, variable time-scale
mode, etc.

1Other means could have been used to generate similar scenario-based
traces (e.g., the Play-Engine [8]) and other textual formats (e.g., XML)
could have been used to represent the data. Our techniques are independent
of the method used for trace generation and of the textual format used.



E: 1172664920526 64: void pacman.classes.Ghost.slowDown()
B: pacman.aspects.MUSDAspectPowerUpEaten[1] lifeline 6 <- pacman.classes.Ghost@7e987e98
B: pacman.aspects.MUSDAspectGhostStopsFleeing[7] lifeline 1 <- pacman.classes.Ghost@7e987e98
C: pacman.aspects.MUSDAspectGhostStopsFleeing[7] (0,1) Hot
C: pacman.aspects.MUSDAspectGhostFleeing[7] (1,3) Hot
E: 1172664920526 65: void pacman.classes.GameControl.ghostSlowedDown(Ghost) pacman.classes.Ghost@7e987e98
B: pacman.aspects.MUSDAspectGhostStopsFleeing[7] lifeline 0 <- pacman.classes.GameControl[panel0,0,0,600x600,layout=...
C: pacman.aspects.MUSDAspectGhostStopsFleeing[7] (1,2) Cold
C: pacman.aspects.MUSDAspectGhostFleeing[7] (2,4) Cold
E: 1172664920526 66: void pacman.classes.GameModel.resetGhostPoints()
C: pacman.aspects.MUSDAspectPowerUpEaten[1] (1,2,6,1,1,1,1) Cold
F: pacman.aspects.MUSDAspectPowerUpEaten[1] Completion
E: 1172664921387 67: void pacman.classes.Fruit.enterScreen()
B: pacman.aspects.MUSDAspectPacmanEatsFruit[0] lifeline 2 <- pacman.classes.Fruit@3360336
C: pacman.aspects.MUSDAspectPacmanEatsFruit[0] (0,0,1,0) Hot
C: pacman.aspects.MUSDAspectPacmanEatsFruit[0] (0,0,2,0) Cold
E: 1172664923360 68: void pacman.classes.Ghost.collidedWithPacman()
B: pacman.aspects.MUSDAspectPacmanEatsGhost[2] lifeline 1 <- pacman.classes.Ghost@7d947d94
B: pacman.aspects.MUSDAspectPacmanEatsGhost[2] lifeline 0 <- pacman.classes.GameControl[panel0,0,0,600x600,layout=...
C: pacman.aspects.MUSDAspectPacmanEatsGhost[2] (1,1,0,0) Hot
C: pacman.aspects.MUSDAspectPacmanEatsGhost[2] (1,2,0,0) Hot
C: pacman.aspects.MUSDAspectGhostEatsPacman[2] (0,1,1,0) Cold
F: pacman.aspects.MUSDAspectGhostEatsPacman[2] Violation

Figure 2. Part of a text file for a trace of PacMan

Interestingly, our trace visualization methods for the two
approaches – intra-object and inter-object – can be com-
bined. This allows the user to switch between state-based
and scenario-based traces of the same program run, explore
them simultaneously in different synchronized views, etc.
This can have significant benefits both in system develop-
ment stages and in system testing and maintenance.

Appendix C: Related Work

We briefly discuss recent related work in the areas of ex-
ecution traces, sequence diagrams, and time-series data vi-
sualization.

The visualization of execution traces, as a topic within
software visualization in general, has often been suggested
and implemented. However, most trace extraction and visu-
alization efforts to date (e.g., [11, 12, 14, 15, 18]) consider
the trace at the code level, while our traces are abstracted
to the scenario (or state) level. Thus, our approach com-
bines tracing with model-driven design. Moreover, instead
of looking for interaction patterns in the extracted traces
(as in, e.g., [12]), or visualizing the recorded trace using
a sequence diagram (as in, e.g., VET [14], Eclipse TPTP
[1], or I-Logix Rhapsody [2]), we take the scenario-based
specification given by the user as input and visualize the
activation, progress, and interaction of the specified inter-
object scenarios as they “come to life” during execution.
Finally, we consider not only the partial-order semantics of
sequence diagrams, but significantly also the modal, univer-
sal/existential, hot/cold semantics of live sequence charts
(LSC) [3, 8] and their UML-compliant version [7], which
allow for stronger expressive power with regard to tempo-
ral, functional, and structural properties.

The Play-Engine [8] is an interpreter-style simulation
engine built in our group for LSCs, based on the play-
in/play-out approach [9]. As the simulation progresses, the
Play-Engine follows and displays all the active LSCs and
their cuts. User experience shows, however, that in terms
of comprehending the execution there can be much infor-
mation overload: when many LSC windows open and close
rapidly during execution the effectiveness of the visualiza-
tion decreases. The approach presented in the paper seems
to constitute the much-needed aid for such comprehension.
Thus, for example, we allow the user to choose a preferred
level of detail and to zoom from the black-box Gantt view
to the detailed view where the active scenarios complete se-
quence diagrams and their cut information is shown (and
these cuts can be visualized diachronically in the context
of the execution’s past and future). Also, the Play-Engine
is an LSC-specific closed environment, whereas the Tracer
can be used for the scenario-based analysis and visualiza-
tion of any third-party Java program.

Recent work by Reiss [16, 17] proposes visualizing pro-
gram execution by following the states of a user-defined au-
tomaton on the traces. This work has some similarities with
ours. Some key differences are our use of sequence dia-
grams as visual specifications, the link from the bars to the
diagram displaying the cut, the event/time-based combina-
tions, and the additional multiplicities and metrics views.

Finally, analysis and visualization of program execution
traces is related to the exploration and visualization of time-
series data in general. In [10], Hochheiser and Shneider-
man present Timeboxes, which are rectangular widgets used
in direct-manipulation graphical user interfaces to specify
query constraints on time-series data sets. It is possible to
combine TimeBoxes with the Tracer to apply this and other
time-related techniques to our model-based execution traces



(both event-based and time-based), thus gaining dynamic
querying capabilities and greater visual insight into the ex-
ecution of complex reactive systems.

References

[1] Eclipse Test and Performance Tools Platform.
http://www.eclipse.org/tptp/.

[2] I-Logix Rhapsody. http://www.i-logix.com.
[3] W. Damm and D. Harel. LSCs: Breathing Life into Message

Sequence Charts. J. on Formal Methods in System Design,
19(1):45–80, 2001. Preliminary version in Proc. 3rd IFIP
Int. Conf. on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’99), (P. Ciancarini, A. Fantechi
and R. Gorrieri, eds.), Kluwer, 1999, pp. 293-312.

[4] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8:231–274, 1987.

[5] D. Harel and E. Gery. Executable object modeling with stat-
echarts. Computer, pages 31–42, July 1997.

[6] D. Harel, A. Kleinbort, and S. Maoz. S2A: A compiler for
multi-modal UML sequence diagrams. In Proc. 10th Int.
Conf. Fundamental Approaches to Software Engineering
(FASE’07), volume 4422 of LNCS, pages 121–124, 2007.

[7] D. Harel and S. Maoz. Assert and Negate Revisited: Modal
Semantics for UML Sequence Diagrams. In Proc. 5th Int.
Workshop on Scenarios and State Machines (SCESM’06),
at the 28th Int. Conf. on Software Engineering (ICSE’06),
pages 13–20, New York, NY, USA, May 2006. ACM Press.

[8] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer,
2003.

[9] D. Harel and R. Marelly. Specifying and executing behav-
ioral requirements: the play-in/play-out approach. Software
and System Modeling, 2(2):82–107, 2003.

[10] H. Hochheiser and B. Shneiderman. Dynamic query tools
for time series data sets: timebox widgets for interactive ex-
ploration. Information Visualization, 3(1):1–18, 2004.

[11] J. G. Hosking. Visualisation of object oriented program ex-
ecution. In Proc. 1996 IEEE Symp. on Visual Languages,
pages 190–191. IEEE Computer Society, 1996.

[12] D. F. Jerding, J. T. Stasko, and T. Ball. Visualizing in-
teractions in program executions. In Proc. 19th Int. Conf.
on Software Engineering (ICSE’97), pages 360–370, New
York, NY, USA, 1997. ACM Press.

[13] S. Maoz and D. Harel. From multi-modal scenarios to
code: compiling LSCs into AspectJ. In Proc. 14th ACM
SIGSOFT Int. Symp. on Foundations of Software Engineer-
ing (SIGSOFT’06/FSE-14), pages 219–230, New York, NY,
USA, 2006. ACM Press.

[14] M. McGavin, T. Wright, and S. Marshall. Visualisations
of execution traces (VET): an interactive plugin-based vi-
sualisation tool. In Proc. 7th Australasian User Interface
Conf. (AUIC’06), pages 153–160, Darlinghurst, Australia,
Australia, 2006. Australian Computer Society, Inc.

[15] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M. Vlis-
sides, and J. Yang. Visualizing the execution of java pro-
grams. In Revised Lect. on Software Visualization, Int. Sem-
inar, pages 151–162, London, UK, 2002. Springer-Verlag.

[16] S. P. Reiss. Checking event-based specifications in java sys-
tems. ENTCS, 144(3):107–132, 2006.

[17] S. P. Reiss. Visualizing program execution using user ab-
stractions. In Proc. 2006 ACM Symp. on Software Visualiza-
tion (SoftVis’06), pages 125–134. ACM Press, 2006.

[18] S. P. Reiss and M. Renieris. Jove: java as it happens. In Proc.
2005 ACM Symp. on Software Visualization (SoftVis’05),
pages 115–124. ACM Press, 2005.


