
Journal of Statistical Physics, Vol. 88, Nos. 3/4, 1997

A novel class of multigrid algorithms for the variable-coupling isotropic
Gaussian models is presented. In addition to the elimination of the critical slow-
ing down (which otherwise might become much worse than usual in the case of
strongly varying coupling values), the "volume factor" is also eliminated. That
is, the need to produce many independent fine-grid configurations for averaging
out their statistical deviations is removed, by applying multigrid cycles that
sample mostly on coarse grids. Thermodynamic limits can be calculated to
relative accuracy t.r in just 0(er

-2) computer operations, where ?., is the error
relative to the standard deviation of the observable. In this paper, such an
optimal algorithm is obtained for the calculation of the susceptibility in the
d-dimensional variable-coupling isotropic Gaussian model (with numerical
experiments for d = 1, 2). Some basic general rules for the operation of multigrid
algorithms, applicable to much wider classes of models, are derived.
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1. INTRODUCTION

One of the aims in statistical physics is to calculate various average proper-
ties of configurations governed by the Boltzmann distribution. This is
usually done by measuring these averages over a sequence of Monte Carlo
iterations. Unfortunately, such processes tend to suffer from several inde-
pendent inefficiency factors that multiply each other and thus produce very
expensive computations.

The best known of these inefficiency factors is the critical slowing down
(CSD). This is the phenomenon, typical to critical systems, that with the
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increase in lattice size there also comes an increase in the number of full
Monte Carlo passes over the lattice needed to produce a new configuration
which is statistically "useful," i.e., substantially independent of, or only
weakly correlated to, a former configuration. More precisely, the process
requires O(NZ) Monte Carlo sweeps, hence O(Nd+z) computer operations,
to create a new independent configuration, where N is the linear lattice
size, d is the dimension and z>0 is the CSD exponent (typically z«2).
Considerable efforts have been devoted to reduce the critical slowing down.
For simple cases with real variables, classical multigrid methods(12, 17, 21)

can eliminate the CSD (i.e., obtain z = 0). For more complicated models,
(e.g., (^4, nonlinear <r-models or discrete models) more recent publications
report on simulation techniques that partially(14, 15, 17, 23,24, 26) or com-
pletely(5, 18-20, 22, 27) eliminate the CSD. This means that the computer work
to produce an independent configuration is proportional to the number of
gridpoints, i.e., O(Nd) operations.

This paper treats the Gaussian models with non-constant couplings,
therefore of special interest are cases where the couplings change strongly
from one subdomain to another. In such cases, the usual critical slowing
down of the point-by-point Monte Carlo process is compounded by a very
severe sampling slowness, i.e., the number of sweeps for producing an inde-
pendent configuration may grow as O(a+N2) where a^ is the maximal
ratio between the values of the coupling.

In addition to the CSD factor Nz there is another, no less important
factor of slowness: namely, the above Nd factor, called the volume factor.
Indeed, to calculate a thermodynamic quantity to a certain relative
accuracy £,., one needs to produce O(er-2) essentially independent con-
figurations to average out the deviation exhibited by each of them, where
the relative accuracy er is the error relative to <r, the standard deviation of
the observable in question. Also, the size Nd of the grid must increase as
some positive power of e-1. Thus, even if the CSD has been completely
eliminated, the overall work increases as O ( e - 2 N d ) . An important advan-
tage of the multigrid approach is that it can drastically reduce the volume
factor Nd as well, by averaging over many samples produced on coarse
levels of the multigrid cycle. Actually, even for extreme cases of large a* we
will demonstrate below that by suitable cycling and sampling procedures
one can completely remove both the volume factor and the compounded
CSD mentioned above.

The elimination of both the volume factor and the CSD factor means
that a thermodynamic limit can be calculated to an accuracy of ±s in
optimal time, i.e., in only O(a2e-2) computer operations. This is just the
same order of complexity as needed to calculate, by statistical trials, any
simple "pointwise" average, such as the frequency of "heads" in coin
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tossing. By contrast, both the volume and the CSD factors multiply the
statistical factor ( < 7 2 e - 2 ) in the operation count of conventional algorithms

The elimination of the volume factor has first been demonstrated(7, 10, 16)
for the Gaussian model with constant coefficients. It has been shown there,
for the one-dimensional Gaussian model, that the susceptibility can be
calculated to accuracy er in about 4er-2 random number generations, while
the average energy per degree of freedom requires 3er-2 such generations
for a similar accuracy. In the two-dimensional Gaussian model, the suscep-
tibility can be measured to accuracy sr in about 20e-2 random number
generations. Moreover, we have shown for the one dimensional massive
Gaussian model(9) that the susceptibility is calculated to relative accuracy
sr in less than 8e-2 random generations, essentially independently of the
mass size, although the algorithm flow does change with that size.

These previous calculations have not provided convincing demonstra-
tion of the power and generality of the approach, because the constant-
coefficient Gaussian models in rectangular (or periodic, domains can be
treated with similar efficiency also by Fourier-based algorithms or by
closed-form Fourier analysis (as indeed used in the aforementioned
works(7 ,9 , l0 ,16)) both for calculating the desired physical quantities and
for analyzing the multigrid algorithms). To demonstrate more general
applicability of the multigrid approach, the elimination of both the CSD
and the volume factor is shown here for variable-coefficient cases for which
Fourier methods are inapplicable.

A multigrid simulator for the variable-coupling Gaussian model
provides an important basis for general nonlinear models, where non-con-
stant couplings stochastically emerge at coarser levels of the multigrid
Monte Carlo processing. Indeed, in a companion paper,(8) the removal of
the CSD and the volume factor is shown for some cases of a simple non-
linear model—the anharmonic crystal.

We show that in order to reach optimality in the variable-coupling
Gaussian model, the multigrid algorithm for such cases must differ from
the algorithms in refs. 7, 9, 10, and 16 mainly in the following two aspects.
Firstly, instead of the simple linear interpolation that we have used in refs.
7, 9, 10, and 16, weighted interpolation must be used. Secondly, variable
sampling should be applied during the multigrid cycle; in particular, the
Monte Carlo process should sample more frequently regions with smaller
coupling values. Precise rules for the interpolation weights and for the
sampling frequency (implying also general rules for switching between the
multigrid levels) are derived below.

The algorithm have been implemented for strongly discontinuous
cases (large a*) in one and two dimensions. The results are as good as
those previously attained(7, 9, 10, 16) for constant coefficients. For the one
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dimensional variable-coupling Gaussian model, the susceptibility is cal-
culated to accuracy er in about less than 8e-2 random number generations.
In the two-dimensional variable-coupling Gaussian model, the suscepti-
bility can be measured in about less than 20er

-2 random generations. These
results are independent of the coupling ratio a*.

Thus, our multigrid algorithm effectively produces an independent
sample in just O(1) computer operations. The computational time of this
"optimal multigrid" algorithm is thus smaller by a factor O(Nd) compared
to that of a conventional multigrid algorithm, e.g., such as that of refs. 12,
17, and 21, which measures the observable only once per multigrid cycle.

For simplicity, the present work deals only with iso tropic models.
Modifications to the anisotropic case are briefly discussed in Appendix B.

2. VARIABLE-COUPLING ISOTROPIC GAUSSIAN MODEL IN
GENERAL DIMENSION

2.1. Continuum and Discrete Models

The general variable-coupling J-dimensional isotropic Gaussian
Hamiltonian is defined in the continuum by

where u = u(x) = u(x1,..., xd) and a(x) are real functions defined for
x = (xl,...,xd}eQ; Q is a domain in Rd on the boundary of which values
of u are prescribed. For definiteness, we assume homogeneous Dirichlet
(u = 0) boundary conditions.

The magnetization is defined here as

where \fi\ is the volume of Q, and the probability density of the configura-
tions is the Boltzmann distribution

where the temperature T is absorbed in 3^(u) and Z is a normalization
factor (the partition function) derived from the condition \u P(u) du= 1. As
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the density function is given, average properties of interest are the average
magnetization <M> = JH M(u) P(u) du and the susceptibility

Clearly, in the case of the sign-symmetric Hamiltonian (1) and the
homogeneous boundary conditions, < M> = 0.

Discrete approximations will be calculated by placing a grid Qh of
points xi over the domain Q, where i = (i1,..., id) is a vector of integers,
xi = (x1

i,...,x
d) = (i1h,...,idh),h being the (real and positive) meshsize. The

value of the discrete configuration uh at the point xi will be denoted uh. For
simplicity, we will assume that the boundary of Q is a union of pieces each
of which is included in a grid hyperplane, so that boundary conditions can
be discretized in the most direct and obvious way; e.g., t/f = 0 for x, in the
boundary; but extensions to more general cases are quite straightforward.
The discrete Hamiltonian and magnetization will be given, respectively, by
the second-order discretizations

and

where <i, j> is any pair of nearest-neighbor sites, including the case that
one of them is on the boundary, and £/ runs over all interior sites. (In case
of non-homogeneous boundary conditions, to obtain a second order
approximation, boundary values multiplied by 1/2 should be added to the
sum in (6).) The coupling coefficient aij is a proper homogenization of a(x);
i.e., it represents harmonic averaging (the inverse of the average of a ( x ) - 1 )
in the i to j direction, compounded with usual averaging in the per-
pendicular directions. Similarly to the continuous case, the probability dis-
tribution is given by (3), with $fh(u

h) replacing 3f (u). The discrete averages
which estimates the continuum averages are naturally the discrete average
magnetization <Mh> and the discrete susceptibility

Fourier expansions were used for the constant-coefficient Gaussian
model(7, 10, 16) (a(x) = l) and the massive Gaussian model(9) to compute
continuum and discrete averages analytically and to construct an optimal
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multigrid algorithm. When a(x) is not constant, or when Q is not rec-
tangular, Fourier expansions can no longer serve, neither for exact calcula-
tions of continuum (thermodynamic limit) and discrete averages, nor for
analyzing the multigrid Monte Carlo simulations. A more general way to
analyze the multigrid Monte Carlo algorithm in the variable-coupling
Gaussian models is described below (see Sec. 2.5).

2.2. Extreme Monte Carlo Slowness

In some cases the usual critical slowing down of the point-by-point
Monte Carlo simulation is compounded by a very severe sampling slow-
ness resulting from widely differing values of the coupling aij. For example,
if a(x} = 1 in a region all around the boundary while a(x) = a* in some
interior subdomain, then when a* is getting large the interior spin block
becomes strongly coupled. Therefore, point-by-point relaxation would
allow only small fluctuations in this spin block, although a uniform move-
ment of the block is physically probable. Clearly, as a* increases a uniform
block movement becomes much slower. Generally, for this reason, the
decorrelation time may increase proportionately to a*; i.e., the number of
Monte Carlo sweeps required to produce a new effectively independent
configuration may increase like O(a*N2), where N = O(h-1) is the typical
number of grid points in each coordinate. Thus, for large a* there is addi-
tional reason for constructing an accelerated multigrid algorithm.

We demonstrate this compounded slowdown of point-by-point simula-
tions by an example. We have measured the simulation efficiency by the
integrated autocorrelation time

as determined from the normalized autocorrelation function

where Ai is the measurement of M2 produced by the simulation at the end
of the rth sweep over the entire lattice. As an example we consider the one-
dimensional variable-coupling Gaussian model in the interval [0, 1] with
the step function a(x) determined by:



Table 1. Measuring the Autocorrelation Time T for the Susceptibility in the
Monte Carlo Process

N

4
8

16
32

a* = 1

1
3

12
54

a* =
 10

5
20
75

250

a* = 100

48
208
784

a* = 1000

515
18200

We have measured T for the point-by-point Monte Carlo process for different
values of a*. Results are presented in Table I, showing that for a* > 1, the
autocorrelation time r is indeed proportional to a *N

2 , where N=1/h.

2.3. Description of the Multigrid Cycle

Consider the one-dimensional variable-coupling Gaussian model in
the interval [0, L]. The generalized discretized Hamiltonian, 3fh(u

h}, on a
grid with meshsize h = L/N, can be written as
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where w, is the variable at the gridpoint xi = ih, 0 < i < N , and a, denotes the
coupling between ui-1 and ui, 1 <i<N. For simplicity of the multigrid algo-
rithm we assume N = 2k. On the finest grid, <^, = 0 (i = 1,..., N — 1 ) , but the
more general form of the Hamiltonian is needed for the algorithm recursion.

The coarse grid with meshsize H = 2h is constructed by taking every
other grid-point. The coarse-grid function uH = (uH,..., uH,..., uH) describes
a displacement of the fine-grid function uh = (u0,..., ui,..., u N ) ; i.e., it modifies
the latter through interpolation and addition:

where uh is the fine-grid configuration at the stage of switching to the
coarse grid and Ih

H denotes the following weighted interpolation from grid
H to grid h:

(see Sec. 2.4 for the reasons behind this prescription).
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The fine-grid Hamiltonian Jf,,(uh) resulting from that interpolation can
be written as follows:

where J^,(uh) is given by (10) and ^fH(uH) is:

with

and

The coarse-grid couplings ah depend only on the fine-grid couplings ah.
The coarse field terms <j>" are calculated from the details of the fine-grid
configuration at coarsening and are fixed throughout the processing on the
coarser level. The variables of the coarse grid uH are initially set to zero,
corresponding to zero initial displacements.

Having calculated the field (j>H once for all, 2/fH can now be directly
calculated in terms of the coarse grid configuration uH; there is no need to
explicitly perform (12) in order to perform a Monte Carlo step on the coar-
ser level. One can therefore run a long Monte Carlo process with JCH

before explicitly updating uh by (11a).
The Monte Carlo process for 3fH can itself include a transition to a

still coarser grid, 2H, and so on. Thus, more precisely, the entire algorithm
is defined as a sequence of multigrid cycles for the finest level, where a cycle
for any given ("current") level is recursively defined by the following five
stages.

1. v1 Monte Carlo steps are first made for each variable ui on the
current level. v1>0 and may change from one cycle to another. In
the case of constant coupling, v) will generally also be a constant
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(v,1 = v 1 ) , and then the steps are actually performed as a sequence
of v' Monte Carlo sweeps, each including one step per gridpoint.
Similar organization in partial sweeps is suitable for variable v1.

2. If the current level is the coarsest, go to 5. Otherwise, the next
coarser level is created from the current one by determining its
couplings (14a) and field terms (14b).

3. y multigrid cycles for the coarse level are performed. The "cycle
index" y may change from one current level to another.

4. Update the current level by performing (11a).

5. Additional v2 Monte Carlo steps are finally made at each variable
ui on the current level. v2>0 and may change from one cycle to
another, and the steps may well again be ordered in (partial)
sweeps.

The Monte Carlo steps are performed by changing each variable in its
turn randomly according to its associated distribution, regarding its
neighbors as fixed.

The values of v1, v2 and y are discussed below.
Exactly the same five stages define also the multigrid cycle in a general

domain Q in any dimension. For the recursion, the d-dimensional
Hamiltonian in (5) is generalized to

where £i runs over all interior sites. Since the interpolation I2h is a linear
operator, the coarse grid Hamiltonians will again have the same form as
(15), except that the range of neighbors i for each site j (i.e., the points i
for which a2h = 0) will depend on the order of the weighted interpolation
(see Sec. 2.4). It will be explained below that the couplings at the fine grid
h determine the coefficients of the interpolation operator Ih

2h. As a result,
a2h will depend on the couplings at grid h, and the field $2h is directly
derived from the current fine grid configuration uh, ah and from < / > f , similar
to ((14a)-(14b)) in the one-dimensional case. In our standard (/-dimen-
sional example we take Q = [0, L]d, h = L/N, N = 2k, so that hd/\Q\ = N - d .

2.4. Weighted Interpolation

Why the particular form (11b) is chosen for the interpolation operator
I2h? For efficient coarse-grid sampling, all physically probable large-scale
configuration changes should have approximations of the form I2hu

2h, with
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approximately the same energy changes. For any probable set u2h of (prob-
able) displacements at the subset of points belonging to the coarse grid,
I2hu2h should give a similarly probable set of displacements at all points.
Otherwise, large-scale movements u2h would be associated with energy dif-
ferences much larger than physically probable, prohibiting their amplitudes
from approaching physically probable sizes, yielding inefficient coarse grid
sampling: all likely samples would remain in some neighborhood of the
original configuration u.

For example (see Fig. 1), if ai > ai+1 at some fine grid site i = 2I+ 1
(not belonging to the coarse grid), then ui is likely to be much closer to
ui-1 than to ui+1, hence the usual linear interpolation, if used instead of
(11b), would enforce unlikely moves, unless u1 — u1+1 is small. Thus,
under linear interpolation, likely coarse-grid moves would have small dif-
ferences, hence a small overall amplitude (see demonsrations in Sect. 2.7
below).

Given any neighboring values ui-1 and uhi+1, the most probable value
for uh is that which minimizes (10), satisfying

Hence, when the displacements in ui-1 and ui+1 are uH and uI+1,
respectively, the most likely displacement in uh is given by (11b), since this
keeps (16) unchanged.

Similar considerations can be used to derive weighted interpolation for
general higher-dimensional problems (except that, for obtaining relations
analogous to (16), the Hamiltonian should first be restricted to a local set
of points around the point i, and its minimization for any given coarse-grid
values should be done over all non-coarse points in the set, yielding a cer-
tain value at i which is a function of the coarse values). More simply,
except in certain pathological cases, one can generally use compounded
forms of (11b). For example, the weighted interpolation I2h that we have

Fig. 1. One-dimensional grid: the fine grid couplings are denoted by ai and a i + 1 , and the
bolded points are the coarse grid points.
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used for the two-dimensional problem is given in terms of the notations in
Fig. 2, by

where aij is the fine grid coupling between sites i and j. Other slightly dif-
ferent definitions for I2h could also be used.(1, 4, 11, 13, 15) (Prescription (17)
results from choosing the smallest possible local set in deriving each of the
relations analogous to (16). In pathological cases larger sets should be
used.)

Fig. 2. Two-dimensional grid: the fine grid connections are denoted by solid lines, the
bolded points are the coarse grid points.
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2.5. Analysis for Fast Sampling of Susceptibility

In case of constant-coupling Gaussian models it has been shown(7, 9, 10, 16)
that the susceptibility is dominated by contributions from large-scale fluc-
tuations (low-frequency Fourier Components). Therefore, the purpose of
the simulation is to sample quickly as many such fluctuations as possible.
An optimal multigrid algorithm is achieved by applying a cycle index y
larger than 2d and calculating the susceptibility by averaging over many
measurements on the coarsest level.

This is not always the exact situation in the variable-coupling
Gaussian models. Here, the scales that dominate the contribution to the
susceptibility are determined by the strength of the coupling a(x). An
optimal Monte Carlo process should sample more frequently regions with
smaller values of the coupling a(x).

In the constant-coupling models, the Fourier components are mutually
independent. Moreover, since the Monte Carlo process is local, a relaxa-
tion sweep on a certain level changes effectively only those Fourier com-
ponents with wavelength comparable to the meshsize of that level. These
two observations enabled us(7, 9, 10, 16) to estimate the number of Monte
Carlo sweeps needed at different levels of the multigrid cycle. In the
variable-coupling Gaussian model the Fourier analysis no longer holds.
Instead, we develop a new type of analysis that approximately decouples
the various scales. In this analysis each configuration is written as a com-
bination of local movements from all levels. These movements will not be
entirely independent (see e.g., condition (21) below), but they will suffice
for the purpose of our considerations.

The analysis and our numerical experiments (see Sec. 2.6) treat zero
boundary conditions, but the derived rules will be suitable for general
boundary conditions.

The magnetization Mh can be evaluated on any level, without going
back to finer levels (plug (11a)-(11b) into (6) to obtain an expression of
MH as an explicit linear function of u H ) . Thus, with negligible extra work,
many measurements of M2h can be made within a cycle, and their average
can be used as an estimate for the discrete susceptibility <M 2 >.

To study the number nki of relaxation steps that the algorithm needs
to perform at site i on a grid with meshsize hk = 2kh, (k = 0,1,...,
/ = log2(N/2)), in order to achieve accuracy £ in the estimation of the
susceptibility, let the number of internal sites at level k be denoted by vk,
and let uki=uk(xki) be the spin at xk (site i on level k), where ieVk =
{ j = ( j 1 , . . . , j d ) : 1 <j1,..., J d < N / 2 k — 1}. The coarsest level (k = l) includes
only one internal variable.

The interpolation from any level k to the next-finer level k — 1 is
denoted by Ihk-1 or simply Ihk-1. It is defined by (11b), where H is
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substituted with hk, h with hk-1 and the couplings ai are those of level
k-1.

We define a multiscale set of basis functions as follows. Each level k
is associated with vk S-functions {Si,k} ie Vk defined on that level by

Our set of basis functions are then defined as the fine-grid functions

Each fine-grid configuration u° can then be represented as

where the coefficients {ck}k=0....1 are uniquely determined by requiring the
total contribution to (20) of each finer level ( k — 1 ) to be orthogonal to
each basis function of the next-coarser level (k); i.e., requiring

Indeed, to see that the coefficients ck are uniquely determined, note first
that their number C^'k = Qvk) equals the number of equations in (20)-(21).
Then note that (21) implies the orthogonality relations

Hence, for a given configuration u°, the single coarsest-level coefficient c\
is determined by

Furthermore, having determined all the coefficients ck for all k > m, a set
of vm equations for the level-m coefficients { c m } j e Vm is given by

where
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from which the coefficients {c m } j e V m are uniquely determined since the
vm x vm matrix ( f t j , m , /?i,m) is stronglly diagonally dominant. Therefore, the
representation (20) is indeed unique.

This representation enables us to understand exactly the role of each
step in the multigrid cycle. A relaxation step at xk mainly changes ck, while
ck, for any j ^ i is much less affected. A relaxation sweep on level k effec-
tively samples { c k } J e y k , the stochastic coefficients of that level, while its
effect on any other c™(m=£k) is drastically reduced as m — k increases, and
completely vanishes for m<k (due to the orthogonality relations). See
details of particular cases demonstrated in Appendix A.

According to (20) the magnetization (6) can be expressed as a linear
combination of the stochastic variables {ck}k=0,..., 1, namely,

Hence

where skm = s k s m . Since we are interested in the estimation of the suscep-
tibility

to a certain accuracy £, the number nki of relaxation steps at each uk

depends on the standard deviation of each term in (26), namely on

Since < c k > = 0 for any k = 0,...,l and ieVk, and c k , c m are almost
uncorrelated for (i, k) = (j, m) (see Appendix A), it follows that

Now, we make an arbitrary partition of {ck} into R subsets: ( i , k ) and
(j, m) will be in the same subset Ir if and only if ska(ck) xs m a(c m ) . In other
words, for all (i, k) e Ir we assume skff(ck)» ar. Then, for each (i, k) e Ir we
require our algorithm to satisfy n k i >n r , where nr increases with the typical
standard deviation ar of the subgroup.

If (i, k) and (j, m) are in the same subgroup /,., then the term sk mckcm

in (26) is sampled at least nr times. For a given r, there are |Ir|2 such terms
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which are only weakly correlated (see Appendix A), therefore, using (29),
the standard deviation of

is at most

If ( i , k ) e I r and (j,m)el, and a r>a t then s k mc kcm is sampled at least nr

times. Therefore, for a given r and t with ar>a,, there are |Ir| |It| such
terms which are almost uncorrelated (see Appendix A), hence the standard
deviation of

is at most

One can combine the error estimations in (30) and (31) and get the total
error estimate in measuring the susceptibility <M 2>

We assume that the deviation in each configuration is dominated by the
largest typical standard deviation (largest <rr), i.e., the quantity ^/\Ir\ or

decreases geometrically with r. Therefore, the total error estimate in
measuring the susceptibility and the total number of computer operations
are respectively

and
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The optimal choice for nr (yielding either minimal £ for a given W or mini-
mal W for a given e) is obtained when ds/dnr + A.J 8W/dnr = 0, which by
(33) and (34), yields

where A1 and A2 are independent of r. Indeed, insertion of (35) into (33)
and (34) yields the optimal relation W x s - 2 , as long as Z) r | I r | c r 4 / 3 is
bounded independently of Nd. Since clearly a = O(a) for W=O(1), where
a is the standard deviation of the susceptibility, another way to write the
obtained relations is W=O(a 2 e - 2 ) .

It is important to emphasize that the result in (35) is independent
of |Ir|. Henceforth, changing the partitioning into subsets will not change
the result. This optimal variable sampling rule can also be written as

In order to construct an optimal multigrid algorithm with a convenient
sampling rule, it is necessary to approximate Sk*«T(Ck) for k = 0,...,l and
i e Vk. The contribution extent of ck to the magnetization, sk, can be com-
puted directly from (24), giving

According to the observations in Appendix A

where Ak = £j: <i, j> akij denotes the sum of the couplings extending from site
i on level k. Substitution of (37) and (38) into (36) yields the sampling rule
that we have used in our numerical experiments

where C is a constant independent of k and z.
This rule implies the cycle index

since, by (14a), values of Ak, on different levels (different k) are comparable.
However, the number of Monte Carlo steps actually taken at each site of



each visited level is goverened by the more precise rule (39) (see examples
in Sec. 2.6).

We conclude with a remark concerning the discretization error. The
size Nd of the finest grid that should be employed increases of course with
the decrease of £, because one needs to have a grid for which the computed
average is only distance s from its infinite-grid value. Therefore, it is
necessary to construct a discretization scheme, for the observable in ques-
tion, with the dependence N=N(e) such that N ( s ) d < O ( s - 2 ) . In other
words, one should apply a discretization scheme with an error smaller than
O(\/^/Wd), i.e., a discretization of order at least d/2. (We have used a
second-order discretization, for d= 1 and d = 2.)

2.6. Numerical Results

We have tested the multigrid algorithm, by applying the variable
sampling rule (39), for different coupling functions in one and two dimen-
sional lattices with grids of sizes up to 1024 and 10242 respectively. Our
main aim was to show that using the variable sampling rule properly the
susceptibility can be calculated in an optimal-time. The susceptibilty has
been measured over just one cycle. Within the cycle, many measurements
of the magnetization Mh are taken, in fact after_each relaxation sweep on
each level. The average of the measurements, M\, is an approximation for
(M2) (7), which is also an approximation for the_thermodynamic limit
<M2> (4). The relative accuracy is defined as er = |M 2 — <M2>|/<7, where
cr denotes the standard deviation of the susceptibility. We define the perfor-
mance index a to be the expected value of #RAN -£2r, where #RAN is the
amount of work spent in the cycle, measured by the number of times a
random number is generated. Thus, a should turn out to be bounded if
and only if the algorithm solves to relative accuracy sr in O(s-2) operations,
or in other words, the algorithm eliminates completely both the critical
slowing down and the volume factor. We measured a for different kinds
of step functions and coupling strengths. Results are presented below. In
most cases e,. is averaged over an ensemble of 104 runs; for the cases that
smaller ensembles were used, the deviation in measuring a is given in
parantheses.

Example 1. In the 1D problem on £2 = [0, 1], the couplings are
defined by the step function

Optimal Multigrid Algorithms 653
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Table II. Performance Indices a for Example 1

N

a.

I

10

1000

10000

4

2.10

2.41

2.71

0.64

8

3.22

4.36

4.08

1.71

16

3.70

5.79

5.45

2.78

32

3.97

6.65

6.21

3.56

64

4.09

6.85

6.66

3.98

128

4.25

7.57

6.93

4.45

256

3.99(0.18)

7.63(0.31)

7.35(0.31)

4.35(0.19)

512

4.03(0.18)

7.31(0.33)

6.64(0.30)

4.29(0.19)

1024

4.50(0.20)

8.07(0.35)

7.10(0.31)

4.39(0.20)

654

For large a^, the subinterval [0.5, 1] is strongly coupled, hence the con-
figuration there is almost a constant. This subinterval should therefore be
relaxed much less than the subinterval [0,0.5]. Practically, according to
the variable sampling rule, the number of relaxation sweeps over [0.5, 1]
should be I/a2/3 times their number over [0, 0.5], and each level must be
relaxed 4 times as many sweeps as the next finer level, except that the coar-
sest level (H= 1/2), where the weak couplings happen to completely disap-
pear is visited very rarely: only once per a2/3 cycles. The resulting values of
a are presented in Table II,2 for different a*.. It is clear that, independently
of the coupling strength a,,,, an optimal efficiency comparable to the con-
stant-case (a,, = 1) efficiency is obtained, i.e., a remains uniformly bounded
as TV grows.

Example 2. Again on Q = [0, 1 ], the couplings are now defined by
the step function

The number of relaxation steps over the subinterval [0.25,0.75] should by
(39) be I/a2/3 times the number elsewhere. On the coarsest level, the strong
couplings are no longer present, turning this level to be by far the most
sampled one. As before, cycle index 4 has been used. The measurements of
a are presented in Table III, demonstrating again optimal efficiency. Note
that for this example, pointwise Monte Carlo schemes (see Sec. 2.2) would
yield x= O ( a ^ N 3 ) !

2 For the constant-coupling case, uniform sampling with cycle index y = 4 is used.
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Table I I I . Performance Indices a for Example 2

N

a
*

1
10

1000
10000

4

2.10
1.35
0.95
0.94

8

3.22
2.22
1.17
1.19

16

3.70
2.70
1.56
1.56

32

3.97
3.08
1.79
1.84

64

4.09
3.13
1.98
1.96

128

4.25
3.26
2.04
2.02

256

3.99(0.18)
3.96(0.18)
2.14(0.09)
1.99(0.09)

512

4.03(0.18)
3.96(0.17)
2.06(0.09)
2.12(0.09)

1024

4.50(0.20)
4.25(0.19)
2.08(0.09)
2.11(0.09)

Example 3. The coupling function is defined by

In this example, the steps (jumps) in the coupling function coincides with
the geometry of the subintervals only for grids with meshzise H< 1/16. As
in the previous examples, cycle index 4 has been employed with suitable
variable sampling according to (39). Note that on a grid with meshsize
H= 1/8 the strong couplings still hold, but on the two coarsest grids the
strong couplings do not exist anymore. Hence, on these two grids uniform
sampling (full sweep) should be done. The measurements of a are presented
in Table IV, demonstrating optimal efficiency, independently of a*.

Table IV. Performance Indices a for Example 3

N

a*

1
100

1000

16

3.70
3.01
2.91

32

3.97
3.29
3.24

64

4.09
3.53
3.34

128

4.25
3.50
3.44

256

3.99(0.18)
3.26(0.14)
3.56(0.15)

512

4.03(0.18)
3.32(0.16)
3.56(0.16)

1024

4.50(0.20)
3.29(0.14)
3.24(0.15)

Example 4. In the 2D problem on Q = {0 <x, y < 1}, the couplings
are defined by the step function



656 Brandt and Galun

Table V. Performance Indices a for Example 4

N2

a*

1
1000

42

3.63
1.05

82 162

8.71 13.46
2.49 4.56

322 642

16.58 18.84
6.24 7.55

1282

20.38(0.41)
8.84(0.42)

2562

22.91(1.07)
12.83(2.01)

5122

20.42(0.93)
13.88(2.14)

10242

21.18(1.00)
11.53(1.45)

Here, cycle index 6 has been used, accompanied with rule (39). The results
are presented in Table V,3 demonstrating again optimal behavior (a practi-
cally bounded independently of N and a*). By contrast, the pointwise
Monte Carlo would yield a = O ( a * N 4 ) .

2.7. Two-Level Diagnostic Tests

The two-level tests enable us to check and better understand the per-
formance of the multigrid algorithm. In this kind of test we estimate the
deviation from the desired observable average (e.g., the discrete suscep-
tibility <M2> introduced by each coarsening from some fine level
(meshsize h) to the next-coarser level (meshsize 2h). Here, we will use such
an analysis to check the performance of different interpolation schemes.
The examples are such that weighted interpolation is required already on
the fine grid. For each transition from a fine-grid equilibrium configuration
to the coarse grid we have measured the discrete susceptibility after each
relaxation sweep on the coarse grid, and calculated the difference between
the average of very many (practically infinite) such measurements and the
true fine-grid discrete susceptibility <M 2 >; this difference represents the
deviation caused by the fme-to-coarse transition. Averaging this deviation
over an ensemble of many fine-grid equilibrium configurations yields the
"average coarsening deviation" (ACD). Note that if the number of passes on
the coarse grid is not sufficiently large (as in some of our experiments
below) the measured ACD may be much larger than the true one.

Example 1. The couplings are defined by the step function

for N = 4 and h = 1/4. The standard deviation is ah = 0.0497.

3 For the constant-coupling case, uniform sampling with cycle index y = 6 is used.
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Table VI presents the coarsening deviation in susceptibility, averaged
over an ensemble of 4-10 5 configurations in the case of linear interpolation
and over 4-10 3 configurations in the case of weighted interpolation.

In this example, the coarse grid includes only one internal point, thus
the statistics on that level can be computed analytically (oo passes).
Generally, in problems that require much sampling at one site in a certain
level, the statistics accumulation can be accelerated by analytical averaging
at that site.

The coarsening deviation in the case of linear interpolation has the
same order as the standard deviation a,,. In the case of weighted interpola-
tion the true ACD is smaller by a factor of about 1.6- 103 (essentially
proportional to a * ) . When the number n of passes (and effective
measurements) on the coarse grid is not sufficiently large, an additional
deviation of about ah/^/n enters the measured ACD.

We conclude that an optimal algorithm can be constructed with
weighted interpolation and not with linear interpolation.

Example 2. The couplings are defined by the step function

for N = 8 and h = 1/8. The standard deviation is ah = 0.0574.
Table VII presents the coarsening deviation in susceptibility, averaged

over ensemble of 4 • 103 configurations in the case of weighted interpolation
and over 105 configurations in the case of linear interpolation (except
for 32000 and 64000 passes where the ensemble sizes are 30000 and 2000,
respectively).

Table VI. Average Coarsening Deviation in the Susceptibility for Example 1

Number of passes
on the coarse grid

1000
2000
4000
8000

0&

ACD using
linear interpolation

0.049
0.048

0.052

ACD using
weighted interpolation

0.00158
0.00111
0.000777
0.000560
0.0000300
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In the previous example, the linear interpolation weights and the
weighted interpolation weights were totally different over the whole inter-
val, resulting in large ratio between the linear interpolation ACD and the
weighted interpolation ACD. Here, the linear interpolation coincides with
the weighted interpolation except for the weights at the fine grid points
0.375 and 0.625. Indeed, the average coarsening deviation using weighted
interpolation is smaller only by a factor of 6 compared with that of the
linear interpolation. More "jumps" in the variable-coupling function would
demonstrate much worse performance of the linear interpolation relative to
that of the weighted interpolation.

3. SUMMARY

The calculation of a thermodynamic limit of any observable to a
relative accuracy er by a usual Monte Carlo process requires O ( N d + z e - 2 )
computer operations, where sr is the error relative to the standard devia-
tion of the obervable, N is the linear dimension of the lattice needed to
approximate the thermodynamic limit to accuracy sr, d is the dimension
and z is the critical exponent.

In the variable-coupling isotropic Gaussian models the overall work
might increase as
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Table VII. Average Coarsening Deviation in the Susceptibility for Example 2

Number of passes
on the coarse grid

1000
2000
4000
8000

16000
32000
64000

ACD using
linear interpolation

0.0378
0.0298
0.0226
0.0172
0.0133
0.0109
0.0096

ACD using
weighted interpolation

0.00339
0.00266
0.00209
0.00183
0.00159
0.00151

where a* denotes the maximal ratio between values of the coupling.
Multigrid algorithms can reduce and even eliminate not only the criti-

cal slowing down factor a * N 2 but also the volume factor Nd.
By a novel method, the parameters of the multigrid algorithm such as

the cycle index y and the sampling rule can be determined as functions of
the coupling coefficients. For the optimal calculation of the susceptibility in
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the variable-coupling Gaussian model it is essential to use weighted inter-
polation and the variable sampling rule.

The optimal efficiency is obtained independently of the coupling func-
tion discontinuities, with performance as good as in the constant-coupling
case. The critical slowing down and the volume factor are completely
eliminated, and the total required computational work is just O ( s - 2 ) .

APPENDIX A: NUMERICAL EXAMPLES FOR ILLUSTRATING
THE ANALYSIS

To illustrate the details of the theoretical analysis (Sec. 2.5), some
numerical examples are provided below. We consider the one-dimensional
variable-coupling Gaussian model with three different coupling functions.
For each example we first solve the related system ((20) and (21)) and then
measure the following three properties:

(a) The typical local amplitude <(c*)2>1 / 2 for k = 0,..., l and ie Vk.

(b) The change introduced to any c° as a result of one relaxation
step on the finest grid, relative to <(c°)2>1 / 2 .

(c) The average change introduced to ckt as a result of one relaxation
sweep on the finest grid, relative to <(c f ) 2 > 1 / 2 . This average is
defined as

where m is the relaxation sweep number and M=105 is the
ensemble size (number of sweeps).

Example 1. The constant-coupling case, a(x) = 1 for x e [ 0 , 1].
The typical local amplitude: <(ck)2>1 / 2 = O(h1 / 2) .
A relaxation step at x° changes mostly c°, while c° for j^i is much

less affected: Fig. 3 presents an example of the influence of one relaxation
step at x0 on c°, showing a drastic decrease as j moves away from i.

Table VIII shows the average relative change introduced to ck as a
result of one relaxation sweep on the finest level (ensemble size is M= 105).
The fast weakening of the effect with increasing k is apparent.

Similarly; a relaxation sweep on any level m would introduce large
relative changes on that level, with the changes in c* decreasing exponen-
tially as function of k — m if k > m, and with no change at all in c* if k < m.
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Fig. 3. The change c0 relative to <(c°)2>1/2, as a result of one relaxation step at x0, with
N=16.

A corrolary of all these observations is the weak correlation between
different levels, i.e., {ck,}isvk are weakly correlated to {cm}ieVm for k^m.
Moreover in order to sample effectively all scales, a multilevel algorithm
should be introduced (see Sec. 2.5).

Example 2. The 1D variable coupling

As in the constant-coupling case, ck, represents the local amplitude of the
configuration on level k at site i, with weak correlation between local

Table VIII. Measuring the Change
Introduced to ck, Relative to <(ck)2>1 / 2 ,

As a Result of One Relaxation Sweep on
the Finest (k = 0) Level

N

4
8

16

k = 0

1.42

1.44

1.45

k=1

0.91

0.98

1.01

k = 2 k = 3

0.52

0.60 0.27
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amplitudes on the same level. While the typical local amplitude in the
weakly coupled subdomain is <(ck)2>1/2 = O(h1/2), the typical local
amplitude in the strongly coupled subdomain is <(ck)2>1/2 = O(h1/2/^/a^).
Therefore, using (36), the weakly coupled subdomain should be sampled
about a2/3 times as often as the strongly coupled subdomain.

Table IX shows the relative change in ckt as a result of one relaxation
sweep on the finest level (ensemble size M=105 for N = 4 and 8, and
M = 2.105 for N=16).

The general behavior exhibited in Table IX is very much the same as
in the constant-coefficient case (Table VIII). It might also be noted that the
variable s3-1 cl-1 turns out in this example to have the largest standard
deviation, which practically means that the site xl-1 should be the most
sampled site.

Example 3. The 1D variable coupling

Table X. Measuring the Change
Introduced to ck, Relative to <(ck)2>1 / 2 ,
As a Result of One Relaxation Sweep on

the Finest Level

N

4
8

16

k = 0 k=1

1.37 0.13
1.42 1.32
1.42 0.97

k=2       k = 3

0.16
0.90 0.11

Table IX. Measuring the Change
Introduced to ck, Relative to <(c k )2>1 / 2 ,
As a Result of One Relaxation Sweep on

the Finest Level

N

4
8

16

k = 0

1.41
1.41
1.43

k=1

1.29
0.96
1.00

k = 2

0.87

0.60

k = 3

0.53
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As in the cases mentioned above, the deviations at all scales have been
found to have weak correlations between them. The typical local
amplitudes are <(ck)2>1/2 = O(h1/2) and <(ck)2>1/2 = Wh^lJaJ in the
weak-coupled domain and in the strong-coupled domain, respectively.

In this case the Monte Carlo process suffers severe slowness. The
measurements, presented in Table X (ensemble size is M = 2 • 105), confirm
this observation. The variable sl cl has the largest standard deviation, but
the change introduced to the movement on that coarsest grid is only a
small fraction (roughly a-1/2) of the typical movement.

APPENDIX B: MODIFICATIONS TO THE ANISOTROPIC CASE

The general d-dimensional anisotropic Hamiltonian is defined in the
continuum by

where the matrix { a i j ( x ) } is positive definite at every point x. Even when
the continuum problem is isotropic, the problem emerging at some coarser
level of the multigrid algorithm may well have severe anisotropies.

A measure of the anisotropy at a point x is given by the ratio

where both the max and the min are taken over the sphere Zi=1 £2 = 1-
Experience and theory developed in multigrid solvers for anisotropic PDE
problems(2,3) indicate that the following modifications to the basic algo-
rithm are necessary under severe anisotropy (large a), and are useful
already at milder anisotropy (a > 3, say).

In case the anisotropy is consistently aligned with the discretization
grid, exhibiting uniformly strong couplings in some direction and uniformly
weak in others, for instance

and

then semi-coarsening in the strong-coupling directions ( x 1 , x2,...> xk) should
be employed. That is, the next coarser grid in the multigrid algorithm



should have twice the fine-grid meshsize only in those (strong-coupling)
directions, while in all other directions the meshsize should remain as in
the fine grid.

In more general situations, an approach similar to "algebraic multi-
grid" (AMG) can be adopted. In AMG solvers for PDE,(4, 11, 25) the next-
coarse-level variables are typically selected by the requirement that each
current-fine-level variable is "strongly connected" to at least some coarse-
level variables in its neighborhood.

ACKNOWLEDGMENTS

The research has been supported in parts by grants No. G0289-
065.07/93 from the German-Israeli Foundation for Research and Develop-
ment (GIF), No. 379/93 from the Israeli Academy of Science and Humanities
and by the Carl F. Gauss Minerva Center for Scientific Computation.

REFERENCES

1. R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr., and J. W. Painter: The diffusion equation for
strongly discontinuous coefficients, SIAM J. Sci. Stat. Comp. 2:430-454 (1981).

2. A. Brandt, Math. Comp. 31:333 (1977).
3. A. Brandt, Multigrid techniques: 1984 Guide, with applications to Fluid Dynamics

(available as GMD Studien Nr. 85, GMD-AIW, Postfach 1240, D-5205, St. Augustin 1,
Germany).

4. A. Brandt, Algebraic multigrid theory: the symmetric case, Appl. Math. Comp. 19:23-56
(1986).

5. A. Brandt, Multilevel Computations: Reviews and Recent Developments, in Preliminary
Proc. 3rd Copper Mountain conference on Multigrid Methods (April 1987). See also in
Multigrid Methods: theory applications and super-computing, S. F. McCormick, ed.
(Marcel Dekker, 1988), pp. 35-62.

6. A. Brandt, The Weizmann Institute Research in Multilevel Computation: 1988 Report, in:
Proceedings 4th Copper Mountain Conf. on Multigrid Methods, J. Mandel el al, eds. SIAM
(1989) pp. 13-53.

7. A. Brandt, Multigrid methods in lattice field computations, Nucl. Phys. B (Proc. Suppl.)
26:137-180 (1992).

8. A. Brandt and M. Galun, The anharmonic crystal model, in preparation.
9. A. Brandt and M. Galun, Optimal multigrid algorithms for the massive Gaussian model

and path integrals, J. Stat. Phys. 82:1503-1518 (1996).
10. A. Brandt, M. Galun, and D. Ron, Optimal multigrid algorithms for calculating ther-

modynamic limits, J. Stat. Phys. 74:313-348 (1994).
11. A. Brandt, S. McCormick, and J. Ruge, algebraic multigrid theory (AMG) for automatic

multigrid solutions with application to geodetic computations, 1982 Report, Institute for
computational studies, Fort Collins, CO.

12. A. Brandt, D. Ron, and D.J. Amit, Multi-level approaches to discrete-state and stochastic
problems, in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds. (Springer
Verlag, 1986), pp. 66-99.

822/88/3-4-9

Optimal Multigrid Algorithms 663



13. J. E. Dendy, Jr., J. Comp. Phys. 48:366 (1982); Appl. Math. Comp. 13:261 (1983); Appl.
Math. Comp. 19:57 (1986); Appl. Math. Comp. 25:1 (1988).

14. R. G. Edwards, J. Goodman, and A. D. Sokal, Multi-grid Monte Carlo II, Two-dimen-
sional XY model, Nucl. Phys. B 354:289 (1991).

15. R. G. Edwards, S. J. Ferreira, J. Goodman, and A. D. Sokal, Multi-grid Monte Carlo III,
Two-dimensional O(4)-symmetric non-linear a-model, Nucl. Phys. B 380:621-664 (1992).

16. M. Galun, Optimal multigrid algorithms for model problems in statistical mechanics,
M.Sc. Thesis, Weizmann Institute of Science (1992).

17. J. Goodman and A. D. Sokal, Multigrid Monte Carlo methods for lattice field theories,
Phys. Rev. Lett. 56:1015-1018 (1986).

18. M. Hasenbusch, S. Meyer, and G. Mack, Noncritical multigrid Monte Carlo: O(3) non-
linear o- model, Nucl. Phys. B (Proc. Suppl.) 20:110—113 (1991).

19. D. Kandel, E. Domany, and A. Brandt, Simulations without critical slowing down—Ising
and 3-State Potts models, Phys. Rev. 840:330 (1989).

20. D. Kandel, E. Domany, D. Ron, A. Brandt, and E.-Loh, Jr., Simulations without critical
slowing down, Phys. Rev. Leu. 60:1591 (1988).

21. G. Mack and A. Pordt, Convergent perturbation expansions for euclidean quantum field
theory, Comm. Math. Phys. 97:267 (1985); G. Mack, in Nonperturbative Quantum Field
Theory, G. t'Hooft el al. (Eds.), Plenum Press, NY, 309 (1988).

22. J. Machta, Y.S. Choi, A. Lucke, T. Schweizer, and L. V. Chayes, Invaded cluster algo-
rithm for equilibrium critical points, Phys. Rev. lett. 75:2792 (1995).

23. G. Mana, T. Mendez, A. Pelissetto, and A. D. Sokal, Dynamic critical behavior of multi-
grid Monte Carlo for two-dimensional nonlinear cr-models, to appear in Nucl. Phys. B.
(Proc. Suppl.).

24. T. Mendez and A. D. Sokal, One-dimensional O(4)-symmetric nonlinear cr-model, to
appear in Phys. Rev. D.

25. J. Ruge and K. Stiiben, Algebraic multigrid, in Multigrid methods, S. McCormick (ed.),
Frontiers in applied mathematics, SIAM 5 Philadelphia (1987).

26. R. H. Swendsen and J. S. Wang, Nonuniversal critical dynamics in Monte Carlo simula-
tions, Phys. Rev. Lett. 58:86-88 (1987).

27. U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62:361-364
(1989).

664 Brandt and Galun


