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Multigrid algorithms are presented which, in addition to eliminating the critical
slowing down, can also eliminate the "volume factor". The elimination of the
volume factor removes the need to produce many independent fine-grid con-
figurations for averaging out their statistical deviations, by averaging over the
many samples produced on coarse grids during the multigrid cycle. Thermo-
dynamic limits of observables can be calculated to relative accuracy eT in just
0(e;2) computer operations, where eTis the error relative to the standard devia-
tion of the observable. In this paper, we describe in detail the calculation of the
susceptibility in the one-dimensional massive Gaussian model, which is also a
simple example of path integrals. Numerical experiments show that the suscep-
tibility can be calculated to relative accuracy eT in about 8e;2 random number
generations, independent of the mass size.

,

KEY WORDS: Multigrid; massive Gaussian model; Monte Carlo; critical
slowing down; volume factor; thermodynamic limit; path integrals.

1. INTRODUCTION

One of the aims in statistical physics is to calculate various average proper-
ties of configurations governed by the Boltzmann distribution. This is
usually done by measuring these averages over a sequence of Monte Carlo
iterations. Unfortunately, such processes tend to suffer from several inde-
pendent inefficiency factors that multiply each other and thus produce very
expensive computations.

The best known of these inefficiencyfactors is the critical slowing down
(CSD). This is the phenomenon, typical of simulations of critical systems,

1 Department of Applied Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot 76100, Israel.

1503

0022-4715/96/0300-1503$09.5010 @ 1996 Plenum Publishing Corporation

I

I
.~.
~



.~
'I~

1504 Brandtand Galun

that with the increase in lattice size there also comes an increase in the

number of full Monte Carlo passes over the lattice needed to produce a
new configuration which is statistically "useful", i.e., substantially inde-
pendent of, or only weakly correlated to, a former configuration. Con-
siderable effort has been devoted to reducing the critical slowing down. For
simple cases with real variables, classical multigrid methods can eliminate
the CSD. For more complicated models (e.g., ~4; or discrete models) more
recent publications report on simulation techniques that partially or com-
pletely(l,8,9,13)eliminate the CSD. This means that the time to produce an
independent configuration is proportional to the number of gridpoints.

The elimination of the CSD is very important, but there is another no
less important factor of slowness, the volume factor. To calculate a ther-
modynamic quantity to a certain relative accuracy 8n one needs to produce
0(8;2) essentially independent configurations to average out the deviation
exhibited by each of them, where the relative accuracy 8r is the error
relative to the standard deviation of the observable in question. Also, the
size of the grid must increase as some positive power of 8;1. Thus, even if
the CSD has been completely eliminated, the overall work increases as
0(8;2Nd), where N is the linear lattice size and d is the dimension. An
important advantage of the multi grid approach is that it can drastically
reduce the volume factor Nd as well, by averaging over many samples
produced in prolonged Monte Carlo passes on coarse grids. Indeed, we will
exhibit cases in which the volume factor is completely eliminated together
with the CSD.

The elimination of both the volume factor and the CSD means that a

thermodynamic limit can be calculated to an accuracy of + 8 in optimal
time, i.e., in only 0(8-2) computer operations. This is just the same order
of complexity as needed to calculate, by statistical trials, any simple
"pointwise" average, such as the frequency of "heads" in coin tossing. By
contrast, both the volume and the CSD factors multiply the statistical
factor (8-2) in the operation count of conventional algorithms.

The elimination of the volume factor was first been demonstrated (3,4,6)

for the Gaussian model with constant coefficients. It was shown there, for
the one-dimensional Gaussian model, that the susceptibility can be
calculated to accuracy 8r in about 48;2 random number generations, while
the average energy per degree of freedom requires 38;2 such generations
for a similar accuracy. In the two-dimensional Gaussian model, the suscep-
tibility can be measured to accuracy 8r in about 208;2 random number
generations.

In this paper we treat the one-dimensional massive Gaussian model
and we show that, using an appropriate multi grid algorithm, one can
calculate the susceptibility in an optimal time. Stated differently, we show
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where the Fourier coefficient Cjare real. The magnetization is given by

1 L 2 CA)*c.

M(u) =- f u(x) dx =- I --'!-L 0 n j= 1 }

where L*, here and below, stands for a summation over odd integers. The
probability density of each configuration u is given by the density function
of the BoItzmann distribution

(3)

P( u) = e - :Yt>(u)/T (4)

where T is the temperature and Z( T) is a normalization factor. It can be
shown (see Appendix A) that the average magnetization <M) and the
susceptibility <M2) - <M)2 are given by

<M) = 0

4LT CA)* 1
<

M2) - <M)2= <M2) =~ .I n2j4+m~L7n }=l

(5a)

(5b)

We define any statistics for the continuum as the limit of the statistics for
systems truncated to a finite number of Fourier components.

2.2. Discrete Case

In order to measure such statistical averages numerically, it is
necessary to discretize the system. On a grid with meshsize h = LjN, the
discretized Hamiltonian ~(u) approximating (1) can be written as

1 N N-l

~(u)=h I (Ui-Ui-d2+m2h I u;i=l i=l

(6)

where Ui = u(xJ are the variables at gridpoints Xi = ih, 0 ~ i ~ N, respec-
tively. For the simplicity of the multi grid algorithm we assume N = 2k.

Assuming again zero boundary conditions, Uo= UN= 0, we can represent a
general grid configuration by

N-l

ui = I Cj sin(jnxjL)
j=l

(7)

The discrete magnetization is given by

h N h N-l

Mh(u) = L .I U(Xi) =- I* Cjcos [jnhj(2L)]1=0 L . 1}=
(8)
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where ~(Uh) is given by (10) and £'H(UH)is

1 NI2 N12-1

£'H(UH)= H L (u7 - U7-1)2 + H L <p7u71=1 1=1

N-l N-l

+ m2 Hb "" (UH )
2 + m2Ha "" UH UHH L., I H L., I I-I

1=1 1=1
(13)

with

ah bh

aH=2+4'
bH=ah+3bh

2 4 (14a)

and

-h 2 -h -h )..h 2)..h)..h
)..H= -Uj-2+ Uj-Uj+2+lf'i-l+ If'i+lf'i+l
If'I 2h2 4

m~ m~h
(
-h 2 -h -h

)
h
(
-h 2-h 2-h 2 -h -h

)+2 Uj-l + Uj +Uj+l +4 Ui-2 + Ui-l + Ui + Ui+l +Ui+2

(I = il2 = 1, ..., NI2 -1) (14b)

representing fine-to-coarse induced field-like terms. The coefficients aH
and bH depend only on ah and bh. The coarse field terms <p7are calculated
from the details of the fine-grid configuration at coarsening and
are fixed throughout the processing on the coarser level. The variables
of the coarse grid u7 are initially set to zero, corresponding to zero initial
displacemen ts.

Having calculated the field <pHonce for all, £'H is directly calculated in
terms of the coarse-grid configuration UH, there is no need to explicitly
perform (12) in order to relax the coarser level. One can therefore run
a long Monte Carlo process with £'H, (13), before explicitly updating Uh
by (11).

The entire algorithm can be described by a sequence of multigrid
cycles for the finest level. A cycle for any given ("current") level is recur-
sively defined by the following five steps:

1. First make v1 Monte Carlo sweeps on the current level. Then, if
this level is the coarsest, go to 5.

2. Create the next coarser level from the current one by determining
the coefficients (14a) and the coarse field-like terms (14b).



Optimal Multigrid Algorithms 1509

3. Perform y multigrid cycles for the coarse level. (y may change from
the current level to another.)

4. Update the current level by performing (11).

5. Finally, make additional V2 Monte Carlo sweeps on the current
level.

The Monte Carlo sweeps are performed by changing each variable in
its turn randomly according to its associated distribution, regarding its
neighbors as fIxed.

The values of VI, V2and y are discussed below.
The massive Gaussian model displays criticality as m -+ O. The

described cycle, even with y = 1 (a V-cycle), would eliminate the critical
slowing down, but the volume factor remains intact. However, the main
issue here is to eliminate the volume factor as well, for any mass size m; the
way to do so is described next.

2.4. Fast Sampling of Susceptibility

As in the simple Gaussian model, the susceptibility (5b) is dominated
by contributions from large-scale fluctuations (low-frequency Fourier com-
ponents), regardless of the size m2. Therefore, the purpose of the simulation
is to sample quickly as many such fluctuations as possible. The way to do
this is to use a cycle index y larger than 1 and to calculate the susceptibility
over the many measurements on the coarsest level. Furthermore, the
optimal multigrid algorithm differs from the one that has been described
for the simple Gaussian model;(3,4,6) the cycle index may change from one
level to another, depending on the parameter m.

The magnetization Mh can be evaluated on any level [plug (11) in
(8) ], without going back to fIner levels. Thus, many measurements of M~

can be made within a cycle, and their average M~ can be used as an
estimate for the discrete susceptibility <M~). In practice, measurements are
taken only on the coarsest level, after each relaxation sweep there, since
only there are substantial changes in Mh introduced.

We next study the number Si of relaxation sweeps the algorithm needs
to perform on level i, i.e., on the grid with mesh size hi = 2ih [i = 0, 1, ...,
t = 10g2(Nj2)], in order to achieve accuracy £ in the estimation of the
susceptibility.The total expected error £ in measuring <M2) is calculated
by Fourier analysis in Appendix B. From (B2), the total error in measuring
<M2) relative to the standard deviation (J,where

(J= «M4) - <M2)2)1/2 = j2 <M2) = 0 Cr2 ::2L2)

~.'.,
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IS

(

I 2 2L 2

)- G - -1/2 3 -3n +m
cr---O L Si hiL 2 2h2 +r.d.e.a i=O n + m i

(15)

where the last term added here (r.d.e) is the relative discretization error
estimator which is discussed in Appendix C. It is important to emphasize
here that raising p, the order of the discretization error, beyond p = 3 has
no benefit. [See (Cl). This point, incidentally, was missed in ref. 4.J

The total work (operations) on all the levels is clearly

I

W= L siO(LjhJ
i=O

(16)

The optimal choice for Si (yielding either minimal Gfor a given W or mini-
mal W for a given 8) is obtained when oGrjoSi+AloWjoSi=O,which by
(15) and (16) yields

(
n2 + m2 L 2

)
2/3 .

(
n2 + m2 L 2

)
2/3

- 1 L -4 h4 - 1 28113

Si - A2 i 2 2h2 - A3 2 2h2n +m i n +m i

where AI, A2 and }'3 are independent of i. Hence, the optimal cycle index at
level i is

Y- = Si+ 1 - 2813

(
n2 + m2h~

)
2/3

lOp! - I
Si n2 + 4 2h

2m .
I

(17)

The actual values of (17) for constructing an optimal multigrid cycle are
given in Table I as a function of mhi. However, we will see in the
experiments that the results are not much sensitive to changes of y within
quite large margins. In fact, analyzing the following three cases would show
wide ranges of y at which the optimal order W = 0(8;2) is still obtained.
For each of the cases we will use fixed y, hence Si= syi, where S=
(VI + V2) . #cycles. Since hiL -1 = 0(2i-/), we can perform the summations
in (15) and (16). Using the discussion in Appendix C and the relation
a = 0(LTj(n2 + m2L 2)), we can calculate the general relative discretization
error in each of the three cases:

1. For the case hi < njm at all levels (i = 0, ...,I)

(
-112 2 -3/

)8.= 0 s-1/2 Y - + 0 (2-lp* )
1 1-2-3yI/2

(18)

and

W = 0
(

s yl - 21
)I - 2y-l

(19)
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Table I. Constructing an
Optimal Multigrid Cyclea

aThe table gives the optimal
cycle index Yi at level i as aopt

function of mhi (the mass size
times the meshsize at level i).

for any 2<y<26, where p*=min(3,p). Actually, by choosing y and the
approximation order p so that y is significantly smaller than 22p*,we can
ignore the second term in (18), yielding W= 0(S;2). While Y=Yopt indeed
minimizes Ws;, the other cycle indices (2 < Y< 22p*) give practically the
same efficiency. This case is very similar to the simple Gaussian case.(4)

2. For the case hi> n/m at all levels (i = 0, ..., I)

(
-112 2 -I

)S =0 S-1/2Y - +0 (2-/ )
r 1-2-1yI/2

(20)

and W is as before (19), for any 2 < Y< 4. As any Y in this range is already
smaller than 22, the second term in (20) can be ignored, yielding again
W= 0(S;2).

3. As h --+ 0 the last case will evolve eventually to the case hi < n/m
for i = 0, 1, ...,k -1 and hi> n/m for i = k, k + 1, ..., I. Generally, in this case

Sr = 0 (s -1f2y -112 .f. (2 -lyI/2)j );=0

(
1 (2 -3, 1/2 )

k

)+0 -1/2 -112 - Y 2L2 (2-31/2 )
k

S Y 1-2-3yI/2 m Y

+ 0(2 -Ip*) (21)

and Wis as before (19), for any 2<y<26, where k=l-k stays constant
as h --+O. As mentioned earlier, a multigrid cycle as described in Table I

.~

Practical

mhi Yiopt Yiopt

l 6.35 6

0.5 6.05 6

I 5.40 5
'"' 4.19 4
4 3.15 3
8 2.70 3

l 2.52 3
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indeed minimizes Wc:~, but by choosing any fixed y in the domain
(2 < y < 22p*), we can neglect the third term in (21), again yielding the
optimal efficiency W = O(c:;2).

2.5. Numerical Results

'Ve have tested the multi grid algorithm for different values of m with
grid of sizes up to 512. Our main aim was to show that using appropriate
values of y one can calculate the susceptibility in an optimal time, while the
use of unsuitable values of y undermines optimality. The susceptibility has
been measured over just one cycle. Within the cycle, many measurements
are taken, in fact after each Monte Carlo step on the coarsest level, the
level with just one internal point, i.e., hz= L/2. The average of the
measurements M~ is an approximation for <M~>, (9b), which is also an
approximation for the thermodynamic limit <M2 >, (5b). The relative
accuracy is defined as c:r=IM~-<M2>I/u and it is averaged over an
ensemble of 10,000 runs.2 We define IX to be the expected value of
# RAN . c:~, where # RAN is the amount of work spent in the cycle,
measured by the number of times a random number is generated. Thus, IX

should turn out to be a constant if and only if the algorithm solves to
relative accuracy C:rin O(c:;2) operations. We measured IXfor three different
cases. Results are presented in Table Il for L = 1, T = 1, ho= I/N and
hz= 1/2, showing that the algorithm is not sensitive in a wide range of
suitable y. We see that any appropriate cycle index will lead to the optimal
efficiency, i.e., IX tends to a constant as N grows (see cases m = 0.5,
u = 0.05749 and m = 64, cj= 1.672x 10-4). In the last case, m = 400, u =
4.397 X10-6, IX turns out to be a constant when cycle index 3 is used,
but cycle index 6, as explained above, is too big for this case. For any
case, cycle index 2 (W-cycle) is below the optimal range, demonstrating
logarithmic growth of IX.The main conclusion is that an optimal algorithm,
with practically constant IX,can always be devised.

In Table Ill, we compare our optimal multi grid Monte Carlo algo-
rithm and a conventional multigrid algorithm, where the susceptibility is
measured once per V-cycle.(5)It is clear that better accuracy means using
larger grids. Therefore, as the accuracy is improved, the ratio between the
complexity of the two algorithms increases. For example, in order to
achieve a certain accuracy in the case m = 64 and N = 512, it would cost a
conventional algorithm 330 times the work required by the optimal multi-
grid algorithm as presented here. Practically, while the computational time

2The experiments for m = 64 and N = 512 using Table I and y = 6 are made over an ensemble
of 4000 runs and 400 runs, respectively.
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a The table shows IX,the number of random generations times the square of the obtained
relative accuracy, for the indicated values of the system size N and the cycle index y.

of the conventional algorithm (5) is 4NB;2 (the cost of conventional algo-
rithms as described in refs. 7 and 10 would be even somewhat bigger), the
computational time of our algorithm is about 8B;2, independent of the
grid size N. [Note that, for maximal efficiency, a conventional algorithm
should use the smallest possible N which still gives r.d.e. comparable to Br'
According to Appendix C, this would mean N = O(B-l/p*).]

Table Ill. Computational Time (in units of 8;2) in Measuring the Suscep-
tibility on a Grid with N Gridpoints to Relative Accuracy 8/

a Conventional multigrid method (one measurement per cycle, as in refs. 5, 7, and 10) vs. our
optimal multigrid method.
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Table 11. Performance in Measuring SusceptibilityQ

IX

m y N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512
,

0.5 2 2.4 5 7.3 9.8 12.3 14.6 17.4
3 2.2 3.5 4.5 5.1 5.3 5.9.
6 2 3 3.6 3.8 3.9 4
7 2 2.8 3.5 3.7 3.8 3.8 '

64 Table I 1.6 2.9 4.2 5.3 5.9 5.9 6.3 6.2
3 1.6 2.9 4.2 5.3 6.1 6.5 6.7 6.8
6 1.5 2.6 4.2 5.8 6.8 7.7 7.8 8.4

400 2 1.8 3.9 6.4 9.7 12.8 15.5 18.6
3 or Table I 1.6 2.9 4.3 5.6 6.8 7.5 8

6 1.5 2.8 4.9 7.7 11.2 16.2 20

Computational time

Multigrid
m algorithm N=4 N=8 N=16 N=32 N=64 N = 128 N = 256 N = 512

0.5 Conventional 6.8 21.8 50.5 112.2 237 484.6

Optimal 2 2.8 3.5 3.7 3.8 3.8
64 Conventional 4.9 17.4 52.6 115.6 236.7 485.2 992.9 2048.3

Optimal 1.6 2.9 4.2 5.3 5.9 5.9 6.3 6.2
400 Conventional 4.7 16.8 50.6 112.2 235.1 501.9 960.9

Optimal 1.6 2.9 4.3 5.6 6.8 7.5 8
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3. SUMMARY
~ .~

The calculation of a thermodynamic limit of any observable to a
relative accuracy cr usually requires by a Monte Carlo process

O(Nd+ZC;2)

computer operations, where Cris the error relative to the standard devia-
tion of the observable, N is the linear dimension of the lattice needed to
approximate the thermodynamic limit to accuracy Bn d is the dimension,
and z is the critical exponent.

Multigrid algorithms potentially can reduce and even eliminate not
only the critical slowing down factor NZ but also the volume factor Nd.

The parameters of the multigrid algorithm, such as the cycle index y
and the coarse-to-fine interpolation order, depends not only on the
involved model and its discretization, but also the observable in question.
For the optimal calculation of the susceptibility in the one-dimensional
massive Gaussian model it is essential to use linear interpolation and a
cycle index which varies with the mass size. In this case the critical slowing
down and the volume factor are completely eliminated leading to the
optimal efficiency 0(8;2).

APPENDIX A. FOURIER TRANSFORM EXPRESSIONS

In the continuous case, by substituting (2) into (1) and into the left
part of (3), one gets

n2 CD m2L 00

Yt'(u) =- I j2CJ+- I cJ
2Lj=1 2 j=l

(AI)

and the right hand side of (3). From (4) and (AI), it can be shown by
straightforward calculations that

< Cj) = 0

LT

< cJ) = n2j 2 + m

(A2)

(A3)

<cJ)= 3L2T2
\ 10 J Tt,..LJ)

Hence, the average magnetization <M) and the susceptibility <M2) _<M)2
can be calculated using (3), (A2), and (A3), leading to results (5a) and (5b)
in Section 2.1.

(A4)
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In the discrete case, by substituting (7) into (6) and into the left part
of (8) one gets

1

2L N-l

(
jnh

)
m2L N-l

Jfth(u) =71 .L cJ sin2 2L +2.L cJ
}=1 }=1

and the right-hand side of (8). From (4) and (AS) we can derive

(AS)

< Cj) = 0

Th2
< c~) = 2 2

} 4L sin 2[jnhj(2L)] +m Lh

(A6)

(A7)

The average discrete magnetization (9a) and the discrete susceptibility (9b)
in Section 2.2 are obtained by applying (A6) and (A7) to (8).

~

0,

APPENDIX B. FOURIER ANALYSIS OF THE EXPECTED
ERROR IN THE ESTIMATION OF THE
SUSCEPTIBILITY

The relaxation sweep on level i [with meshsize hi = 2ih:i = 0, l, ...,t =
log2(Nj2)] strongly affects, hence effectively samples, only those Fourier
coefficients Cj [cf. (2)] for whichj=O(LjhJ Hence, the number Si of
relaxation sweeps needed to be performed on level i depends on the con-
tribution of these components to the deviations in measuring <M2). By (3)

M2 = ~ ",* CjCk2 L.. -
n j, k jk

(Bl)

~,
11

Consider first a term (j, k) in (Bl) for which both j and k are O(Ljhi),
hence the term is effectively sampled O(Si) times in a cycle. According to
(A2)-(A4) in Appendix A, the standard deviation of the term is

4
-:-- ( < (C.Ck)2) - < c.c )

2
) 1/2= O(h~(n2 + m2h~) -1 L -3T )

Jkn2} } k I I

hence the standard deviation of its average over the O(sJ samples is
O(Si-1/2hi(n2+m2h~)-IL-3T). There are O(hi-2L-2) such terms, where
each pair of them is uncorrelated, hence their total contribution is

~

O(Si-1/2h7(n2+m2h~)-1 L -2T)

'I~

In the case j = O(Ljhi-r) and k = O(LjhJ, where r ~ 1 (i.e., hi> hi-r),
the term (j, k) in (Bl) is effectively sampled as follows (see also ref. 4): in
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an inner loop, for a (nearly) fixed value of Cj' the values of Ckare averaged
O(sjsi-r) times, yielding an average whose deviation is of the order

O
(

~j
(
~

) -1/2 (C~)1/2 )
=O

(
~j

(
Si-r. LT

)
1/2

)jk Si-r Jk Si n2k2+m2L2

Then, in an outer loop, the Cj in this average is averaged over O(Si-r)
samples, giving results with deviations of order

(

- 1/2

( )

1/2

)0 S;r S~~r LT (n2k2+m2L2)-1/2(cJ)1/2

(
-lp

)= 0 Sjk (n2~2+m2L2)-1/2 (n2j2+m2L2)-1/2LT

= O(s-:-1/2h~h~ (n2+m2h~ ) -1/2 (n2+m2h~ )-1/2 L -3T )I I I-r I I-r

There are O(hi-l h-:-\L2) such terms, effectively uncorrelated, hence their
total deviation is

O(s -:-1/2h~/2 h~/2 .(n2 + m2h2 ) -1/2 (n2 + m2h~ ) -112 L -2T )I I I-I I I-r

S:umming over integers r ~ 0 gives again

0
(

s -:-1/2 h3/2 (n2 + m2h~)-1/2 TL -2 " h~/2(n2 + m2h~ )-1/2

)I I I L... I-r I-r

r~O

= O(S;1/2h~(n2 + m2h:)-1 L -2T)

Therefore, the total error in measuring (M2) is

,= 0 ct. Si1f2h;(,,2+ m2hi)-1L -2T)
(B2)

APPENDIX C. CALCULATION OF THE DISCRETIZATION
ERROR (M2) - <M~)

To calculate the discretization error, observe first that for NI2 <j < N
the term in (9b) is smaller than

Th4

(
Th4 Th2

)L3(2+m2h2)~min 2L3'm2L3
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hence the sum of all these NI2 terms is less than

.

(
1 1

)CLTrmn N3' m2L2N

where C = 0.5. A similar estimate, but with a different value of C, is
0btained for the sum of all terms NI2 <j < co in (5b).

For j < N12, . each term in (9b) can be approximated by a Taylor
expansion as follows:

4LT 1 - (jnhI2L)2

n2 n2j4[1-~(jnhI2LfJ +m2L2j2[1-%(jnhI2L)2J

4LT 1- fJ(jnhl2Lf

=~ n2j4+m2L72

;J

where 113< fJ< 2/3. Comparing this with the ph term in (5b), we conclude
that the total discretization error for these terms is approximately

N/2-1 1

(
1 1

)LTfJN-2 E: n2j2 +m2L2 ~ CLTmin N2' m2L2N

For general p-order discretization, a similar estimation would give
11
~

11 CLTmin (~p, m2~2N)

Therefore, the total discretization error is
~!

CLT min
(

.1 1
)

:< CLTN-rnin(3,p)
Nrmn(3,p)' m2L2N ;:;

hence the relative (to 0") discretization error estimator is

r.d.e. = C(n2 + m2L2)
NP* + m

(Cl)

~I

'"
where p* =min(3,p).

Clearly, there is no advantage in raising the order of the discretization
error beyond p = 3.

~,
I

!.
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