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Abstract

We present a multiscale method for motion segmentation.
Our method begins with local, ambiguous optical flow mea-
surements. It uses a process of aggregation to resolve the
ambiguities and reach reliable estimates of the motion. In
addition, as the aggregation process proceeds and larger
aggregates are identified it employs a progressively more
complex model to describe the motion. In particular, we
proceed by recovering translational motion at fine levels,
through affine transformation at intermediate levels, to 3D
motion (described by a fundamental matrix) at the coarsest
levels. Finally, the method is integrated with a segmentation
method that uses intensity cues. We further demonstrate the
utility of the method on both random dot and real motion
sequences.

1. Introduction

Segmentation of objects based on their motion is per-
ceptually striking, as is exemplified by motion sequences
containing random dots. Finding satisfactory algorithmic
solutions to this problem, however, has remained a chal-
lenge. Algorithmic approaches to motion segmentation
seem to face both the difficulties that complicate the task of
intensity-based segmentation along with the challenges that
make motion estimation hard. Issues that complicate seg-
mentation include devising an appropriate measure of sim-
ilarity and rules of clustering to correctly separate the var-
ious segments. Similarly, difficulties in motion estimation
are due to the sparseness of motion cues, particularly their
absence in uniform regions and due to the aperture prob-
lem. Furthermore, of crucial importance is the selection of
an appropriate motion model.

A number of effective algorithms have been proposed
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to address the problem of motion segmentation, many of
which produce convincing results on quite complex motion
sequences. These algorithms differ in the kind of informa-
tion they use (sparse features versus dense intensity infor-
mation) and the motion model they impose (2D parametric
versus motion in 3D). Some of these approaches also rec-
ognize the importance of combining optical flow measure-
ments with intensity information to solve the problem of
motion segmentation. Motion segmentation approaches that
use dense intensity information largely impose 2D paramet-
ric motion models (mostly translation or affine). These in-
clude layered representations [19, 21] (see also [2]; also
[1, 20] attempt to relax some of the main requirements
of layered approaches), variational methods [3, 5], graph-
cuts algorithms [6, 14], and sequential dominant motion re-
moval [12]. Handling 3D motion is usually achieved by ex-
tracting and tracking a sparse set of features. Among these
are subspace methods, which assume orthographic projec-
tion [4, 8, 11, 9] and their generalization to perspective pro-
jection [18] ([22] attempt to apply these methods directly
to intensities). Other feature-based methods deal also with
perspective projection [15, 16].

In this paper we describe a multiscale scheme that en-
ables, through the use of hierarchical bottom-up process-
ing, to overcome some of the crucial difficulties in motion
segmentation. In particular, our scheme combines motion
with intensity cues. The method determines the segments
adaptively and estimate their motion by varying the mo-
tion model according to the amount of statistics available
in each segment. We have implemented three motion mod-
els, translation, affine, and 3D rigid motion followed by
perspective projection. The method we present is a two-
frame approach developed to work with small motions. It
relies on the weighted aggregation framework [13], which
finds segments that optimize a normalized cuts measure us-
ing algebraic multigrid computation. Finally, the method is
efficient, with linear runtime complexity in the number of
pixels. We demonstrate the utility of our method through
experiments on both random dot and real image pairs.
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2. Aggregation of Motion Cues

In this section we focus our attention on motion cues
alone and defer the discussion of how we integrate them
with intensity-based segmentation to Section 3. The method
we present performs motion segmentation by applying a se-
quence of coarsening steps, each of which further clusters
the pixels in the image according to their motion, produc-
ing fewer aggregates of pixels of larger sizes. We refer to
the aggregates produced by each coarsening step as a level
of scale, with the fine levels containing the small aggregates
produced after the first few steps of the algorithm, and the
coarse levels containing the larger aggregates produced in
subsequent steps. The primary objective of these coarsening
steps is to determine which collections of pixels share a uni-
fied motion. This is achieved by simultaneously resolving
motion ambiguities and describing the motion by the appro-
priate model. This paper considers three types of motions
- translation, affine, and rigid transformation in 3D. In the
future we plan to extend this by handling 2D-homographies
and nonrigid transformations.

Every coarsening step is composed of two parts, cluster-
ing and re-estimation. For clustering we select a set of seed
elements, and then associate every element from the previ-
ous level to these seeds by soft assignment. Once the clus-
ters are determined we estimate the common motion of the
cluster. Here the parameters of the motion are determined
and ambiguities are resolved.

As this iterative coarsening procedure proceeds we grad-
ually modify the model used to describe the motion of ag-
gregates. At finer levels we seek to determine the transla-
tion of aggregates. We achieve this by applying a process
of sharpening the raw motion cues. This process allow us to
identify either the translation of the center of mass of an ag-
gregate or a 1-D constraint on this motion. Later on, as suf-
ficient translational information is accumulated, we use this
information to determine more complex motions, including
affine transformation and rigid motion in 3D. Below we de-
scribe the different components of the algorithm.

2.1. Initial Optical Flow Measurements

Measuring optical flow is complex, partly because local
information usually is insufficient to determine the motion
of a given pixel. In particular, pixels near edges are subject
to a 1-D aperture ambiguity, and pixels within uniform re-
gions are subject to a 2-D ambiguity. To represent this am-
biguity we chose to follow the method of [14] and represent
the initial optical flow measurements as a motion profile.

Let Im1 and Im2 denote the two input images. Using
homogeneous coordinates, let xi = (xi, yi, 1)T denote a
pixel in Im1. The motion profile Mi(u) is a normalized 2-
D histogram reflecting our estimate of the probability that

the optical flow at xi is given by u = (u, v, 0)T . To esti-
mate this histogram we compare a 3 × 3 window from Im1

centered at xi with similar windows in Im2 centered at off-
sets u within a bounded distance from xi. Using the SSD
(sum of squares distance) between the intensities in the two
windows we set the motion profile to be

Mi(u) =
1
Z

(
e−αSSD(Im1(xi),Im2(xi+u)) + C

)
. (1)

The constant α controls the penalty due to difference in in-
tensity; assuming brightness constancy, α should be set ac-
cording to the level of noise in the images. The constant
term C is added to ensure that no offset is assigned zero
probability (since there is always a chance that the pixel
changes its intensities after motion, e.g., due to occlusion).
Finally, Z is a normalizing factor set to ensure that the en-
tries in the histogram sum to 1. We can in general use a prior
to modulate this expression (e.g., incorporating small mo-
tion assumption). In our implementation we used a uniform
prior, resulting in the expression (1). Another issue is how
to initialize the motion profile of pixels near the boundaries
of the image. Denote by k the number of cells contained in a
profile, we assign 1/k to each cell corresponding to motion
that exceeds the boundaries of the image. The rest of the
cells are assigned proportionally to the expression (1). To
account for light changes, SSD can be replaced by a flexible
measure such as normalized correlation.

2.2. Optical Flow Disambiguation

To handle translation, we make the simplifying assump-
tion that pixels provide independent information about their
motion and use this assumption to evaluate which pixels
should cluster together. According to this independence as-
sumption, the joint probability that two pixels xi and xj

with motion profiles Mi and Mj share a common transla-
tion u is given by Mi(u)Mj(u). In reality, we may want
to cluster together neighboring pixels that share a common
motion even if this motion is non-translational (e.g., rota-
tion). To account for small deviations from translation, and
to account for noise, we first smooth the two motion pro-
files before taking their product. Denote by g(M(u)) =
G ∗ M(u), where G denotes a Gaussian function with zero
mean and a small standard deviation σ (we used σ = 0.5),
and ‘∗’ denotes convolution. Then the chance that two pix-
els share roughly the same translation is given by

g(Mi(u))g(Mj(u)). (2)

To evaluate the resemblance of the motion profiles of
two neighboring pixels we follow [14] and define a mea-
sure based on the normalized correlation between the pro-
files. Define the distance between two profiles as dprofile =
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1 − ∑
u g(Mi(u))g(Mj(u)) and the similarity as

wij = e
−βdprofile , (3)

where β is a scaling factor. At the finest level each pixel
is connected to its four immediate neighbors with wij > 0,
and every furthest pairs satisfy wij = 0.

Each coarsening step begins by selecting a subset of the
elements from the previous level (pixels in the finest level,
aggregates of pixels in higher levels) as seeds, with the con-
straint that all other elements are strongly associated with
(subsets of) these seeds (using the similarity in (3) as a mea-
sure of association). We further prescribe an association
weight pik to express the strength of association of a finer
element i to a coarser seed k:

pik =
wik∑
l wil

, (4)

where the sum runs over all seeds. The values pik are non-
zero only in a close neighborhood of each element.

Once all the association weights are determined we can
construct a common motion profile for the new aggregates.
By generalizing (2) we obtain

Mk(u) =
1
Z

∏
i

g(Mi(u))pikVi/V̄ . (5)

According to this expression the motion profile of an ag-
gregate k is given by the product of all the motion profiles
of its children, where the power weighs each term accord-
ing to the strength of association of a child to the seed and
accounts for its volume (with Vi the volume of child i and
V̄ the average volume of an aggregate in its level). Z is
the appropriate normalizing constant. With this formula the
motion profile of a pixel is distributed between all the seeds
it is associated with.

This coarsening process, which is composed of seed se-
lection, associating elements with the seeds, and computing
the new motion profiles, is repeated, creating at every sub-
sequent level fewer aggregates of larger sizes. Expressing
the motion profile of these aggregates as a product of the
profiles of their children results in a sharp decrease of the
probabilities of incompatible motions relative to that of the
correct translation. In textured regions it is often sufficient
to perform one or two coarsening steps to obtain a sharply
peaked motion profile. In contrast, motion profiles within
uniform regions usually remain ambiguous until either the
aggregation process combines them with areas that contain
features or the entire uniform region is clustered. Com-
bining this process with intensity based segmentation (Sec-
tion 3.1) ensures the clustering of both uniform regions and
texture features, and this in turn assists in obtaining mean-
ingful optical flow measurements.

During this aggregation process we examine the motion
profile of each of the aggregates in each level to determine

Figure 1. From left to right: a random dot pair containing a disc rotating
by 6 degrees and a background translating by 5 pixels and segmentation
results obtained with our method (displayed by a color overlay on the top
of the leftmost picture).
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Figure 2. Resolving optical flow ambiguity. From left to right: motion
profiles obtained at scales 0, 1, and 2.

if its profile is sharply peaked, in which case we label the
aggregate as peaked and set the optical flow for the cen-
ter of the aggregate according to the location of the peak.
If a profile is not sharply peaked we further examine it to
test whether it contains a line with elevated probability val-
ues. In that case we conclude that the aggregate is subject
to an aperture problem. We thus label the aggregate as bar-
peaked and associate a normal flow vector to the center of
the aggregate according to the parameters of this line.

To illustrate the motion disambiguation process we ran
the method on a random dot image pair containing a disc ro-
tating by 6 degrees and a background translating by 5 pixels
(Fig. 1). In Fig. 2 we show an example of the progression
of the motion profile with scale at a certain image location.
Notice the ambiguous motion profile at level 0 which is re-
solved in the next two levels up, yielding a peaked profile.

2.3. Affine Transformation

As we proceed with the aggregation process, the size of
aggregates increases, and translation ceases to accurately
reflect their motion. We therefore wish to use a more com-
plex model to describe this motion. We do so by fitting an
affine transformation for each aggregate. Unfortunately, the
motion profile of an aggregate cannot be used to determine
its affine motion since it does not contain sufficient degrees
of freedom. Instead, we accumulate constraints from the
peaked and bar-peaked sub-aggregates, and use these con-
straints to determine the affine motion.

Specifically, suppose the flow at a point xi is given by
u. We wish to fit a 3 × 3 matrix A that satisfies Axi = u
(with the last row of A containing (0, 0, 0)). There are two
weights we need to take into account. The first is the degree
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to which xi (which denotes the center of mass of some sub-
aggregate i a few levels down) belongs to the aggregate k
for which we perform the computation. Generalizing (4)
to i and k separated by any number of levels, we denote
this weight by pik. The second weight reflects our belief in
the optical flow measurement, as is expressed in the motion
profile, given by Mi(u). Incorporating these weights we
seek a matrix A that minimizes

min
A

∑
i

∑
u

pikMi(u)‖Axi − u‖2, (6)

with the summation going over all sub-aggregates i and
their motion profiles u. Taking derivatives with respect to
A we obtain1

A

(∑
i

pikxixT
i

)
=

∑
i

∑
u

pikMi(u)uxT
i . (7)

This provides a set of six equations in the six unknown com-
ponents of A, which uses moments of points up to second
order (left hand side) and bilinear moments of their mo-
tion (right hand side). We collect these moments from the
peaked and bar-peaked sub-aggregates of all finer levels us-
ing their motion profiles.

To obtain these moments we apply a process of accu-
mulation in which we use the moments computed at ev-
ery level to compute the moments of the subsequent level.
A straightforward accumulation of moments may result in
bias, as the motion profile can suffer from noise or the mo-
tion profile may still be ambiguous. We therefore apply a
selective moment aggregation in a way that only peaked or
bar-peaked sub-aggregates contribute to the moment accu-
mulation. We label an aggregate as peaked (or bar-peaked)
by heredity if at least one of its strongly-related children
is labelled peaked. In this case we compute its moments
as a weighted sum of the moments of its peaked (or bar-
peaked) children. If an aggregate is not labelled peaked (or
bar-peaked) by heredity we further examine if most of the
energy in its motion profile is concentrated around a single
location (or a line), in which case we label the aggregate as
peaked (respectively bar-peaked) and initialize its moments
using the following expression:∑

u

Mk(u)xδ1yδ2uδ3vδ4 , (8)

where (x, y) are the center of mass of the aggregate, δj ≥ 0
are integers and

∑
δj ≤ 2. Note that the moments accumu-

lated this way adaptively collect information from aggre-
gates of different scales.

The zeroth order moment indicates the number of points
contributing to the moments. Since a peaked aggregate con-
tributes two constraints and a bar-peaked contributes one

1This and subsequent derivations can be obtained using
∂yT Ax/∂A = yxT , and ∂yT AT Ax/∂A = A(yxT + xyT ).

constraint, we can use the zeroth order moment to deter-
mine if a sufficient number of points has been identified to
determine an affine transformation. Whenever we detect
aggregates for which there are no sufficient constraints to
determine an affine transformation we assign to them the
identity matrix for the linear part and translation according
to the constraints available. If no constraints are available
we consider these aggregates as stationary.

Once we describe the motion of aggregates by an affine
transformation further coarsening requires us to compare
these motions. A simple way to compare affine transforma-
tions is by directly comparing their components. However,
a significant difference in the components of a transforma-
tion may not necessarily imply a similar difference in the
effect of the transformation. To account for this we com-
pare two affine transformations by the difference between
the motion they induce on the relevant aggregates. We use
a top-down process in which we examine sub-aggregates
at two finer levels down. Denote by Ak the affine trans-
formation of aggregate k, and the center of mass of its
sub-aggregates (two levels down) by xi = (xi, yi, 1)T and
their respective association weights to k by pik. The (non-
symmetric) difference between the affine transformations
assigned to aggregates k and l, dkl, is defined as

dkl =
(∑

i pik(Akxi − Alxi)2∑
i pik

) 1
2

. (9)

Similarly, the difference in the other direction dlk is calcu-
lated. The joint affine transformation distance between the
aggregates k and l is daffine = min(dkl, dlk). From a cer-
tain level on we substitute dprofile in (3) by this measure.

An illustrative example is provided in Fig. 3. We use the
same random dot pair presented in Fig. 1. The figure shows
aggregates obtained at level 6 and the different motions as-
sociated with them. On the left we show the translation of
each aggregate, as it is determined by the motion profile.
On the right we show the rotation angle of each aggregate
as it is determined by the affine model. (For the background
aggregates this angle is nearly zero.) It can be seen that all
the aggregates composing the disc have similar rotation an-
gle. They were thus all aggregated at the coarsest level to
form a single segment (Fig. 1, right). The rotation angle es-
timated for the entire disc at this level was 6.0007 degrees.
Note that pixels at the bottom of the disc are subject to a
motion that is very similar to the motion of the background,
yet they were quite accurately segmented due to the opti-
mization criteria dictated by the normalized cut criterion.
In contrast, the left side of the disc was ruggedly segmented
because background pixels near this boundary underwent
occlusion in the second image.
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Figure 3. From translation model to affine model.

2.4. Fundamental Matrix

Video sequences are often taken with the camera mov-
ing. Generically, such a motion produces perspective dis-
tortions throughout the image, making it difficult to separate
moving objects from a stationary background. To account
for this we compute for each aggregate at the top-most lev-
els a fundamental matrix and compare the obtained matrices
in an attempt to cluster together segments describing sta-
tionary portions of the scene. Below we describe how this
fundamental matrix is computed and compared.

Using the same notation introduced in the previous sec-
tion we seek a 3 × 3 rank 2 matrix F that minimizes

min
F

∑
i

∑
u

pikMi(u)((xi + u)T Fxi)2. (10)

Taking derivatives with respect to F we obtain∑
i

∑
u

pikMi(u)((xi + u)T Fxi)(xi + u)xT
i = 0. (11)

This provides a set of nine homogeneous equations in the
components of F , which uses motion moments of points
up to fourth order (defined as in (8) with 0 ≤ δj ≤ 4).
We collect these moments from the peaked sub-aggregates
only. (The bar-peaked sub-aggregates generally do not con-
strain the fundamental matrix since the constraint line may
intersect many epipolar constraints.) We solve the equation
using the eight point algorithm using the normalization pro-
cedure proposed by Hartley [10] followed by rank reduc-
tion. Again, we use the zeroth order moment to determine
whether we accumulated sufficient equations for a solution.
Degeneracies can be handled as in [17], although this has
not yet been implemented in our method.

The calculation of the fundamental matrix is followed
by a comparison of the fundamental matrices between each
two neighboring aggregates. In this case it is not straight-
forward to apply the same comparison procedure used in
the affine case, since a fundamental matrix provides only a
line constraint on the location of each point. We therefore
chose to use the simpler method of comparing the entries of
the two matrices using an l2 norm. The resulting measure,

Motion Segmentation:

• Given two images Im1 and Im2, prepare for each pixel in Im1 a
motion profile (1).

• Assign a weight to each pair of neighboring pixels according to the
normalized correlation between their motion profiles (3).

• Coarsening iteration:

1. Clustering:

(a) Select a set of seeds such that the remaining elements
are strongly connected to this set.

(b) Define the strength of association of a fine element i to
a coarse seed k (4).

2. Re-estimation: For each seed

(a) Calculate the motion profile of the seed by multiplying
the profiles of its children (5).

(b) Examine whether the seed is peaked, by heredity or by
itself.

(c) If it is not peaked check if it is bar-peaked, by heredity
or by itself.

(d) Accumulate adaptively, moments (orders one to four)
originated by peaked seeds.

(e) Accumulate separately, moments (orders one and two)
originated by bar-peaked seeds.

(f) If there is enough statistics, calculate affine transforma-
tion by merging moments from peaked and bar-peaked
profiles.

(g) If there is enough statistics, calculate fundamental ma-
trix from peaked profiles.

3. Calculate for each neighboring seeds cross correlation dis-
tance, affine transform distance and fundamental matrix dis-
tance.

4. Modify appropriately the similarities between neighboring
seeds.

Table 1. Outline of the motion segmentation algorithm

dfundamental is then use to replace dprofile in (3). An out-
line of our motion segmentation algorithm is provided in
Table 1.

3. Using Intensity Cues

To combine motion with intensity cues we integrate our
motion segmentation algorithm with the Segmentation by
Weighted Aggregation (SWA) algorithm [13]. This algo-
rithm has been extended to also handle texture cues [7], al-
though our implementation did not make use of these cues.
Below we describe the main principles behind the SWA al-
gorithm (Section 3.1) and how we combine motion with in-
tensity cues in this framework (Section 3.2).

3.1. SWA Segmentation

The SWA algorithm is a multiscale graph partitioning
algorithm. Given an image, it constructs a graph G =
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(V, W ), with nodes in V representing image pixels and the
symmetric edge weight matrix W representing the affinities
between neighboring pixels. To evaluate segments it defines
a saliency measure as follows. Every node vi, (1 ≤ i ≤ N ,
where N = ‖V ‖) is associated with a state variable ui, and
every candidate segment S = {v1, v2, . . . , vm} ⊆ V is as-
sociated with a state u = (u1, u2, . . . , uN ) such that

ui =
{

1 if vi ∈ S
0 if vi �∈ S.

(12)

The saliency associated with S is defined by

Γ(S) =
uT Lu

1
2uT Wu

, (13)

where L is the Laplacian matrix whose elements are

lij =
{ ∑

k (k �=i) wik i = j

−wij i �= j.
(14)

This saliency measure sums the weights along the bound-
aries of S normalized by the internal weights. Segments
that yield small values of Γ(S) are considered salient. Al-
lowing arbitrary real assignments to u the minimum for Γ
is obtained by the minimal generalized eigenvector u of
Lu = λWu, with the condition that λ > 0.

The SWA algorithm finds the best partitions (0-1 assign-
ments of u) by recursively producing smaller representative
sets of seeds, such that every pixel is strongly-connected
to the set of seeds. Denote by U = (U1, U2, . . . , Un) the
coarse level state vector. We construct a sparse, N × n ma-
trix P such that u ≈ PU . P is called the inter-scale inter-
polation matrix. Using this matrix the saliency measure Γ
can be written as

Γ =
uT Lu

1
2uT Wu

≈ UT PT LPU
1
2UT PT WPU

. (15)

To calculate the right hand side of this equation we need to
compute the matrix PT WP , which is a coarse representa-
tion of the original weight matrix. This is called weighted
aggregation. Exploiting the sparseness of P , this product is
computed in linear time.

3.2. Combining Motion with Intensities

In this section we will attach the superscripts M and I
to denote measures corresponding to motion and intensity
information respectively. The multiscale partitioning pro-
cedure described in the previous section can be used for
segmentation combining motion and intensity cues in the
following way. Given a pair of images, we begin by con-
structing a 4-connected graph G = (V, W ), where every
pixel is represented by a node vi ∈ V , and every pair of

neighboring pixels are connected with an edge with weight
wij . This weight is a product of two term. A measure re-
flecting the contrast between the two pixels i and j in Im1

wI
ij = e−β̃|Ii−Ij |, (16)

where Ii and Ij denote the intensities of the two neighbor-
ing pixels, β̃ is a positive constant, and a measure wM

ij re-
flecting the difference in the motion profiles associated to
the two pixels (3).

At each coarsening step, we first determine the next
coarser graph using the weighted aggregation procedure.
This will produce a graph that is roughly equivalent to the
finer level graph, with weights inherited from the previous
level. We then modify the weights in the new graph to incor-
porate coarser measures of differences between neighboring
aggregates. Specifically, for every two aggregates we mul-
tiply these weights by the a measure of difference between
their average intensities and possibly their variance (of the
form similar to (16)), and likewise by a measure reflect-
ing the difference between their motion profiles (3), and at
higher scales the difference between their affine transforma-
tions and fundamental matrices.

4 Experiments

We implemented the combined algorithm and applied it
to a collection of image pairs. (The image pairs can be
seen in motion in the supplementary file.) We set the pa-
rameters around the following values: α = 10, β = 4,
β̃ = 7. The motion profile distance dprofile was evaluated
from the finest scale to scale 4. The affine distance daffine
was evaluated from a scale 5, and dfundamental was ap-
plied at the two topmost levels. We label a motion profile
as peaked if the volume below a 3 × 3 window around the
maximum of the profile exceeds 0.5 and as bar-peaked if the
volume around a line through the profile exceeds 0.8. Our
non-optimized implementation runs in less than 10 seconds
on an image pair with 200× 250 pixels on a Pentium 4 PC.
To demonstrate the handling of motion cues alone we first
applied the algorithm to several pairs of images containing
a moving sequence of random dots. Figure 4 shows a ran-
dom dot sequence containing a pair of translating squares
on a stationary background along with segmentation results
(displayed by a color overlay on top of the leftmost picture)
and motion vectors computed by our algorithm. In this and
other examples we extracted the motion vectors identified in
peaked aggregates at levels 4-5. The bar-peaked aggregates
are not displayed in these images.

Figure 5 contains a random dot sequence of a foreground
sphere placed in front of a three wall background. Both the
foreground and the background are moving in two separate
3D motions. The use of fundamental matrices was critical
in this case for obtaining the three walls in one piece.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 

1063-6919/05 $20.00 © 2005 IEEE 



Figure 4. From left to right: a random dot pair containing two translating squares, a difference image, segmentation results obtained with our method, and
motion vectors obtained from peaked aggregates at levels 4-5.

Figure 5. A random dot pair containing foreground sphere, and background walls, with different motions in 3D. Results obtained by applying our method
with affine transformation only, results obtained by applying a comparison of fundamental matrices at the coarsest levels, depth image (intensity proportional
to distance from camera), and motion vectors displayed on the depth image.

The rest of the figures show the results obtained with our
method on real motion pairs. Figure 6 shows a car exit-
ing to a street with some camera motion. Using intensity
alone (SWA algorithm) resulted in attaching the dark top of
the car with the background. Using also motion cues the
car is segmented in one piece (although the wheels are in-
correctly attached to the background). The figure further
shows the epipolar lines computed with our method for the
background segment. In Figure 7 the arm of the octopus is
connected in one piece despite a dark section in the middle
mainly because of continuity in motion. Similar results are
obtained in Figure 8.

5 Conclusion

We have presented an efficient multiscale algorithm for
image segmentation that combines motion with intensity
cues. The algorithm uses bottom-up processing to disam-
biguate motion measurements and determine an appropri-
ate motion model for various regions in the image. We have
demonstrated the algorithm by applying it to a variety of
random dot and real motion pairs.

Our algorithm is related to several existing algorithms.
We represent initial motion measurements in the form of
motion profiles and apply a graph algorithm to find minimal
cuts in the graph (as in [14]) using the algorithm proposed
in [13]. In addition, similar to layer approaches [19, 21, 1,
20] our algorithm is composed of a sequence of clustering
and re-estimation steps. However, unlike these methods,
our method uses coarsening steps to disambiguate motion
measurements and to adaptively select a motion model ac-
cording to the amount of statistics available. Because each

coarsening step reduces the number of clusters handled by
the algorithm, the cost is linear in the number of pixels.

In the future we plan to extend the method to handle se-
quences composed of three or more frames and expand the
repertoire of motion models by incorporating 2D homogra-
phies and nonrigid transformations. Also of importance is
to handle the “edge assignment” problem in order to deter-
mine for boundary edges to which segment their motion is
relevant. This is important particularly in uniform regions
when there exist no supporting features in addition to the
boundary edges to determine the motion of a segment. In
addition, we wish to exploit the multiscale nature of our al-
gorithm to relax the assumption of small motion. Finally,
we plan to explore learning approaches to automatically set
the parameters of this process.
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