
Towards Trace Visualization and Exploration for Reactive Systems ∗
(preliminary version)

Shahar Maoz, Asaf Kleinbort, David Harel†

The Weizmann Institute of Science, Rehovot, Israel

1. Introduction
The design and development of reactive systems [10],

discrete-event systems that maintain ongoing interaction
with their environment, is a complex and challenging task.
One way to address it is to use visual formalisms to model
and describe the system’s behavior. Two complemen-
tary approaches to model the behavior of reactive systems
have been proposed – state-based intra-object modeling and
scenario-based inter-object modeling – with corresponding
visual languages [5, 7].

In this paper — as a natural extension of the idea of using
visual formalisms for the modeling itself — we present a
technique for the visualization and exploration of execution
traces of such models. Our approach is different from pre-
vious approaches, most of which consider execution traces
at the code level, look for interaction patterns in the traces,
or generate concrete sequence diagrams from recorded exe-
cution traces. In contrast, we take an inter-object scenario-
based behavioral model given by the designer as input, and
visualize the activation and progress of the scenarios therein
as they “come to life” during execution. We illustrate the
ideas using modal scenarios, given in a UML-compliant di-
alect of live sequence charts (LSC) [5, 9].

The technique links the static and dynamic aspects of
the system, and supports synchronic and diachronic trace
exploration, concurrency, event-based and real-time-based
tracing. It uses overviews, filters, details-on-demand mech-
anisms, multi-scaling grids, and gradient coloring methods.
We have implemented the ideas in a prototype tool we call
the Tracer. The examples we show are based on a Java im-
plementation of the PacMan game [2]. For lack of space this
preliminary version reports only on the essentials. We refer
the reader to [3] for a demonstration movie of the Tracer
and for the Appendices to this paper, which include back-
ground material, preliminary ideas on state-based traces,
and a comparison with related work. 1

∗This research was supported by the John von Neumann Minerva Cen-
ter for the Development of Reactive Systems, at the Weizmann Institute.

†Part of this author’s work done on a visit to the School of Informatics
at the University of Edinburgh, supported by an EPSRC grant.

1Thanks are due to Peter Kliem for making his jaret timebars [1] avail-
able under GPL and for the implementation of the variable scale feature.

2 Preliminaries
To specify modal scenarios, we use a UML-compliant,

uniform, and slightly generalized version of Damm and
Harel’s live sequence charts (LSC), a visual formalism for
scenario-based inter-object specifications [5], defined using
the Modal profile [9]. The language extends the partial or-
der semantics of sequence diagrams in general, by allowing
to specify (sub) scenarios that “may happen”, “must hap-
pen”, or “should never happen”. The notation is adopted
from LSC: hot (“must”) elements are colored in red, cold
(“may”) elements in blue (alternatively, hot use solid lines
and cold use dashed ones). Vertical lifelines represent spe-
cific processes and time goes from top to bottom. Lifelines
may be symbolic [12], and thus represent any object of the
class associated with them. A specification typically con-
sists of many scenarios, divided between several use cases.

An important concept in the semantics of modal scenar-
ios is the cut, which is a mapping from each lifeline to one
of its locations, representing the state of an active scenario
during execution. A cut induces a set of enabled events —
those immediately after it in the partial order defined by the
scenario. A cut is hot if any of its enabled events is hot
(and is cold otherwise). When a scenario’s minimal event
occurs, a new instance of it is activated. An occurrence of
an enabled method or TRUE evaluation of an enabled con-
dition causes the cut to progress; an occurrence of a non-
enabled method from the chart or a FALSE evaluation of an
enabled condition when the cut is cold (hot) is a completion
(violation) and causes the scenario’s instance to close.

Given a scenario-based specification consisting of a
number of modal scenarios, a scenario-based execution
trace includes the activation and progress information of the
scenarios, relative to a given program run. A trace may be
viewed as a projection of the full execution data onto the set
of methods in the specification, plus, significantly, the ac-
tivation, binding, and cut-state progress information of all
the instances of the scenarios (including concurrently active
multiple copies of the same scenario). We use the S2A com-
piler [8] to translate the diagrams into scenario aspects [11],
and create the scenario-based execution traces that serve as
the input for the visualization.



3 Scenario-Based Trace Visualization
Basically, we visualize a scenario-based program execu-

tion trace using a hierarchical Gantt chart, which we have
enriched in several ways, discussed below. In it, time goes
from left to right and the hierarchy is defined by the con-
tainment relation of the use cases and diagrams in the spec-
ification model. Thus, each leaf in the hierarchy represents
a different sequence diagram, the horizontal rows represent
specific active instances of a diagram (we call scenario in-
stances), and the bars therein show the durations of being
in the relevant cut states. The horizontal axis of the view
allows to follow the progress of specific scenario instances
over time, identify the events that caused progress, and lo-
cate completions and violations. The vertical axis allows
a clear view of the synchronic characteristic of the trace,
showing exactly what goes on at any given point in time.

By default, the basic view uses color coding to visu-
ally distinguish between existential (cold/blue) and univer-
sal (hot/red) cuts. A textual encoding of the cut into a tu-
ple of integers representing locations on specific lifelines is
displayed on each bar. Further details about a specific cut
(e.g., the signature of its preceding event) are displayed in
a tooltip over the bar. Other rendering functions, e.g., dis-
playing the instance serial number or avoiding text labels
entirely, are also available.

Fig. 4 shows a representative screenshot of the default
main view. Note the hierarchy of use cases and sequence
diagrams on the left and the red and blue bars representing
hot and cold cut-states. Note also the Overview, which dis-
plays the main execution trace in a smaller pixel per event
scale, and the moving frame showing the borders of the in-
terval currently visible in the main view.

When double-clicking a bar, a window opens, display-
ing the corresponding scenario instance with its dynamic
cut (Fig. 4). Identifiers of bound objects and values of pa-
rameters and conditions are displayed in tooltips over the
relevant elements in the diagram. Multiple windows dis-
playing the dynamic view of different scenario instances
can be opened simultaneously to allow for a more global
synchronic (vertical) view of a specific point in the execu-
tion, or for a diachronic (horizontal) comparison between
the executions of different instances of the same scenario.

The building blocks of reactive-system traces are dis-
crete events. Indeed, the basic view presented above is
event-based: the trace progresses if and when an event oc-
curs (and only then), and all events are allocated the same
horizontal distance on the view. In other words, time is ab-
stracted away from the basic visualization of the trace; only
the order remains. This kind of abstraction is not new and is
typically reflected in the language chosen to specify a sys-
tem’s behavior. The basic variants of the temporal logics,
for example, LTL and CTL, indeed do not consider the ac-
tual durations of happenings but only their order [6].

In many systems however, the real-time aspect of the
trace is important. Thus, in addition to the default event-
based view, we offer a time-based view, where the horizon-
tal axis accurately reflects the progress of time, regardless
of occurrence of events. The user can select the basic unit of
time (millisecond, second, etc.) and a corresponding fixed
pixel distance.

The time-based view of the trace correctly reflects its
progress over time. However, in many cases, due to high
variability in event duration and density, which can often
span several orders of magnitude, the resulting view may
be formally accurate but very difficult to comprehend and
browse visually. Such high variability, e.g., short periods
with many events and long periods with very few events,
is typical to many real-world reactive systems that interact
with their environment. To alleviate this problem, we pro-
vide a novel hybrid view, which we term event-normalized
(Fig. 1). It combines the event-based and time-based pre-
sentations by allocating a fixed horizontal interval to each
event, while programming the grid appearing in the back-
ground to draw vertical lines every fixed time unit. As a
result, these time-based vertical lines are unevenly spaced.

Multiple instances of the same diagram, where life-
lines bind to different objects, may be simultaneously ac-
tive during program execution (see [12]). Consider the
PacManEatsGhost scenario from Fig. 4: PacMan may
eat a second ghost before the first one eaten has entered the
jail. In this case, two instances of the PacManEatsGhost
diagram, where the lifeline ghost binds to different objects,
will be active simultaneously.

As a means to handle multiple instances we introduce a
supporting view called Multiplicities (Fig. 2). On the main
view, we hide the multiplicity from the user by covering the
period where more than one instance has been active with a
single grey bar. When the user double-clicks the grey bar,
the specific instances are displayed in the supporting view.
Thus, details about multiple copies are given on-demand.

The Metrics View (Fig. 3) shows various specification-
wide synchronous (so called ‘vertical’) statistics, such as
the total number of concurrently active scenarios (the sce-
nario bandwidth), the total number of scenarios affected by
the most recent event, etc., some of which are relevant to
performance and resource allocation analysis. One of the
more interesting ones is duration. As explained earlier,
in the event-based tracing mode grid lines are evenly spaced
between events and the data about the real durations is ab-
stracted away. The duration metric displays the real du-
ration of the periods between events, visually overlaying the
real-time dimension on the fixed event-based view.

The metrics are displayed using user-adjustable color
gradients; these are appropriate since for most purposes the
metric’s relative qualitative values, e.g., high/medium/low,
are of interest, rather than the precise values.



Figure 1. The event-normalized time-based view. Note the different scales between the 54th and 80th ms, and between the 88th
and the 2525th ms. In the former interval, only 26 milliseconds passed between two consecutive events, but in the latter more than 2
seconds. In between them, there was an event (at least) every millisecond. In the real time-based view, where every millisecond gets
a fixed width, these differences in event density would result in a display that is very difficult to comprehend and browse visually.

Figure 2. The Multiplicities view. Note the four active copies of the GhostFleeing scenario.

Figure 3. Metrics view without values (left) and with values and different scale (right). Note the dark colored bar for the 149th
event in the duration metric (bottom), indicating a long period with no events, otherwise abstracted away in the event-based view.



Figure 4. The Tracer’s main view, an opened scenario instance with cut displayed at (3,4,2,0), and the Overview.

4 Conclusion and Future Work
The main contribution of our work is in providing new

techniques for scenario-based visualization and exploration
of reactive system execution traces. By considering traces
not at the code level but at a higher behavioral abstract level,
we are able to connect dynamic analysis with model-driven
development. The separate event-based and time-based
tracing modes, as well as the combined event-normalized
multi-scale mode, appear to be another novel contribution.

Our work follows the overview first, zoom and filter,
details-on-demand paradigm [4], and the concept of se-
mantic zooming [13] in a number of ways. First, by the
use of the Overview supporting view and its main view
frame, and second, by the zoom from classes to instances
(of concurrent scenarios!) to scenario instance details on
demand. Also, the multi-scale presentation may be viewed
as a special kind of automated semantic zooming, where
although the real duration between events is explicitly dis-
played, fragments of the execution trace receive horizontal
space according to the level of activity they contain, rather
than according to their real-time duration.

Planned future work includes completing the Tracer’s
packaging and conducting usability studies. In addition,
we have begun to consider the application of our ideas to
state-based behavioral models. We believe that the Tracer,
or a similar tool based on our ideas, can be used effectively
to improve the activities involved in the development of

complex reactive systems, specifically in simulation, test-
ing, and dynamic analysis.

References
[1] Jaret timebars package. http://jaret.de/timebars/.
[2] PacMan game code. http://www.bennychow.com/.
[3] Tracer website. http://www.wisdom.weizmann.ac.il/˜maozs/tracer/.
[4] S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors.

Readings in information visualization. 1999.
[5] W. Damm and D. Harel. LSCs: Breathing Life into Message

Sequence Charts. Formal Methods in System Design, 2001.
[6] E. A. Emerson. Temporal and modal logic. In Handbook

of Theoretical Computer Science, Volume B: Formal Models
and Sematics (B). 1990.

[7] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 1987.

[8] D. Harel, A. Kleinbort, and S. Maoz. S2A: A compiler for
multi-modal UML sequence diagrams. In FASE’07, 2007.

[9] D. Harel and S. Maoz. Assert and Negate Revisited: Modal
Semantics for UML Sequence Diagrams. In SCESM’06,
2006.

[10] D. Harel and A. Pnueli. On the development of reactive
systems. In Logics and Models of Concurrent Systems, 1985.

[11] S. Maoz and D. Harel. From multi-modal scenarios to code:
compiling LSCs into AspectJ. In SIGSOFT FSE, 2006.

[12] R. Marelly, D. Harel, and H. Kugler. Multiple Instances
and Symbolic Variables in Executable Sequence Charts. In
OOPSLA’02.

[13] K. Perlin and D. Fox. Pad: an alternative approach to the
computer interface. In SIGGRAPH’93, 1993.


