
,,'"
,V'
~

"~

~J'I

Journal of Statistical Physics, Vol. 74, Nos. 1/2, 1994

Optimal Multigrid Algorithms for
Calculating Thermodynamic Limits
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Beyond eliminating the critical slowing down, multigrid algorithms can also
eliminate the need to produce many independent fine-grid configurations for
averaging out their statistical deviations, by averaging over the many samples
produced in coarse grids during the multigrid cycle. Thermodynamic limits can
be calculated to accuracy (; in just 0((;-2) computer operations. Examples
described in detail and with results of numerical tests are the calculation of the

susceptibility, the a-susceptibility, and the average energy in Gaussian models,
and also the determination of the susceptibility and the critical temperature ,in
a two-dimensional Ising spin model. Extension to more advanced models is
outlined.

KEY WORDS: Multigrid; Gaussian model; Ising spin model; XY model;
Monte Carlo; thermodynamic limit; coarsening by approximation.

1. INTRODUCTION

The aim in statistical physics is to calculate various average properties of
configurations governed by the Boltzmann distribution. This is usually done
by measuring these averages over a sequence of Monte Carlo iterations.
Unfortunately, such processes tend to suffer from several independent
inefficiency factors that multiply each other and thus produce very expensive
computations.

The best known of these inefficiency factors is the critical slowing down
(CSD). This is the phenomenon, typical to simulations of critical systems,
that with the increase in lattice size there also comes an increase in the

number of Monte Carlo passes over the lattice needed to produce a new

1Department of Applied Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot 76100, Israel. E-mail: MAGALUN@weizmann.weizmann.ac.i1

313

0022-4715/94/0100-0313$07.00/0 @ 1994 Plenum Publishing Corporation



314 Brandt et al.

configuration which is statistically "useful," i.e., substantially independent
of, or only weakly correlated to, a former configuration. Considerable
efforts have been devoted to overcome this difficulty. For simple enough
cases with real-state variables and at most mild nonlinearities, a general
method to eliminate CSD is by classical multigrid methods, properly
adapted. (Three different adaptations were introduced in ref. 14, in §7.1 of
ref. 6, and in ref. 8. For an introduction to classical multigrid, see Sections
1 and 2 in ref. 5.) For models with severe nonlinearities or discrete variables,
such as the rjJ4or Ising spin models, a number of publications report
on simulation techniques, based on the Swendsen-Wang(18) stochastic
clustering technique that partially(S, 18) or completely (3,11,12,19) eliminate

CSD (see survey(17»).This means that in a work just proportional to the
number of gridpoints, a new, substantially independent configuration can
be generated.

Optimal as this result is, other, no less important factors of inefficiency
still remain intact. To calculate a thermodynamic quantity to a certain
accuracy c;,one needs to produce O((J2C;- 2) essentiallyindependent con-
figurations to average out the deviation exhibited by each of them, where
(J denotes the standard (i.e., the L2 average) deviation. Also, the size of
the grid must increase as some positive power of C;-1.The main purpose of
the present article is to show that multigrid techniques may overcome
these additional inefficiency factors as well by introducing more statistical
measurements at coarse levels and by other means, such as domain
replication. (These techniques were first described in Appendix B of ref. 1.).
More directly, what we intend to demonstrate below is that the multigrid
structure can be used for measuring meaningful thermodynamic quantities
in an optimal computational time.

Namely, we will show that thermodynamic limits (quantities obtained
at the limit of infinie grids) can be calculated to accuracy c; using only
0(C;-2) computer operations. This is just the same order of complexity as
needed to calculate, by statistical trials, any simple "pointwise" average,
such as the frequency of "heads" in coin tossing. This means that in
addition to eliminating the CSD factor, multigrid algorithms may also
eliminate the "volume factor," which is equal to the total number of sites
in the lattice. Both factors multiply the statistical factor (c;- 2) in the
operation count of conventional algorithms.

Stated differently, what we will show is that the multigrid algorithm
may effectively produce an independent sample in just 0(1) computer
operations.

Our prime examples here will be the calculation of the susceptibility,
the O"-susceptibility (an approximation to the XY model susceptibility), and
the average energy in the Gaussian model, and the susceptibility and the
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critical temperature in the two-dimensional Ising model. These cases are
ideal for developing, testing, and demonstrating the new multilevel techni-
ques, because of their simplicity and because analytical solutions are
known and can be used for comparing the results and understanding the
behavior of the numerical processes.

For the one-dimensional Gaussian model it is shown in Section 2 that
the susceptibility and the a-susceptibility (both at the limit of vanishing
meshsize or infinite grid), as well as the average energy per degree of
freedom (on arbitrarily large grids), can each be calculated to a relative
accuracy 8 in less than 108-2 random number generations (independently
of the size of the grid). In two dimensions (cf. Section 4.1), the calculation
of susceptibility required less than 408-2 random number generations, even
for cases of strongly discontinuous coupling coefficients. It is also shown
that the optimal multigrid algorithms for calculating susceptibility and
energy cannot be the same; their "cycleindex" must differ.

The generalization from the Gaussian to other models, with con-
tinuous state but not quadratic Hamiltonians, -is not straightforward, but
possible. The general approach is outlined in Section 4.3. An important
feature is that it may be used for a direct and simple computational
derivation of macroscopic dynamics for the model at hand (Section 4.4).

It is not clear whether for discrete models (or continuous models
exhibiting a discrete-like behaviour, such as ljJ4)optimal computations of
thermodynamic limits [i.e., obtaining accuracy 8 in 0(8-2) operations]
is always possible. As an example, we discuss in detail calculations with
the two-dimensional Ising spin model. It is shown that the configurations
produced within one multigrid cycle by stochastic freezes/deletions of the
Swendsen-Wang type depend on each other in such a way that not much
can be gained by introducing statistical measurements at coarse levels.

. Nevertheless, the results indicate that it may still be possible to calculate
the thermodynamic quantities, such as the critical temperature, in
optimal [0(8-2)] time. Moreover, it is shown that a more sophisticated
(three-spin) coarsening, not of the Swendsen-Wang type, produces much
less dependence within the multigrid cycle, making it possible to benefit
much f~ommaking many measurements at its coarse levels.

2. ONE-DIMENSIONAL GAUSSIAN MODEL: FAST
CALCULATIONS OF THERMODYNAMIC QUANTITIES

,
j
1

J
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A multigrid algorithm for simple continuous-state models, such as the
Gaussian model, has been described by us in ref.6 and independently by
Goodman and Sokal(8) and by Mack.(14)The three approaches are not
the same: while Mack and we use linear interpolations, Goodman and
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Sokal employ constant interpolation (blocking); and while Goodman and
Sokal and we produce independent coarse level dynamics, Mack uses the
"unigrid" approach (calculating moves of all scales on the same fine grid).
In. the present work we show that our multigrid Monte Carlo approach
(unlike those of Mack and Goodman-Sokal) can be used not only for
eliminating the CSD, but also for accelerated calculation of averages,
especially those which depend on large-scale fluctuations. Thermodynamic
limits can be calculated to accuracy 8 in just 0(8-2) computer operations.

The outline of this section is as follows. In Section 2.1 we use Fourier
analysis to calculate in closed form some thermodynamic quantities.
Analogous quantities on finite grids are introduced in Section 2.2. In
Sections 2.3 and 2.4 we describe an extremely efficientmultigrid algorithm
for evaluating the discrete susceptibility and approaching its limit for zero
meshsize.Some remarks on parallel processing are brieflygivenin Section 2.5
and numerical tests are reported in Section 2.6. Similar techniques and
tests are reported in Section 2.7 for another type of susceptibility, the
"a-susceptibility," designed to approximate the susceptibility of sigma
models in the limit of vanishing temperature. The optimal computation of
the average energy per degree of freedom is described in Section 2.8. More
detailed description of all the derivations and numerical tests can be found
in ref. 7.

2.1. Continuous Case

To facilitate theoretical analysis of the algorithms, we treat the
constant-coefficient case. But the same algorithms have been used for much
more general situations, with a similar efficiency.

The Hamiltonian associated with the continuous case is

x (u ) = tL U~ dx ( 1)

where u = u(x) is a function (configuration) defined for 0 ~ x ~ L.
Homogeneous Dirichlet boundary conditions, u(O)= u(L) = 0, are used for
definiteness, though others could serve as well. Consequently, a general
configuration u(x) can be expanded by

00

u(x) = I c}sin (jrcxjL)
}=1

(2)

where the Fourier coefficients Cj are real. By substituting (2) into (1) one
gets

rc2 00

x(u) = - I j2CJ
. 2L } = 1

(3 )
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The magnetization is given by

1 fL 2 00 * c.
M(u)=- u(x)dx=- I -!-

L 0 n j= 1 }

where L:*,here and below stands for a summation over odd integers. As
the probability density of each configurations u is given by the density
function of the Boltzmann distribution

(4)

P(u) = e- :R(u)/T/Z(T) (5)

straightforward calculations of the average magnetization <M), suscep-
tibility <M2) - <M)2, and energy <£') can easily be made using the
above Fourier expansion, leading to the following results:

<M) = 0

<M2) - <M)2 = <M2) = 4LT ~* ~
n4 ,L..., }

4
J=l

TOO

<£') =- I 1= co
2j=1

(6a)

(6b)

(6c)

Although the Hamiltonian is not bounded, its differences associated with
changing any Cj (or any discrete degree of freedom, such as those defined
in Section 2.2 below) are well defined, hence it yields these well-defined
statistics.

0;'

2.2. Discrete Case

In order to measure such statistical averages numerically, it is
necessary to discretize the system. On a grid with meshsize h = L/N, the
discretized Hamiltonian ~(u), approximating (1), can be written as

1 N

~(u) =h I [u(xz) - U(Xi- dfi = 1
(7)

where Xi = ih (0 ~ i ~ N) are the gridpoints. For the simplicity of the multi-
grid algorithm (see Section 2.3) we have assumed N = 2k; the general case
could,however,be calculatedas wellby handling the near-boundary points
differently. Assuming again u(xo) = u(xN)= 0, a general grid configuration
can be represented by

N-l

u(xi) = I Cj sin(jnxi/L)
j=l

(8)
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leading together with (7) to

2L N-1

(
jnh

)Y4z(u)=J;2 j~1 cJsin2 2L

The discrete magnetization is given by

.'...""

(9)

M ( ) - ~;, ( ) - ~N~l cos[jnhjk2L)]
h U - i...J U x. - i...J c.

L i = 0 I L j = 1 } sin[jnhj (2L)]

By using the probability distribution (5), where Y4z(u)replaces ,Yt(u), one
can derive

(10)

<M h) = 0

<M2) = Th4 N-l cos2[jnhj(2L)]
h 4L3 j~1 sin4[jnhj(2L)]

<Y4z) = T(N -1)j2

(lla)

(llb)

(llc)

As N --+00 (with fixed L, hence h --+ 0), which is called here the
thermodynamic limit, the results of the discrete case tend to those of the
continuum. <M1) exhibits a discretization error of O(h2). More precisely,
Taylor expansion of each term in (11b) and comparison to (6b) yields

Th2 N/2 1
<M2) = <M2) -- ~* -:-+ TLO(N-3)

h 3n2 L j:-1 } 2
(lld)

where terms with j> Nj2 are omitted from both <M1) and <M2) since
they clearly have only TLO(N-3) total contribution. From (lld) it follows
that the relative discretization error I<M1)- <M2)lj<M2) is O(h2jL2).
Clearly, by using a pth-order discretization, this relative error can be
further reduced to O(hPjLP).As will be explained later, the algorithm will
not necessarily actually provide this O(hPjLP) accuracy for any given
gridsize, as this may turn out to be wasteful when statistical errors are
taken into account as well. Instead, it will be constructed so as to keep
the number of operations optimal with respect to the overall produced
accuracy. The details of the algorithm are given next.

2.3. Description of the Multigrid Cycle

Consider the following generalized Hamiltonian, which includes an
additional external magnetic field of density rPi at gridpoint Xi:

1 N N-1

Y4z(u)=fz L (Ui-Ui-l)2+h L rPiUii=1 i=1

(12)



--.

'4.,

'"

.,~~

Multigrid Algorithms for Thermodynamic Limits 319

where ui=u(xJ On the given (the finest) grid, rPi=O is actually prescribed,
but the more general form is needed for the algorithm recursion.

The coarse grid with meshsize H = 2h is constructed by taking
every other fine-grid point: see Fig. 1. The coarse-grid function UH =
(u~,..., u7,..., UZ/2) describes a displacement of the fine-grid function
Uh= (uo,...,ui,..., UN);i.e., it modifies the latter through interp(Jlationand
addition:

Uh= Uh + It UH (13)

where ii is the fine-grid configuration at the stage of switching to the
coarse grid and I~ denotes interpolation from grid H to grid h (we will
use the linear interpolation, which is optimal here; see conclusion C in
Section 2.4 ).

The fine-grid Hamiltonian ~(Uh) resulting from that interpolation can
be written as follows:

~(ii + I~uH) = ~(Uh) + YrH(UH)

where ~(Uh) is given by (12) and £'H(UH)is

(14)

1 N/2 N/2-1

YrH(UH)=H L (u7-u7-1)2+H I rP7u71= 1 1= 1
(15)

with
-h -h

),.H- -Ui-2+2u.-u~
'PI- 1 1+2

2h2

+ rP7- 1 + 2rP~ + ),.~1 'P 1+ 1

4 (
iN

)I = 2: = 1,...,"2 - 1
(16)

representing fine-to-coarse induced field-like terms. These coarse terms are
calculated from the details of the fine-grid configuration at coarsening and
are fixed throughout the processing on the coarser level. The variables of
the. coarse grid u7 are initially set to zero, corresponding to zero initial
displacements.

Notice that, having calculated the field rjJH once for all, one calculates
£'H directly in terms of the coarse-grid configuration uH; there is no need

0
:w

0

2 i-2 i-I
~
1 1-1

i+1 i+2
~

1+1
~ . N

~
N
2

1 L

*
I

.

Fig. 1. Fine-gridpoints are denotedby . and coarse-gridpoints by x.
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to perform explicitly (14) in order to compute energy differencesassociated
with changes in uH. One can therefore run a long Monte Carlo process
with .YtHbefore explicitly updating Uhby (13).

The entire algorithm can be described by a sequence of multigrid
cycles for the finest level. A cycle for any given ("current") level is
recursively defined by the following five steps.

1. VI Monte Carlo sweeps are first made on the current level. Then,
if this level is the coarsest, go to 5.

2. The next coarser level is created from the current one by determin-
ing the coarse field-like terms (16).

3. y multigrid cycles for the coarse level are performed. (y may
change from one cycle of the current level to another in some

periodic manner. The cycle index is the average value of y, and for
convenience it will also be denoted by y. Thus y need not be an
integer, and may be smaller than 1.)

4. Update the current level by performing (13).

5. Additional V2Monte Carlo sweeps are finally made on the current
level.

The Monte Carlo sweeps are performed by changing each variable in
its turn randomly according to its associated distribution, regarding its
neighbors as fixed.

The values of VI' V2, and y are discussed below.
The described cycle, even with y = 1 (which is called a V cycle), would

generate a new configuration substantially independent of the precycle one
in a work just proportional to the number of gridpoints; it would thus
eliminate the critical slowing down. By the term substantially independent
configuration we mean that the correlation between any quantity of interest
in the initial arbitrary configuration and in the one produced after k cycles
decays like e-kl" where !, the cycle autocorrelation time, is independent of
the lattice size N. In fact, ! is very small, so there is almost no correlation
between any quantities before and after even one cycle.

The crucial issue, however, turns out to be different; it is addressed
next.

2.4. Fast Sampling of Susceptibility

Any observable which is bounded as h --+ 0 [e.g., magnetization and
susceptibility, but not energy; see (6c)] must be dominated by contribu-
tions from large-scale fluctuations [low-frequency Fourier components; cf.,
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e.g., (6b)]. The main issue of the Monte Carlo simulation is therefore to
sample quickly as many such fluctuations as possible. For this purpose a
cycle index y substantially larger than 1 may be used, and averages will be
calculated over as many measurements as one could make within each
cycle, especially at its coarsest level stages.

Consider, for instance, the calculation of <M~). Observe first that
Mh can be evaluated on any level. Indeed, denoting by flh the fine-grid
configuration at coarsening, (10) and (13) imply that

h N h N 2h N/2
~ -h h 2h ~ -h ~ 2hM h = - 1 (u + 12h U )i = - 1 u i + -L 1 u 1

L i=O L i=O 1=0

Employing this recursively, one gets that when working on level I, if its
current configuration is Uhl, then the (fine-grid) magnetization correspond-
ing to it is

(17)

1- 1

Mh= L Mhj+Mht
}=O

(18)

where generally

h. - h.
M h =2~ uhj M =2~ flhj

j L1 I' hi L1 11 1

and flhj is the jth level configuration at the stage of switching to the next
coarser level. Thus, manLmeasurements of M~ can be made within a
cycle, and their average M~ can be used as an estimate for the discrete
susceptibility <M~). In practice, measurements need be taken only on the
coarsest level, and in fact after each relaxation sweep there, because only
that is when substantial changes in M h are introduced.

Let us now estimate the number mi of relaxation sweeps the algorithm
needs to perform on level i, i.e., on the grid with meshsize hi = 2ih
[i=O, 1,..., 1=log2(N/2)J, in order to achieve relative accuracy G in the
estimation of the susceptibility. The relaxation sweep on level i strongly
affects, hence effectively samples, only those Fourier coefficients Cj [cf. (2)J
for which j = O(L/hJ Hence mi depends on the contribution of these
components to the deviations in measuring <M2). By (4)

h.= 2}h} ,

4
M2=- ~* C}Ck21 -

n 'k J'k1.
(19)

Consider first a term (j, k) in (19) for which both j and k are O(L/hJ,
hence the term is effectively sampled O(mJ times in a cycle. Since the
standard deviation of the term is

4
Ok 2 [ < (Cj Ck )2) - < Cj Ck ) 2J 1/2= 0 (j - 2k - 2LT) = 0 (h ;.L - 3T)

J n' .
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the standard deviation of its average over the O(mJ samples is
O(m;I/2hiL -3T). There are 0(h;2L2) such terms, and their deviations can
be considered independent of each other, hence their total contribution is
O(m; 1/2h~L-2T). In case j = O(L/hi- r) and k = O(L/hi), where r'? 1 (i.e.,
hi>hi-r), the term (j, k) in (19) is effectively sampled as follows: in an
inner loop, for a (nearly) fixed value of Cj' the v~e of Ck is averaged
O(m)mi-r) times, yielding an average whose deviation is of the order

0
(

~j
(
~

) -1/2 <ci)I/2 )
= 0

( ~j2 (mi~r LT )

1/2

)jk ml-r jk ml

Then, in an outer loop, the Cj in this average is averaged over O(mi-r)
samples, giving results with deviations of order

(
m - 1/2

(
m.

)

1/2

) (
m - 1/2

)
0 :-r ~LT <c2)1/2 =0 .i LT

jk2 mi ) j2k2

= O(m~1/2h2h~ L -3T )I I I-r

There are 0(h;lhi--\L2) such terms, effectively independent, hence their
total deviation is O(m; 1/2h;/2h;0rL -2T), which, when summed over
integers r'?O, gives again O(m;1/2h~L -2T)= <M2) O(mi-l/2h~L -3).
Hence the total relative expected error in measuring < M 2) is

e= 0 (to m;-1/2h;L -3) + O(hPL -Pj
(20)

where the last term added here is the discretization error (cf. Section 2.2).
The total work (operations) on all the levels is clearly

I

W = I miO(L/hJ (21 )
i= 0

The optimal choice for mi (yielding either minimal e for a given W or
minimal W for a given e) is obtained when ae/ami + A1 a w/ami = 0, which,
by (20) and (21), yields

mi = A2h~/3= A328i/3 (22)

where )'1' )'2' and A3 are independent of i. Relation (22) is realized by the
cycle index Yopt= 28/3 ~ 6.35.

For any fixed cycle index Y we have mi = myi, where m is the total
number of cycles performed. Since hiL -1 = O(2i-/), we can perform the
summations in (20) and (21) and obtain

(
-1/2 2 -3/

)
e=O m-1/2Y - +0 (2-lp )

1 - 2 - 3y 1/2
(23 )

..........
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and

1 2/

)W = 0 (m 1~ 2y -1
(24 )

,/
I

I

I

for any 2 < Y< 26. Actually, by choosing y and the approximation order p
so that y is significantly smaller than 22p, the second term in (23) can be

ignored, yielding W = 0 (8- 2) and m = 0 (8 - 2y-I). While y = Yopt indeed
minimizes W82, the value of W82 [when the second term in (23) is
negligible] is only 15 % different from that minimum for any 4 ~ Y~ 11.
The four main conclusions from this analysis are therefore as follows.

A. Cycle index y. Generally, any 2 < Y< min(64, 22p) yields
W = 0(8-2). Asymptotically (for 8 --+ 0), the minimal value of W82 is
attained for Y= 28/3 ~ 6.35 and values very close to the minimum are

obtained for 4 ~ Y~ 11. In practice (for realistic values of 8), the smaller
values of y in this range are better, since for them the influence of the
second term in (23) is smaller.

B. Discretization order p. There is little advantage in raising the
order beyond p = 2. It would allow the use of cycles with larger y, but the
dominating coarsest-grid work will remain essentially the same. The only
slight advantage may be the smaller storage requirement, which' is
O(N) ~ 0(8-1/p) (cf. Section 2.5).

C. Interpolation order. Linear interpolation (second-order interpola-
tion) I;h is good enough, as any smooth fluctuation Vhhas an approximate
configuration I;h U2h such that Uh+ Vh and uh + I;h U2hhave almost the
same energy. This means that the probability density function for smooth
movements on the coarse grid is nearly the physical one: the coarsening
has introduced nearly no statistical bias into such movements. Thus, not
much could be gained by using interpolation orders higher than 2 (meaning
I~ higher than linear). Such higher interpolation order would also make the
coarse-grid Hamiltonian substantially more complicated. A relatively little
complication, together with almost all the possible gain, can be obtained by
using third-order interpolation [based either on the function x(L - x) or on
sin(nx/ L) ] only at the transition to the coarsest grid (which has only one
degree of freedom).

On the other hand, the order of the interpolation operator I;h should
be at least 2, i.e., linear interpolation. This is because the coarser levels
should accurately sample all the components slow to change under the
current-level Monte Carlo process. It means that every slowly changing
configuration Uh must have an approximate configuration of the form
I;h U2\ and the two configurations should have approximately the same
energy. The linear interpolation satisfies this requirement. A border case is
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the first-order (constant) interpolation I~h' For any smooth configuration uh
approximated by a function U2hon a coarse grid with meshsize 2h, the
energy of I;h U2his about twice that of Uh.Hence, a very smooth component
on the finest grid, u\ that is effectively changed only on a coarse grid with
meshsize 2qh, will be represented on that coarse grid by an approximation
which has an energy 2q times its own energy. Thus, the changes introduced
to the amplitude of such an approximation on that coarse grid will be only
0(2 -q/2) times the typical fluctuations of that amplitude. It follows that
roughly 2q visits to that coarse grid will be needed to accumulate a typical
fluctuation. This means that a cycle index y ~ 2 must be used to eliminate
the CSD. Thus, for two reasons constant interpolation is not used. First,
the work per W cycle (y = 2) is O( N log N), so one cannot eliminate the
CSD. Second, and much more importantly, a whole W cycle is needed to
produce a single useful measurement, whereas in the algorithm above each
additional movement on the coarsest grid generates another useful
measurement.

D. Number of cycles m. Asymptotically, to avoid an error 8 dominated
by the discretization error [the second term in (23)], one should choose
m ~ O( (16/y )'). Any larger number of cYGleswould do useless work of
reducing the statistical error, because this error is already smaller than the
discretization error. In practice, for realistic 8, the smallest m possible,
i.e., m = 1, is preferable for minimizing the influence of the discretization
error. This means that whenever the desired accuracy 8 is reduced (or the
available amount of processing W is increased) the work is increased not by
increasing m, but by raising I, i.e., introducing new finer levels (processed
very rarely, of course). .

In summary, in computing susceptibility one can use second-order
discretization and second-order interpolation, any cycle index in the range
4 ~ Y~ 11 (with some preference for the lower values), and any number of
cycles 1 ~ m ~ O( (16/y )') (with some preference to m = 1): the overall
computational work will always be dominated by the my' = 0(8-2) work
on the coarsest grid, with 8 being the relative accuracy that will be obtained
in calculating the thermodynamic limit <M2).

2.5. Parallel Processing

The algorithm described above can use a very high degree of parallel
processing. On each grid, the Monte Carlo sweeps can proceed simulta-
neously at half the gridpoints: first the odd, then the even. The calculation
of the coarse-grid functions (16) can be done at all points in parallel. More
important, the employment of the y different coarse-grid cyclescan proceed

.........
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in parallel to each other, and so can the y2 cycles of the still coarser level,
etc. So, if an unlimited number [or actually 0(c:-2)J processors are
available, the algorithm can in principle be performed in O(log(I/c:))
parallel steps. This of course ignores processor communication considera-
tions, but these place only very mild restrictions here; e.g., the y parallel
multigrid cycles created on each coarsening need no communication to
each other while running, and only minimal synchronization in collecting
their results.

For keeping the total communication, as well as the total storage,
at minimum, it may be desired to- have as small N (number of points on
the finest grid) as possible. For this, a discretization order p = 4 may be
preferred, since N = O( c:-lip). Still higher-order discretization would not
help, since components with O(h) wavelength contribute 0(h4) to <M2,),
so for an O(c:) accuracy a grid must be used whose mesh size is no larger
than 0(c:1/4). '

2.6. Numerical Results

We have tested the multigrid algorithm with y = 1, 2, 3, 4, 6, 12, and
24 on grids of size up to 128. Our main aim was to show that for
appropriate values of y, optimal behavior is achieved; i.e., the average error
in the approximation for <M 2), (6b), produced by a multigrid cycle is
reduced by a factor JY upon using a (finest) grid twice finer (N twice
larger), which increases the work by a factor y. The susceptibility has been
measured over just one cycle (m = 1). In that cycle, M~ has been measured,
using (18), after each relaxation step on the coarsest level, hence (VI + V2) yf

times altogether. The average of these measurements, M~, is the
approximation for <M~), (llb), which in turn is also an approximation
for the desired thermodynamic limit <M2). The measured relative error is
defined as c:= IM~- <M2) 11<M2). We also define IXto be the expected
value of # RAN. c:2,where # RAN is the amount of work spent per cycle,
measured by the number of times a random number is generated, which
(for y > 2) is dominated by (VI + V2)l, the number of relaxation steps on
the coarsest level. Thus, IXshould turn out constant if indeed the algorithm
solves to accuracy c: in 0(c:-2) operations. For each value of N, IXwas
estimated by averaging c:over an ensemble of 2000-5000 runs.

In Fig. 2 we present IXfor y = 1, 2, 3, 4, 6, 12, and 24 vs. (log) system
sizeN. As expected, for 2 < y ;::::;16 the value of IXtends to a constant as N
increases. Also, the cycle with smaller values of y is slightly more efficient
(has smaller IX)as expected (see conclusion A in Section 2.4). The graphs
for y = 4, 6 are indistinguishable.

:1
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Fig. 2. Performance in measuring susceptibility. Each curve shows tI. (measuring computa-
tional work times the square of the obtained accuracy) as a function of the system size N for
the indicated value of the cycle index y.

2:7. a-Susceptibility and Its Computation

We introduced a new type of observable, X(n defined in the continuum
limit by

x"= Gr (U(X))2dx-G r u(x) dX)')

and approximated in the discrete model by

\
1 N

(
1 N

)

2

)X: = - I u;- - I Ui
Ni=o Ni=o

= /~ I U;) - <M2)
\N i=O

The significance of this observable is that it corresponds to the suscep-
tibility of sigma models at the limit of small fluctuations. Indeed, assuming
Ui- U to be small, where u = CLf= 1uJ/N, it is easy to see that

~ \ct, cos Ui)2 + ct sin Ui)) ~ N ~ NX;

i
I
1
L
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the expression on the left-hand side being the susceptibility of the XY
model with Ui as the angle parameters. We therefore call Xa the
a-susceptibility.

The observables Xa and X; can be computed analytically as follows. By
the Parseval identity and by (4)

Xa= /~ I cJ- (~I* C!)

2

)\2j=1 nj=l }

Hence [using the density function of the Boltzmann distribution (5)] the
continuous a-susceptibility is

LT u:J 1 4LT u:J* 1 LT
Xa=-2 2 I ~-~ I ~=- 24n j= 1 } n j= 1 }

Similar calculations in the discrete case lead to

h = / ~N-l 2 - (h N- ~ . cos [jnhj(2L)]
)

2

)Xa \2 j~l Cj L j~l c}sin[jnhj(2L)]

Th2 N-1 1 Th4 N-~cos2[jnhj(2L)]

= 8L j~l sin2[jnhj(2L)] 4L3 j~l -

We claim that the same multigrid algorithm which is described in
Section 2.3 can achieve optimal results in measuring the a-susceptibility
usingappropriatecycleindexy.Fourier analysisanalogousto that presented

20

15 0 ' 5

ex 10

0 ' 3

5

0 12 27 28
N

Fig. 3. Performance in measuring O"-susceptibility. Notation as in Fig. 2.
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for X (Section 2.4) shows that any 2 < 'Y< 8 yields W = 0(B-2). Numerical
experiments for y = 3, 5 demonstrates that the algorithm solves to accuracy
sin 0(8-2) operations, i.e., (Xtends to a constant as N increases. See Fig. 3.

2.8. Computing Average Energy per Degree of Freedom

From (6c) and (llc) it is evident that the average energy per degree
of freedom is exactly T/2 both in the discretization, with any mesh size, and
in the continuum limit (where that is exactly the average energy of each
Fourier component). We study now the fast Monte Carlo calculation of
this quantity.

Whereas the calculation of susceptibility has been shown to be heavily
dominated by the coarsest level, the sampling of :Yf presents the other
extreme. Since most Fourier components are substantially affected by
relaxation on the finest level, a measurement of :Yf should be done after
each relaxation sweep on that level, and the work should be dominated by
the finest -grid sweeps.

Consider the calculation ofthe average energy on a givenfixed finest grid,

with meshsize ho and N = L/ho intervals. Since :Yf(u)= (n2/2L) 'L}': 1j2CJ
[see (3)], in each measurement of :Yf each Fourier component contributes
the following deviation:

j2n2

2L [«C])2) - <CJ)2]1/2

which is O(T). For any level with meshsize hi, the number of components
with wavelength O(hi) is O(h;-1L), and their total deviation in each
measurement is therefore O(h;- 1/2L 1/2 T). If grid hi is averaged m i ~ 1times,
this deviation drops to O(m;-1/2h;-1/2L1/2T).To obtain relative accuracy 8,
this deviation should be less than s<~) = O(Sh(;ILT), hence it is necessary
that mi ~ 0(s-2h~h;- 1L -1). To guarantee that the deviations contributed
from all levels do not accumulate unboundedly, the slightly stronger
condition

mi~ O(8-2h~-Dhf-lL -1) (25)

where b is any (small) positive number, may be required.
In particular, mo ~ O(8- 2N-1). On the other hand, for the total work

to be at most 0(8-2) it is necessary that Nmo ~ 0(8-2), hence

mo= 0(8-2N-1) (26)

Both (25) and (26) can be satisfied by any multigrid cycle with index
y > 0.5. The total work will still be 0(S-2) and independent of N iff y < 2.
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Thus, the energy can be calculated to O(B) relative accuracy in
0(B-2) operations by a multigrid cycle with index 0.5< y < 2. Effectiveness
diminishes as y approaches either endpoint (0.5 or 2). The V cycle, i.e.,
y = 1, is of course the most convenient.

Results are presented in Fig. 4. ~ has been measured, using (14), after
each relaxation sweep on each level. The average of these measurements,
~, is an approximation for <~>. The measured relative error is defined
as

B= I ~ - T
il

T
N-1 2 2

The values of a, defined as in Section 2.6, are shown for y = 0 (simple
Monte Carlo), 1, 2, and 3 as a function of the number mo of sweeps over
a grid with N = 64 points. In all cases VI= V2= 1 is employed. For clarity
of results, the work in first equilibrating the system by ten V cycles
(actually a much smaller number would suffice) is not taken into account
in calculating a. Indeed, for small B this work should be negligible.

The results show the expected slowing down for y = 0 and the
optimality of y = 1. The work on grid hi = 2iho is Nmo(y/2r, so the total
work (or # RAN) is 2Nmo for y = 1, Nmo log2 N fOf" Y= 2 and
Nmo[(y/2)log2 N-1 J/(y/2 - 1) for y > 2. Hence, for N = 64 the work is
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40 0 = 3

30

ex

20
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0 = 2

002 27 28
m

0

Fig. 4. Performance in measuring average energy. Each curve shows r:J.(measuring computa-
tional work times the square of the obtained accuracy) as a function of the number mo of
sweeps over a system with N = 64 points for the indicated value of the cycle index y.
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2Nmo, 6Nmo,and 20.8Nmofor y= 1,2, and 3, respectively.The relative
valuesof rJ.seenin Fig. 4 almost exactly correspond to this increaseof work
with y, showing in comparison to it only a slight initial decrease(upon an
initial increase of y for fixed mo). The slight decrease is due to the increased
accuracy of smoother components, which are the only ones to benefit from
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8
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0=1 N=64
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Fig. 5. (a) Performance in measuring average energy. Each curve shows Cl. (measuring

computational work times the square of the obtained accuracy) as a function of 1/8, for
the indicated values of the system size N and the cycle index y. (b) Same as in Fig. 4a, but
differently scaled for different parameters.
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higher y (initially; when y increases further, the additional benefit is
negligible ).

Generally, for any fixed N, rxis approximately a constant if y > 0.5, but
for y ~ 2 this constant increases with N, being O(N1ogy/log2- 1) for y > 2 and
O(1ogN) for y = 2. Figures 5a and 5b demonstrate this.

3. TOWARD OPTIMAL ALGORITHMS FOR ISING MODELS

3.1. The Multigrid Cycle

A multigrid Monte Carlo method, based on a stochastic coarsening
procedure, has been applied to the two-dimensional Ising model, success-
fully producing a CSD-free sequence of statistically independent configura-
tions. See refs. 11, 12, and 15 for details; the following is a brief description.

Consider the ferromagnetic Ising model Hamiltonian associated with a
spin configuration s:

Yt'(S)= - I JijSjSj
< i,J)

(Jij> 0) (27)

where Sj is the (1 or -1) value of the spin at site i and where (i, J) runs
over all pairs of nearest-neighbor sites on a square, doubly periodic lattice.
The basic strategy of the algorithm is the stochastic generation of a new,
coarser Hamiltonian:

Yt'l (Sl ) = - '" J!.s~ SI
L, I} I ) (Jt ~ 0) (28)

with a decreased number of degrees of freedom. Each new "spin" si is
actually a block of one or more spins SCl' so that each spin SCl belongs to
one and only one particular block si. The process of creating the
Hamiltonian Yt'1 from Yt' is referred to as going from fine to coarse level,
or coarsening. Given Yt'1, usual Monte Carlo sweeps can be performed to
generate transitions in the phase space of the new level. The process of
restoring finer-scale degrees of freedom, i.e., interpreting each flipped si as
a simultaneous flip of all the spins SClin that block, and then returning to
work with Yt', is called uncoarsening. The description of the coarsening
procedure and the organization of the coarsening/uncoarsening steps are
given next.

The stochastic blocking is performed by scanning the fine-grid interac-
tions (J ijSjSj) one by one, in any convenient order, each interaction in its
turn being either kept alive or terminated, according to a certain criterion
(given below). If 'it is "kept alive," then it actually just stays unchanged. If
it is "terminated," then with a probability Pij=exp[ -Jij(SjSj+ 1)/TJ it is
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deleted, i.e., the interaction between the spins is omitted from the coarse
Hamiltonian; and with probability 1- Pif it is frozen: its two interacting
spins are blocked together so that both are flipped simultaneously in all
subsequent coarser level moves (including still-coarser-Ievel moves subse-

quently made), until uncoarsening takes place. This particular way of
terminating bonds has been introduced by Swendsen and WangYS) and we
will denote it SW. Its particular prescription for P if guarantees detailed
balance and is also such that a bond connecting antiparallel spins (for
which SiSj= -1) is deleted with probability 1, and thus only parallel spins
can be blocked together.

Consequently, by freezing more bonds, blocks of increased sizes are

created. The potential size of the produced block, i.e., the number of spins
s rxit would include upon freezing a particular candidate bond, has been
used as a criterion for deciding whether to terminate that bond or keep it
alive; e.g., by adopting the rule of keeping the bond alive iff its freezing
would produce a block of more than, say, four spins.

When the process of stochastic coarsening is completed, all spins are
grouped into two different kinds of blocks: the disconnected blocks, each of
which is separated from all others by bounqaries of deletions and thus have
no remaining alive interactions, and the interacting blocks, which still have

alive bonds between them. The coupling Ji; between two interacting blocks
s; and sJ is calculated by summing up all alive bonds connecting them.

Starting with J if= 1 on the fine level, stronger couplings (Jt> 1) may
appear between the interacting blocks. Thus, a new Hamiltonian :Yt1 is
constructed.

The entire process can be repeated recursively: to be effective, the
Monte Carlo simulation of :Yt1 itself includes both conventional Monte
Carlo sweeps and stochastic coarseningjuncoarsening steps. The next
stochastic blocking is employed by regarding the blocks si of the coarse
level as now being the spins from which the blocks of the next coarser level
are constructed. Each new, coarser block represents a block of blocks si
and in turn can be referred to as a block of spins srx of the finest level.
Repeating this recursively, a sequence of increasingly coarser levels is
created. Each level k consists of a list of blocks, into which the original set
of spins Srx(which in this notation are also s~) is uniquely decomposed. This
list is-actually a union of two sublists: the disconnected blocks created at
all finer levels up to and including the current one, and the interacting
blocks, denoted s~, which are coupled by the k-Ievel Hamiltonian

:Ytk(Sk) = - LJZs~s7 (k = 0, 1,2,...) (29)

Progressing to increasingly coarser levels, the number of alive bonds
keeps decreasing until at the coarsest level none exists. At that stage all
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bonds are either frozen or deleted, so the original set of spins Sexis
completely decomposed into disconnected blocks.

The entire algorithm can be described as a sequence of multigrid cycles
for the finest level 0, where a multigrid cycle for any given level k (the
current "fine" level, assumed not to be the coarsest level) is recursively
defined as consisting of the following five steps.

1. v1 Monte Carlo sweeps are first made on the fine level, using the
Hamiltonian (29).

2. The next coarser level (Sk+ 1,Yfk +1) is created from the fine level
by the above stochastic coarsening process.

3. y multi grid cycles for the coarse level are performed. If, however,
this coarse level is the coarsest, do nothing.

4. Each interacting block s; + 1 whose final value is different from its
initial value is translated into flipping all the fine-grid spins s~
which belong to it. The spins s~ in each disconnected block are
flipped simultaneously with probability 1/2.

5. V2Monte Carlo sweeps are finally made on the fine level.

We have used cycles with VI= V2 = 1 and y = 2. The parameter y is
called the cycle index, and cycles with y = 2 are called W-cycles.

The obtained results were in a certain respect very satisfactory: the
CSD seem to have been completely eliminated, meaning that in a work
proportional to the grid size a new, substantially independent configuration
was created. It was later proved (13)that some similar algorithms (in which,
however, the ordering of bond termination is the same in all cycles) must
suffer a (very slight) slowing down. This raises the suspicion that the same
may be true here, although the proof does not strictly apply to our
described algorithm (which generates different bond termination ordering
in each cycle: see the above rule for keeping bonds alive). At any rate, the
practical beha vior for all tested gridsizes (up to 128 x 128) exhibited no
trace of slowness.

3.2. Dependence of Configurations within a Cycle

Measuring the desired averages (observables) on the sequence of
configurations produced by multigrid cycles on the finest level converges, to
be sure, faster than measurements on the simple (only single-spin) Monte
Carlo simulations. But still, as expected, the obtained statistics were slow
in averaging out the deviation (from the observable average) exhibited by
each configuration. If a standard deviation a is contributed by the features
of some scale, these features have to completely change 0((a/8)2) times in
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order to obtain accuracy B.The trouble is presumably mostly related to
large-scale deviations, because only few samples of them are contained in
ea:cri-pr6dllced'-.'configliration, while small-scale fluctuations, one could
hope, are effectivelyaveraged out in each given configuration.

The main idea for overcoming this difficulty was to average over
as many different configurations within each cycle as possible. Take, for
example, the calculation of the mean of the squared magnetization per site
(M2), where M2= (1/N)(L~=1 SJ2 and N is the number of spins in the
finest level. Instead of measuring M2 once per cycle, compute it each time
the algorithm visits the coarsest level, that is, 2'-1 times per W-cycle,
where I is the number of levels. Moreover (as pointed out in the Appendix
of ref. 11), on each visit to the coarsest level it is possible to average
immediately over all the different spin configurations referring to their
decomposition into disconnected blocks. More precisely, it is easy to show
that if there are J1disconnected blocks consisting of nb n2'"'' nJ1.spins,
respectively (where Lr= 1 ni = N), then the average of M2 taken over the 2J1.
equally probable different spin configurations allowed by these blocks is
given by

- 1 J1.
M2=- I n~

N i=1 I

(30)

Experiments showed that, disappointingly, near the critical tempe-
rature the convergence with such many-per-cycle measurements was not
substantially faster than with once-per-cycle measurements. We have com-
pared the standard deviation exhibited by the once-per-cycle measurements
with that of the average of the 2'-1 measurements (30) in one cycle, and
found that on grids up to 128x 128 the latter was not even half as small
as the former. Even though this may somewhat improve on extremely large
grids, not much can be gained in the practical range.

To understand this behavior, one should first observe that the average
(30) of M2 taken over the 2J1.equally probable configurations is heavily
dominated by the largest block, hence they are very strongly correlated.
This is particularly true at the critical (or lower) temperatures, where the
size of the largest block far exceeds all others.

Consider next the relations between the 2'-1 coarsest configurations
obtained within a single cycle.What the experiments show is that they, too,
are correlated to each other. Each of them, in other words, strongly
depends on both the finest configuration at which the cycle begins and on
the first level of stochastic coarsening performed on it. A detailed study
showed that the reason is that the stochastic coarsening tends to produce
many more deletions along boundaries (between regions of opposite signs
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in the current configuration) than elsewhere. As a result, in all subsequent
coarse-grid calculations, there appears a statistical bias to retain many of
these boundaries. In particular, the largest block is likely to remain roughly
the same.

Thus, in reducing the number of degrees of freedom one loses not just
fine-scale fluctuations, but large-scale ones as well.

3.3. Reducing the Dependence

At first, this strong correlation between scales appears to be a
necessary property of discrete-state models. But then, a similar situation is
encountered when constant interpolation is used even for the Gaussian
model (cf. Section 5.3 in ref. 5). Since the SW termination resembles con-
stant interpolation, the question now is whether a better coarsening techni-
que, capturing some features from linear interpolation, can be devised for
Ising spins, so as to reduce the dependence between the configurations
produced within the same cycle, i.e., by the same coarsening. Let us denote
by Xo= (M2) the true susceptibility, by 0"0=«(M2-Xo)2)1/2 the standard
deviation from Xoof M2 of any single configuration, by XI the average of
M2 for the Hamiltonian Yf\ and by O"l = «(Xl- XO)2)1/2 the standard
deviation of Xl from Xo. The above coarsening, based on the SW termina-
tion, produced 0.50"0<0"I < 0"0' The question then is whether a better
coarsening technique can produce O"lmuch smaller than 0"0'

One obvious difference between constant and linear interpolation is
that the latter relates a given variable to two neighbors, not one. Thus, our
first attempt at a linear-like interpolation is to replace the two-spin SW
coarsening with the following three-spin coarsening (3SC).

For simplicity we describe (and have developed and tested) only the
case of uniform bonds (constant Jij); this is not essential, but introduces
simplifying symmetries. Denote by f3= J ij/T the uniform thermal binding
between neighbors. Consider a spin Sowith two neighbors, s - and s +, say.
The current Hamiltonian has the form

1
- Yf = -f3sos - - f3sos + - ...
T

where the dots stand for all the other terms of Yf. Three other
Hamiltonians are offered as alternatives:

1
-~ = -oosos- -asos+ - ...T
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1
TYt;. = -asos - - ooSoS+ - ...

1
- £;3 = -bs s -" .
T - +

The 00 value in ~ (Yt;.)means that Soand s - (s +) are blocked together.
Note that in ~ the two bonds between Soand its two neighbors are deleted,
but a new direct bond is introduced between the neighbors themselves. One
selects Jfl;'with probability Pi (i= 1, 2, 3), where PI + P2 + P3 = 1.To obtain
detailed balance, these probabilities are taken to depend on the current
value of s -, So, and s + according to Table I-plus the obvious rule that
Pi( -s -, -So, -s +) = Pi(s -, So, S+ )-and the values of a and b are taken
so that

e2a = (e2P- e-2P)/(2 - 2p*)

e2b = e-2P/p*

p* is a small positive parameter. We chose p* = 0.15, but other values in
the range 0.05 ~ p * ~ 0.2 are perhaps as good.

The detailed balance of this, and also that of SW and other coarsening
schemes, is a special case of the following theorem, which generalizes the
Kandel-Domany(10) Theorem.

Detailed Balance Theorem. Let u denote a configuration of a
model, £(u) its Hamiltonian, and ~(u), Yt;.(u),... some alternative
Hamiltonians, where the use of the Hamiltonian Jfl;'(u) also means restric-
tion of the configurations u to a subset where some functionals Fi! (u),
Fi2(u), etc., are constant. (Thus, upon selecting Jfl;'we also freeze Fif') Then,
in a Monte Carlo process with current configuration U, replacing £(u) by
Jfl;'(u) in probability Pi(U) ~ 0 maintains detailed balance provided

PJu) = fi(Fi1(u), Fi2(U),...) eYt'(ii)-J't';(ii) (31)

Table I

s- So s+ Pj P2 P3

+ + + !(1-e.-4fi) !(1-e-4fi) e-4fi
+ - + 0 0 1
+ + - I-p 0 p**
+ - - 0 I-p p**
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where fi are arbitrary functions and where
'"

Ipi(U)=1 for any U (32)

Note that if no real freezing is done with a certain ~, then the
coefficientfi can only depend on i, and not in any way on U (which is the
special case proved in ref. 10).

Proof. Denote by p(U1--*U2) the probability of obtaining the
configuration U2at any stage after starting with U= U1. Then clearly

{I, 2}

p(U1 --* U2) = I Pk(U1) Pk(U1 --* U2)
k

(33)

where Pk(U1--*U2) is the probability of reaching U2 from U1 under the
Hamiltonian Y{k, and where 1=11,2}sums only over such k for which
Fkj(U1) = Fkj(U2) (j= 1, 2,...). But for each such k, by (31),

P k(U1) = e£'(ul) - £Hul) - £'(u2) + .n''k{u2) = e£'(uj) - £'(u2) PAU2 --* U1)

PAu2) Pk(U1 --* U2)

Hence, by (33),

P( U1--* U2) = P(U2 --* U1) e£'(ul) - £'(u2)

which is the desired detailed balance. I
We have tested 3SC on an Lx L periodic grid by applying the coars-

ening step for all triplets s -, So, and s + at grid positions (j, 2k - 1),
(j, 2k), and (j, 2k + 1), respectively, such that j + k is even. We compared
it with an SW coarsening that terminated all the corresponding (so, s -)
and (so, s +) bonds. Results at the critical temperature are summarized in
Table n. They show that for 3SC, unlike SW, the ratio (Jl/XO decreases with

L. This means that if the susceptibility is measured on the first coarse grid,

Table 11

0"0

56.8
192.5

L Xo

4 12.2
8 41.4

16 139.5
32 470.2

0"1 0"1

SW 3SC

1.8 0.7
7.2 1.5

25.6 4.0
81.6 10.6
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without ever returning to the fine, the average error is small: it tends to 0
as L increases.

The observation that has led to the construction of 3SC is that the
basic flaw in the SW coarsening is the introduction of many deletions,
usually clustered along well-defined lines: the lines of current boundaries of
spin alignment. These lines therefore exhibit in yfl weakened couplings,
and are thus likely t6 persist as boundaries of spin alignment also on
coarse grids. This means strong correlation between different coarse-grid
configurations. In 3SC the introduction of such weakened-coupling lines is
minimized.

This is just a first attempt; it all may well be done better. Observe that
the blocks created by 3SC are not necessarily contiguous:the Hamiltonian
~ creates a bond betweens - and s+, so that later they may be blocked
together without having the points in between, such as so, included in the
block. More general schemes may create blocks that are not necessarily
disjoint. And so forth: the.possibilities are many.

It is not clear at this point whether the ideal statistical efficiency is
always attainable. What has been established, we believe, is that it is
possible to benefit greatly from making many measurements at the coarse
levels of a multilevel Monte Carlo algorithm, even in discrete-state models,
if a suitable coarsening scheme is used.

3.4. Optimal Calculation of Tc

Even though the SW coarsening is not optimal, as explained above,
it can still be used in an optimal calculation of certain thermodynamic
quantities. As the simplest example of such a quantity we chose the critical
temperature Tc itself. The tests reported below indicate that the above
multigrid cycle (Section 3.1) can directly be used for a very inexpensive, in
fact optimal determination of Tc. More precisely, a sequence of increas-
ingly better approximations to Tc is obtained on increasingly larger grids
by performing only a few cycles on each. To achieve an accuracy 8 in To
the amount of computational work turns out to be ri8-2, where the average
value of ri is about 100.

The algorithm is based on the following measurements. In every
W-cycle, performed with some temperature T, the algorithm visits the
coarsest level many times. At each such visit the domain is completely
decomposed into disconnected blocks, and the ratio r between the number
of spins in the largest of these blocks and the total number N of spins in
the lattice is measured. Denote by r the average of these r's within one
W-cycle; clearly 0< r:::;;1. Generally, if r < 1](1]chosen as described below),

-~- I
I

\
L-
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then we say that the cycle "indicates" a supercritical temperature: T> Tc
(or /3= liT < /3J. Similarly, if r> Yf,then the cycle indicates a subcritical
temperature: T< Tc (or /3> /3c).

This definition of Tc is suitable for fairly large grids if Yf is chosen
reasonably small. In fact, in the range we have calculated (grids up to
128 x 128), Yf= 0.5 has already proved to be small enough. In principle, for
much larger grids the definition of Tc should be modified to allow for the
fact that r becomes small near To even in the subcritical range. One
possible modification is to replace r by r', defined as the ratio between the
length of the largest block and the length L of the domain. This quantity
r', or its average within a cycle, does not become small near Tc. [The
length of a block B can, for example, be defined as 1 + maxB Ii1 - ) 11, where
the max is taken over all pairs of points i = (i1, i2) and) = (Jb )2) such that
both i and) are in B. For locating Tc on very large grids it is enough to
calculate the approximate length of the largest block. The coarsening
process can very inexpensively incorporate a procedure that supplies each
block B on some coarse level with its approximate minB i1 and maxB i1,
from which similar quantities can be calculated for all blocks at all coarser
levels. ] In the practical range of our calculations, however, this more
elaborate quantity r' proved unnecessary. What our simpler procedure,
based on r, calculates is in fact another thermodynamic quantity, T(1J),
which is the temperature for which the average magnetization per site
is Yf, i.e., the temperature for which limN-+oo<IL~=l sillN) =Yf. But the
difference ITc- T(O.S)Iis below the accuracy one can obtain with grids up
to 128x 128, so we had no motivation to run tests with r' instead of r.

The experiments show that using an L x L lattice, an interval of roughly
IlL around /3c is the best approximation one could get for the critical value;
i.e., within that interval, the criterion does not correctly distinguish between
sub- and supercritical temperatures. To get an approximation twice more
accurate, it is therefore necessary to switch to a four times larger grid:
2L x 2L. [This observation is of course in agreement with the known critical
exponent v= 1, i.e., with the correlation length being proportional to
(T - TJ - 1.] In order to save work, the algorithm is constructed so that
much of the search for Tc on any given grid is carried over from smaller
grids. Since each interval is being further corrected by a larger grid's
interval, it is not important to check the criterion precisely, and for practical
purposes it is sufficient to perform only one W-cycle at each temperature.
In this way, on each of the grids a computational work equivalent to just a
few Monte Carlo passes is enough for determining Tc to within an interval
roughly as narrow as can ever be obtained on that grid. The interval wiUget
narrower and narrower as the grid becomes larger and larger, until a desired
accuracy is obtained. The details of the algorithm are as follows.
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Initialization. Start from a very small random grid-level 0 (say
4 x 4). Set an initial temperature To= Tg= l/pg (the subscript stands for
the level, the superscripts for the sequence of temperatures within each
level). For instance, pg = 0, which is an infinite temperature and hence, for
sure, supercritical. Finally, choose some 11Po> 0, the step in which the tem-
perature is lowered. (The values used by us are shown in Fig. 6 below.)

For each level i = 0, 1,...do the following three steps.

1. Perform one W-cycle (with 13= p?) to reach near equilibrium
[erasing in particular lower-level periodicity (see step 3 below)].

2. Make one W-cyclefor each 137= p? + k jpi, k = 0, 1,...,until either
r> 1]for jpi> 0 or r < 1]for jpi < 0 is obtained for some k. If this
condition is already satisfied at the first step (W-cycle), then
jpi ~ -jpi, i.e., switch the direction of the search.

3. The 137for which r has first passed 1]will be denoted Pi and will
serve as our final approximation to Pc on level i. Switch to level
i + 1: its grid is four times larger (factor two in each direction),
and its initial configuration is the current configuration on level i
extended periodically in each direction (exploiting its doubly
periodic boundary conditions). Set p?+ 1 = 13i and j 13i + 1 = - j 13)2.

Go to step 1 with i + 1 replacing i.

The step ratio 1113i + If 1113i = -1/2 is reasonable due to the known ratio,
mentioned above, between the accuracy obtainable on the corresponding
grids. If this ratio were not known (i.e., if we did not know that in this
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particular model v= 1), the value of J/3i+1 would have to be determined
in an adaptive way, decreasing it faster whenever too many steps were
required in the former lattice size.

This algorithm produces an open-ended sequence of increasingly
better approximations to /3:/30' /31"'" as long as required or allowed by
computing resources.

It should be noticed that the algorithm saves a lot of work by not
insisting on exact measurements of <f), or even on exact equilibration, at
each temperature. It just senses the approximate point at which /30 the
critical temperature, is passed. More accuracy will not help, since on each
grid that point is only fuzzily defined.

Numerical results. The accuracy 8 of /3i, the ith approximation for /30
is defined by the difference 1/3i- /3cl, where /3c= 0.4406868 is the known
thermodynamic limit. The amount of work, denoted by # RAN, has been
measured by us by the number of times a random number is generated.
This effectively counts the work in the Monte Carlo sweeps and in the
stochastic coarsenings, which are indeed the most time-consuming pro-
cesses. For an algorithm to be optimal, the quantity a = 82(# RAN) should
be roughly constant, or at least bounded. In Fig. 6 the values of a obtained
in our experiments are shown for grid sizes up to 128 x 128. Each shown
value of a is averaged over an ensemble of about 100 systems.

The results show that the algorithm is not sensitive, within limits, to
changes in J/3o: asymptotically, T tends to the correct value of To and at
approximately the same rate a. The behavior of a as a function of the
system size can, however, serve as a good indicator for fixing the stepsize
J/3o. Large values of J/3o yield fast localization of the first /3/s, hence small
values of a for small L. But these /3/s are less accurate, hence more localiza-
tion work is needed later, thus yielding a typical rise in a for large L. Too
small values of J/3o, on the other hand, show much increased values of a
for small L. This is explained as follows. A small J /30necessarily implies
many steps at each grid size. Not only is the amount of work thus
increased, but so is, on small enough grids, the probability of accidentally
crossing the threshold 1] too early, implying a bad approximation for To

i.e., a large a. For larger grids the test becomes more reliable (accidental
crossing is much less likely), hence a smaller step provides a better
approximation for Tc and in turn a smaller a.

4. EXTENSIONS

The multilevel computational methods for eli~inating CSD and for
fast calculation of thermodynamic limits described 1n the previous sections
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are being extended to increasingly more complicated models. Some initial
steps and results are briefly described below. Fuller discussion will appear
elsewhere.

4.1. Generalized Gaussian Models

The algorithm of Section 2 has been extended to the generalized
Gaussian Hamiltonian in d dimensions,

f
d

(
au

)

2

Yt(u) = a(x) L -a . dXb"" dXd
Q j= 1 Xl

where u = u(x) and a(x) > 0 are real functions defined for X =
(X b''', Xd)EQ, and Q is any domain in Rd on the boundary of which values
of u are being prescribed.

Of special interest are cases where a(x) is strongly discontinuous,
changing by orders of magnitude from one subdomain to another.. Such
models can no longer be analyzed, nor accelerated, by Fourier methods.
The usual (point-by-point) Monte Carlo process can suffer in some such
cases far greater slowness than in the constant-coefficient [a(x) = 1J case:
the number of sweeps for producing an effectivelyindependent configura-
tion may grow proportionately to ha2r, where ha is the meshsize and
r , maxx,y a(x)/a(y). Hence, the total number of sweeps to obtain accuracy
a for any thermodynamic limit may grow as O(a-2ha2-dr), where ha
decreases as some positive power of a.

We have found that in order to reach optimality, the multigrid
algorithm for such cases must differ from the one described in Section 2,
mainly in the following two points.

1. Weighted interpolation. Instead of the simple linear interpolation
used in (13), weighted interpolation must be used, with the weights in each
direction being proportional to the size of a(x) extending in that direction.
[See ref. 1, where this weighted interpolation is described for the energy
minimization (T= 0) problem.]

2. Variable sampling. The Monte Carlo process should sample more
frequently regions with smaller values of the coupling a(x). A general rule
which has been derived for the optimal calculation of susceptibility, for
example, is that the number of Monte Carlo steps at each gridpoint x on
each grid with meshsize h should be proportional to a(x)-2/3 h(2d+4)/3.This
rule also dictates the relative amount of sampling on different grids, hence
the cycle index.

(34)

Such algorithms were implemented for various strongly discontinuous
cases in one and two dimensions (d = 1, 2). The results were as good as

)
iII
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those in Section 2, obtaining accuracy e in approximating the infinite-grid
susceptibility in less than 40e-2 random number generations. This bound
on the amount of work is independent of the above ratio r.

4.2. XY Models

Tests have been conducted on the one- and two-dimensional XY
models, with various approaches to the coarsening process. The work was
done partly in collaboration with S. Shmulyian, as reported in ref. 16.

The results show that optimal algorithms (eliminating both the critical
slowing down and the volume factor) can be constructed, at least in the
low-temperature range. To obtain such optimality, however, several
additional algorithmic ideas must be introduced. The main ones, not
restricted to the XY model, are surveyed below.

4.3. Coarsening by Approximation

If the given discrete Hamiltonian ~(Uh) depends polynomially on Uh
[e.g., quadratic dependence, as in (7)J, and if each u7 is an unrestricted real
or complex number or vector, then the coarse-grid Hamiltonian JeH(ziH)
can exactly be derived, yielding again a polynomial of the same order [e.g.,
cf. (15)]. Simple expressions for :YfH,generally similar in form to Yllz,can
also be derived in many other cases by using a low-order interpolation I~
(e.g., first-order, or "constant," interpolation,(8) i.e., blocking several
fine-grid variables so that their changes by the coarse grid, I~uH, are
identical). However, such low-order interpolations are not optimal, even
when they yield substantial multigrid acceleration. In the Gaussian case,
for example, and in many other (e.g., "asymptotically free") cases as well,
the interpolation must be at least of second order (e.g., linear interpolation)
to produce the full required mobility on the coarse levels (see item C in
Section 2.4 ).

Second-order interpolation in non-Gaussian models is not a straight-
forward linear interpolation. The latter would usually produce a result
outside the given states of the model [e.g., an (X, Y) state such that
X2 + y2 =1=1J and should thereforebe corrected [e.g.,normalizedby being
multiplied by (X2 + y2) -1/2]. In other models or other representations
(e.g., the XY model represented in terms of angles), straightforward linear
interpolation is not - weU -defined (e.g., because adding 2n to one of the'
angles would change the result). The definition of the interpolation should
then include a deviation from linear interpolation, and contain bifurcations
(separate formulas for different cases). To maintain detailed balance in

822/74/1-2-23
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such cases is usually facilitated by writing :ifHnot in terms of the displace-
ment function UH, but in terms of the "full approximation scheme"
(FAS) function aH= If:iih+ UH,where If: is some fine-grid-to-coarse-grid
restriction operator; e.g., If: can be the simple "injection," defined by
(If:iih)(x) = iih(x) (assuming that each coarse-grid point x also belongs to
the fine grid). Thus, instead of YtH(UH),it would usually be simpler to write
the coarse-grid Hamiltonian as £'H(aH)= YtH(UH- If:iih). Even then, the
resulting expression of £'H as function of aH is substantially more
complicated than JIlh(Uh).The complexity will be similarly further increased
upon each additional coarsening. To avoid such compounded complexity,
approximation methods are used, as follows.

For definiteness of the description, assume that the model is two
dimensional and that the Hamiltonian JIlh(Uh)can be written in terms of
stresses, i.e., differences u7- u; with i and j being nearest neighbors. Then,
with a proper second-order interpolation It, the coarse-grid Hamiltonian
£'H(aH) = Yt(iih + It(aH - If:iih)) can be written as a sum £'H(UH)=
Lq vq(Wq), where each vq is a (complicated and possibly bifurcated)
expression in terms of Wq' which is the vector of the three stresses (ofaH)
belonging to the same coarse-grid plaquette. To curb the Hamiltonian

complexity growth, we want to replace each vq(Wq) by a simpler
approximate expression vq(wq). Various such simplifying approximations
can be constructed, the only important rules being the following.

(i) vq(Wq) ~ vq(Wq) for any Wq, with equality obtained at least at
one Wq'

(ii) For a small temperature (large {3), the function vq(Wq) almost
surely has a minimum at a point w: where it is at least twice differentiable.
Then, for such a temperature, the values of vq and all its first- and second-

order derivatives are required to coincide with those of vq at W:.

(iii) vq should retain the topological properties of the model, such as
2n-periodicity in angle variables, to allow large-scale topological changes.

Just replacing vq by vq would of course introduce statistical errors.
Instead, to maintain exact detailed balance, the transition is done
stochastically; namely, the transition is done in probability

"Q 0 "'" 0

Pt(iih) = ef3(v '(Wq)- v'(Wq))

where w~ is the value of Wq at the time of coarsening, i.e., for aH= It:iih.
When transition does not occur, i.e., in probability Pf(iih) = 1- Pt(iih), the
stresses Wq are frozen. By the Detailed Balance Theorem (see Section 3.3),
this probabilistic choice between the simplifying transition and freezing
maintains detailed balance. The meaning of freezing any stress W= u{='- a7
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is, of course, that the neighboring values a1 and ay change henceforth
(until the uncoarsening stage) simultaneously, keeping their differences
fixed.

Rule (i). above guarantees that Pt:S;1. Rule (ii) sees to it that for large
13freezing is rare, and the system behaves virtually as in the Gaussian
case. By increasing the order of approximation [requiring in (ii) more
derivatives to coincide], freezing can be made even rarer, or remain rare
even for smaller 13.Such higher-order approximations increase of course
the complexity of vq, but the complexity per gridpoint remains fixed at
subsequent coarsening steps: the Hamiltonians retain a fixed general form
at all coarser levels.

In Section 2.3 we have seen that the coarse-field rjJH is stochastic: it
depends on u\ the fine-grid configuration at the time of coarsening. In
non-Gaussian models other coefficients in the Hamiltonian depend on Uhas
well. The variable coefficients thus created imply that the methods
described in Section 4.1 should be used. In particular, the interpolation at
coarser levels needs to be weighted proportionately to the coupling strength
in order to maintain full mobility at the coarsest levels.

The stochastic simplification of vq to vq should actually be made just
before the next coarsening step (the transition from grid H = 2h to grid
2H = 4h). Then, wherever freezing occurs, it just corresponds to a special
choice of the I~ interpolation weights. Since this choice in fact means
constant interpolation, which yields simpler coarser interactions, the
simplification of vq to vq need not be done (hence freezing will not occur)
at certain plaquettes adjacent to the frozen one.

In case of gauge fields in a higher dimension, the above approach is
applicable, too, except that "stresses" should be replaced by "topological
charges around plaquettes," and a "plaquette" should be changed to a
"cube" of the proper dimension.

4.4. Domain Replication and Macroscopic Dynamics

If the fine-grid Hamiltonian uses periodic boundary conditions, instead
of using cycle index y (cf. Section 2.3), the domain can be "replicated"
y times; i.e., the coarse Hamiltonian can be extended periodically to a
domain y times larger. [To extend equally in all d coordinates, y = 2d can
be chosen. If such y is too large (cf. Sections 2.4A, 2.7, and 2.8), alternate
coarsening levels can use alternate coarsening directions.] No return to
finer levels will ever be needed if they have already provided enough
statistics (i.e., if the required number of cycles is 1, as indeed recommended
in Section 2.4D). This is possible to do exactly when needed, i.e., when the
size of the domain required to yield accuracy c;in some calculation is suc
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that it would contain more than 0(8-2) finest-grid sites: the computational
cost can still be only 0(8 - 2), since the finest level is not employed over the
entire domain. ,

One can make a sequence of such domain replications. At each step
the domain is first coarsened, then replicated, then a simple multigrid cycle
is made on the extended domain to reach an equilibrium. (Compare to the
process in Section 3.4.) In this way one reaches ever larger domains,
covered by increasingly coarser grids. After sufficientlymany such steps one
may reach Hamiltonians that represent the macroscopic dynamics of the
system. (The assumption here is that the finest level need not interact with
grids many times coarser. Indeed, any movement on such very coarse grids
is very nearly seen as just a constant shift of the field on the finest scale.
Such a constant shift does not normally interact with local fluctuations.)

5. SUMMARY

The calculation of an average quantity Q for an infinite system
(a "thermodynamic limit" of finite systems) to within some prescribed
accuracy 8 by a Monte Carlo process usually requires the following three
factors of complexity.

1. First, one should employ a large enough computational lattice
N x N x ... = Nd, whose linear dimension N should usually
increase as 8 decreases: N = N(c:);presumably N grows like c:-P,
where p is positive.

2. On this lattice one carries out a Monte Carlo process which
produces a sequence of configurations, each configuration (from a
certain point on) appears in its physical probability. Many of these
configurations add nothing to the statistical measurement of Q,
because they strongly depend on each other. The process requires
O(NZ) Monte Carlo sweeps, hence O(Nd+Z)computer operations,
to create each new, effectively independent configuration. The
critical exponent z is of course nonnegative. The critical slowing
down is the case where z is positive.

3. It is not enough to create one independent configuration, because
any such configuration has a deviation from Q. If the standard
deviation is a, one would need O(a2jc:2)independent configura-
tions in order to measure Q to the desired accnracy c:.

Taking these three factors together, one would overall need

O(Nd+za2 jc:2) = O( a2 jc:2 + p(d+ z)) (35)

computer operations in order to obtain an error smaller than 8.
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The purpose of previous multigrid and cluster algorithms has been to
reduce z as much as possible. The purpose of the multigrid techniques
presented in this work is to eliminate the entire exponent p( d + z) from
(35), i.e., to obtain an error smaller than 8 in only 0((52/82) overall computer
operations.

This potential efficiency is especially good news for higher- (e.g., four-)
dimensional problems: the work increase with accuracy is essentially
independent of the dimension.

It is shown above in detail, especially in Section 2, how to achieve
such optimal results in some simple cases. The possible extension to more
advanced asymptotically free models is discussed in general terms in
Section 4.

The parameters of the multigrid algorithm, such as the cycle index y
and the coarse-ta-fine interpolation order, depend not only on the involved
model and its discretization, but also on the measured quantity Q. In
d-dimensional models and 1: 2 coarsening ratio, for calculating quantities
dominated by large-scale fluctuations (e.g., susceptibility), 2d < Y~ 22pmust
be used, where p is the order of discretization. For quantities dominated by
small-scale fluctuations (e.g., the energy per degree of freedom), y < 2d is
needed to obtain accuracy 8 in 0(8-2) computational work.

At least second-order (e.g., linear-polynomial) coarse-to-fine interpola-
tion is necessary for optimal calculations of asymptotically free models.
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