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Abstract—We present a bottom-up aggregation approach to image segmentation. Beginning with an image, we execute a
sequence of steps in which pixels are gradually merged to produce larger and larger regions. In each step we consider pairs
of adjacent regions and provide a probability measure to assess whether or not they should be included in the same segment.
Our probabilistic formulation takes into account intensity and texture distributions in a local area around each region. It further
incorporates priors based on the geometry of the regions. Finally, posteriors based on intensity and texture cues are combined
using “a mixture of experts” formulation. This probabilistic approach is integrated into a graph coarsening scheme providing a
complete hierarchical segmentation of the image. The algorithm complexity is linear in the number of the image pixels and it
requires almost no user-tuned parameters. In addition, we provide a novel evaluation scheme for image segmentation algorithms
attempting to avoid human semantic considerations that are out of scope for segmentation algorithms. Using this novel evaluation
scheme we test our method and provide a comparison to several existing segmentation algorithms.

Index Terms—computer vision, image segmentation, cue integration, segmentation evaluation.
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1 INTRODUCTION
Image segmentation algorithms aim at partitioning an
image into regions of coherent properties as a means
for separating objects from their backgrounds. As
objects may be separable by any of a variety of cues,
be it intensity, color, texture, or boundary continuity,
many segmentation algorithms were developed and a
variety of techniques were utilized including: cluster-
ing [1], [2], Markov random fields [3], [4], variational
methods [5], [6] and level set methods [7].

A different approach that has recently gained pop-
ularity is to apply graph algorithms to segmentation.
Typically, given an image a graph is constructed in
which a node represents a pixel and weighted edge is
used to encode an ”affinity” measure between nearby
pixels. The image is then segmented by minimizing
a cost associated with partitioning the graph into
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subgraphs. In the simpler version, the cost is the
sum of the affinities across the cut [8], [9]. Other
methods normalize the cut cost either by dividing
it by the overall area or the boundary length of the
segments [10], [11] or by normalizing the cut cost
with measures derived from the affinities within the
segments [8], [12], [13], [14]. A prominent example for
the latter approach, is the normalized-cut algorithm
[15], but attaining a globally optimal solution for
the normalized-cut measure and similar measures is
known to be NP-hard even for planar graphs. While
polynomial time approximations to the normalized-
cuts are available, the computational requirement re-
mains high. In attempt to overcome this [16] uses
connections at different scales to decrease the com-
plexity of the graph. Another multiscale approach,
presented in [17], utilizes a fast multilevel solver
based on Algebraic Multigrid (AMG) to construct a
hierarchy of segmentations, where average image cues
are estimated with minimal mixing of segments statis-
tics. The average cues then influence the construction
of further scales in the hierarchy to produce a more
reliable segmentation.

Methods like [15], [17] have been designed to
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utilize and combine multiple cues. Typically in such
algorithms, each cue is handled by a separate module
whose job is to assess the coherence of nearby pixels
or regions according to that cue, and a segmentation
decision is obtained by incorporating these similarities
into a combined measure. Careful design of these
modules along with the use of appropriate optimiza-
tion methods has led to notable successes, but the
challenge of reliably segmenting objects in a variety
of natural images still lies ahead.

The utilization of multiple cues aggravates an old
problem. In many multi-cue segmentation algorithms
each module comes with its own set of parameters,
and those join an additional set of parameters in-
tended to control the relative influence of each mod-
ule. These parameters may depend non-trivially on
the particular statistics of the input image, or even the
statistics of different regions in the same image. While
existing methods may be robust to changes in some of
those parameters, segmentation results in many cases
may depend critically on the proper assignment of pa-
rameter values. The common practice is to leave those
parameters to be set by the user, but in effect most
users leave the parameters in their default values.
Allowing these parameters to automatically adapt to
an image (or even locally to image portions) can
greatly simplify the use of segmentation algorithms
and potentially allow them to consistently provide
better results. Indeed, recent algorithms attempt to
achieve parameter-free segmentation, either by adapt-
ing to a specific class of images (e.g., [18]) or, in the
case of natural images, by relying on a training set
that includes a variety of manually segmented images
(e.g., [19]). A different stream of work uses cluster
analysis to estimating a global set of parameters (e.g.,
stability criteria in [20]).

In this paper we explore a different approach which
relies primarily on local information available within
the image to be segmented. We present a probabilistic
approach to segmentation that is almost parameter
free. Beginning with an image, we execute a sequence
of steps in which pixels are gradually merged to
produce larger and larger regions. In each step we
consider pairs of adjacent regions and provide a prob-
ability measure to assess whether or not they should
be included in the same segment. We illustrate this
method by constructing modules to handle intensity

Fig. 1: The importance of adaptive, local cue integra-
tion. Left: two patches that can be distinguished by in-
tensity (the patches have uniform textures). Right: two
patches with similar texture that should be merged
despite their different intensities (due to lighting).

contrast and texture differences, and use an adap-
tively controlled “mixture of experts”-like approach
to integrate the different cues and reach unified seg-
mentation decisions. To illustrate the importance of
adaptive, local cue integration consider the example
in Figure 1, which shows two pairs of regions. The left
pair can be distinguished by intensity cues, whereas
the right pair of patches, which have similar texture,
should be merged despite their different intensities.

Our approach is designed to work with bottom-up
merge strategies for segmentation. A large number
of methods approach segmentation using bottom-up
merge strategies, beginning with the classic agglom-
erative clustering algorithm [21] to watershed [22],
[23] and region growing (including methods that use
probabilistic approaches [24], [25] to more recent
algebraic multigrid inspired aggregation [17]. Merge
algorithms generate a hierarchy of segments, allow-
ing subsequent algorithms to choose between possi-
ble segmentation hypotheses. For implementation we
adapt the coarsening strategy introduced in [17], as it
enables incorporating at every level of the hierarchy
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measurements appropriate to the scale at that level.
Another contribution of our paper is a novel seg-

mentation evaluation scheme that is suited for the
evaluation of data-driven segmentation algorithms.
Evaluating the results produced by segmentation al-
gorithms is challenging, as it is difficult to come
up with canonical test sets providing ground truth
segmentations. This is partly because manual delin-
eation of segments in everyday complex images can
be laborious and often tend to incorporate semantic
considerations which are beyond the scope of data
driven segmentation algorithms. In this paper we
propose an evaluation scheme that is based on an
image dataset which was specifically chosen, such
that the human annotations would avoid semantic
considerations. We test our parameter-free approach
on this database and compare our results to several
existing algorithms. This paper is based on [26], where
in this paper we have expanded the evaluation test
set. This results in a comprehensive segmentation
evaluations scheme that accounts for changes in both
scale and low-level cues.

2 PROBABILISTIC FRAMEWORK

We consider a bottom-up aggregation approach to
image segmentation. In this approach beginning with
an image, we execute a sequence of steps in which
pixels are gradually merged to produce larger and
larger regions. In this section we focus on one step
of such a procedure, in which a division of the image
into a set of regions R = {R1, R2, . . . , Rn} is given,
along with a set of observations, ~Hi ∈ Rd for each
region Ri (i = 1 . . . n). Our objective is to further
merge these regions to produce larger regions of
coherent properties.

To achieve this goal we consider pairs of adjacent
regions, Ri and Rj , and provide a measure to assess
whether or not they should be merged into a single
segment. We define a binary random variable sij that
assumes the values s+ij if Ri and Rj belong to the
same segment and s−ij if they do not. We then wish to
estimate the probability P (s+ij | ~Hi, ~Hj) which we will
use to determine whether or not to merge the two
regions based on their respective properties.

Since segmentation decisions may be affected by
several cues, we need a method to integrate the

different cues. Here we consider both intensity and
texture cues and integrate them using the “mixture of
experts”-like model, as follows.

P (s+ij | ~Hi, ~Hj) =∑
k

P (s+ij , ck| ~Hi, ~Hj) =∑
k

P (s+ij | ~Hi, ~Hj , ck)P (ck| ~Hi, ~Hj). (1)

This equation implies that the probability of a merge
is determined separately for each cue ck, and the term
P (ck| ~Hi, ~Hj) enables us to adjust the influence of each
cue dynamically according to the characteristics of the
regions.

To evaluate the probability of a merge for each cue
we apply Bayes’ formula:

P (s+ij | ~Hi, ~Hj , ck) =
L+
ijP (s+ij |ck)

L+
ijP (s+ij |ck) + L−ijP (s−ij |ck)

(2)

where L±ij , p( ~Hi, ~Hj |s±ij , ck) denote the likelihood
densities given s±ij respectively. These likelihoods are
determined locally according to properties of sur-
rounding regions. We further use a prior that is in-
dependent of cue, P (sij |ck) = P (sij), and determine
this prior based on the geometry of the two regions,
i.e., their relative length of common boundaries.

In the remainder of this section we elaborate on
how we model the likelihood densities, the cue arbi-
tration, and prior probabilities.

2.1 likelihood densities
Below we describe how we derive the likelihood den-
sities for each of our cues, intensity and texture. Both
likelihoods are determined from the image by local
properties of surrounding regions. Roughly speaking,
the underlying principle in our choice of likelihoods
is that in principle we consider it likely that a region
would merge with its most similar neighbor, while we
consider it unlikely that a region would merge with
all of its neighbors. We further define these likelihoods
to be symmetric and take scale considerations into
account.

2.1.1 Intensity likelihood density
For two neighboring regions Ri and Rj , denote their
average intensities by Ii ∈ ~Hi and Ij ∈ ~Hj , we model
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both likelihoods L±ij for the case of intensity in (2) as
zero mean Gaussian density functions of their average
intensity difference ∆ij = Ii − Ij , i.e.,

L±ij = p(∆ij |s±ij) = N (0, σ±ij), (3)

where the standard deviations σ±ij are given as sums
of two terms:

σ±ij = σ±local + σscale. (4)

To determine σ+
local we consider for region i its

neighbor whose average intensity is most similar (and
likewise for region j). Denote the minimal external
difference by ∆+

i = mink |∆ik|, where k denotes the
immediate neighbors of i, then

σ+
local = min(∆+

i ,∆
+
j ). (5)

To determine σ−local, we take into account for region
i, and similarly for region j, the average intensity
difference over all of its neighbors, ∆−i , i.e.,

∆−i =

∑
k τik∆ik∑
k τik

, (6)

where τik denotes the length of the common bound-
aries between Ri and each of its neighbors Rk (see
Section 3.2). Then we define

σ−local =
∆−i + ∆−j

2
. (7)

We further increase the standard deviation of each
of the likelihoods by σscale. Suppose the image con-
tains additive zero mean Gaussian noise with known
standard deviation σnoise. As we consider larger re-
gions the effect of the noise on the average intensity
of the regions shrinks. In particular, for a region Ri
containing Ωi pixels the standard deviation of the
noise added to the average intensity is approximately

σRi
noise =

σnoise√
Ωi

. (8)

Hence we choose

σscale =
σnoise

min(
√

Ωi,
√

Ωj)
. (9)

σnoise can be estimated in a number of ways ([27]),
e.g., by taking the minimal standard deviation across
random image patches. Throughout our experiments,
however, we used a constant value.

2.1.2 Texture likelihood densities

To account for texture we apply to each region Ri
a bank of edge filters and store their total absolute
responses in a histogram hi ∈ ~Hi containing ν = |h|
bins (the filters we use are specified in Section 3.2).
To measure the difference between two histograms hi
and hj we use a measure similar to the χ2 difference
test [28]:

Dij =
∑
k

(
hi(k)− hj(k)

hi(k) + hj(k)

)2

. (10)

Assuming that each response is distributed normally
hi(k) ∼ N (µk, σk) we construct two new χ2

ν variables
(ν denotes the number of degrees of freedom), which
are expressed as products of the form α+Dij and
α−Dij as follows. We use again the concept that two
regions with similar texture are more likely to be in
the same segment. Recall, that the χ2

ν distribution
receives its maximum at ν − 2. Let D+

i = minkDik

we model Lij in (2) by

L±ij = p(Dij |s±ij) = χ2(Dijα
±), (11)

where α+ = ν−2
min(D+

i ,D
+
j )

guaranties that the closest
region in terms of texture will receive the highest
likelihood. Similarly, we set α− to reflect the difference
in texture relative to the entire neighborhood. We
therefore compute the average texture difference in
the neighborhood, weighted by the length of the
common boundaries between the regions

D−i =

∑
k τikDik∑
k τik

, (12)

and set α− = ν−2
1
2 (D

−
i +D−

j )
.

2.2 Prior

We determine the prior P (s±ij) according to the ge-
ometry of the regions. Roughly speaking, a-priori
we consider neighboring regions with long common
boundaries more likely to belong to the same segment
than regions with short common boundaries. Recall
that τij denotes the length of the common boundary
of Ri and Rj . Hence, we define the prior as:

P (s+ij) =
τij

min(
∑
k τik,

∑
k τjk)

. (13)
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2.3 Cue integration

As we mentioned in the beginning of Section 2 we
integrate segmentation decisions from different cues
using a local “mixture of experts”-like model. This
model allows us to control the influence of each cue
and adapt it to the information contained in each
region. Thus, for example, when we compare two
textured regions we can discount the effect of intensity
and by this overcome brightness variations due to
lighting.

To determine the relative influence of every cue
we need to estimate P (ck| ~Hi, ~Hj). To that end we
want to evaluate for each region whether or not it
is characterized by texture. For each region Ri we
calculate a 256-bin histogram of local gradients mag-
nitudes Gi inside the region. Since, textured regions
are often characterized by significant edge responses
in different orientations and scales [29], we expect
the gradients magnitude histogram of a non-textured
region to be fairly sparse. To measure sparseness we
first normalize the histogram (

∑
kG

i
k = 1) and apply

to each region the measure [30]:

Si =
1√
n− 1

(√
n− ‖G

i‖1
‖Gi‖2

)
, (14)

where n denotes the number of bins in Gi and ‖Gi‖p
denotes the `p norm of Gi. Note that we exclude from
this calculation pixels which lie along the boundary
of a region since they may reflect boundary gradients
rather than texture gradients. Finally, we combine
these measures by

p(c1| ~Hi, ~Hj) = min(P (c1| ~Hi), P (c1| ~Hj)), (15)

with c1 denotes the intensity cue. We further model
the individual probabilities using the logistic function:

p(c1| ~Hi) =
1

(1− e−(aSi+b))
. (16)

To estimate the constant parameters a, b we used 950
random patches from the Brodatz data set [31] and
a similar number of non-textured patches selected
manually from random images as a training set. A
sample from this set is shown in Figure 2. Then, a
maximum likelihood estimation (MLE) regression was
used to estimate a and b. The values we estimated are
a = 41.9162 and b = −37.1885, these parameters were

Fig. 2: Samples from the training set used to deter-
mine the logistic function (16). Top: texture samples.
Bottom: intensity samples

used throughout our experiments.

3 ALGORITHM

Our probabilistic framework is designed to work with
any merge algorithm for segmentation. Here we use
the merge strategy suggested for the Segmentation
by Weighted Aggregation (SWA) algorithm [17], [32],
which employs a hierarchy construction procedure
inspired by Algebraic Multigrid (AMG) solutions for
differential equations [33]. The SWA algorithm begins
with a weighted graph representing image pixels, and
in a sequence of steps creates a hierarchy of smaller
(“coarse”) graphs with soft relations between nodes
at subsequent levels. The edge weights in the new
graphs are determined by inheritance from previous
levels and are modified based on regional properties.
These properties are computed recursively as the
merge process proceeds. Below we use the coarsening
strategy of the SWA algorithm and modify it to incor-
porate our probabilistic framework. In particular, we
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use as edge weights the posterior probabilities defined
in Section 2. We produce the coarser graphs using the
coarsening strategy of SWA, but replace inheritance
of weights by computing new posteriors. Overall, we
achieve a method that is as efficient as the SWA algo-
rithm, but relies on different, probabilistic measures to
determine segmentation and requires almost no user
tuned parameters.

3.1 Graph coarsening

Given an image we begin by constructing a 4-
connected graph G[0] = (V [0], E[0]), in which every
pixel is represented by a node and neighboring pixels
are connected by an edge. Using the formulation
described in Section 2, we associate a weight pij with
each edge eij ,

pij = P (s+ij | ~Hi, ~Hj), (17)

utilizing a uniform prior at this first stage.
We then execute repeatedly the following steps

in order to progressively construct smaller graphs,
G[1], G[2], ..., each contains about half the number
of nodes in the preceding graph, along with inter-
polation weights relating the elements in each two
consecutive graphs
Coarse node selection: Given a graph G[s−1] =
(V [s−1], E[s−1]) we begin the construction of G[s] by
selecting a set of seed nodes C ⊂ V [s−1], which
will constitute the subsequent level. Let us denote
the unselected nodes by F = V [s−1] − C. Then, the
selection of the seeds is guided by the principle that
each F -node should be ”strongly coupled” to nodes
in C, i.e., for each node i ∈ F we require that∑

j∈C pij∑
j∈V [s−1] pij

> ψ, (18)

where ψ is a parameter (usually, ψ = 0.2). The
construction of C is done using a sequential scan of
the nodes in V [s−1], adding to C every node that does
not satisfy (18) with respect to the nodes already in
C. The scanning order may be determined according
to a certain desired property of the regions, e.g., by
decreasing size of the nodes, influencing C to contain
larger regions.

Once C is selected we construct V [s] to include
copies of the nodes in C. To simplify notations we

assume without loss of generality that the nodes
1, 2, ..., |C| ∈ V [s−1] compose C, while the rest are in
F . This allows us to assign the same index to nodes
in V [s].
Inter-level interpolation: We determine the inter-level
interpolation weights as follows. For each node i ∈ F
we denote by Ni = {j ∈ C | pij > 0} its “coarse
neighborhood.” We define a matrix T [s−1][s] of size
|V [s−1]| × |C| by:

tij =


pij/

∑
k∈Ni

pik for i ∈ F, j ∈ Ni
1 for i ∈ C, j = i
0 otherwise.

(19)

Computing regional properties: For each coarse node
i ∈ V [s] we compute intensity and texture properties
by averaging over the properties of its descendants.
These are stored in a feature vector ~Hi

[s]
. We further

elaborate on the computation of regional properties in
Section 3.2.
Coarse graph probabilities: Finally, the edge weights
of the coarse graph are determined. Unlike the SWA,
we do not inherit those weights from the previous
level. Instead we compute new posteriors for the
nodes of the coarse graph. For every pair of neigh-
boring nodes, i, j ∈ V [s] we assign the weight

p
[s]
ij = P (s+ij | ~H

[s]
i ,

~H[s]
j ). (20)

These posteriors are determined, as is described in
Section 2, using the newly computed regional prop-
erties.

3.2 Features

In order to determine the edge weights at every
level we need to compute posterior probabilities as
in Section 2. The computation of these posteriors
uses the average intensity and histogram of filter
responses computed for every region, as well as the
length of boundaries between every two neighboring
regions. The merge strategy described above enables
us to compute these properties efficiently for every
node, by averaging the same properties computed for
its descendants. The properties we are using can be
divided into two kinds: unary features, computed for
a single region, e.g., the average intensity or histogram
of filter responses, and binary features, e.g., the length
of the common boundary between two regions. Below
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we describe how we compute these properties during
the coarsening process.

3.2.1 Unary features
Our intensity and texture features can be obtained by
summation of the corresponding feature values over
all pixels in a region. For every node k at scale s we
can compute such a feature by taking a weighted sum
of the feature values of its descendants. Specifically,
for a pixel i we denote its feature value by qi. Denote
by T [s]

ik the extent to which pixel i belongs to the region
k at scale s, T [s]

ik can be determined from the matrix
product T [s] =

∏s−1
m=0 T

[m][m+1]. We further denote by
Q̄[s] the weighted average of qi for all pixels i which
belong to region k, i.e.,

Q̄
[s]
k =

∑
i t

[s]
ik qi∑
i t

[s]
ik

. (21)

Then, Q̄[s]
k can be computed using the following re-

cursive formula:

Q̄
[s]
k =

∑
j tjkΩ

[s−1]
j Q̄

[s−1]
j∑

j tjkΩ
[s−1]
j

, (22)

where Ω
[s−1]
j denotes the size of aggregate j at scale

s−1, which is computed recursively in a similar way,
and tjk is the element jk in the matrix T [s−1][s].

We use this recursive formulation to compute the
following features:
Average intensity: Starting with the intensity value Ii
at each pixel i at scale 0, the quantity Ī [s]k provides the
average intensity in a region k at scale s.
Texture: For each pixel, we measure short Sobel-like
filter responses, following [32], in four orientations
0, π2 ,

π
4 ,

3π
4 and accumulate them recursively to obtain

a 4-bin histogram for each region at each scale. Since
filter responses at points near the boundaries of a seg-
ment may respond strongly to the boundaries, rather
than to the texture at the region we employ a top-
down cleaning process to eliminate these responses
from the histogram.

3.2.2 Binary features
To determine the prior probability P (s±ij) we need to
compute for every pair of neighboring regions the
length of their common boundaries. Beginning at the

level of pixels, we initialize the common boundaries
τij of two neighboring pixels to 1 (we use 4-connected
pixels) and 0 otherwise. Then, for every neighboring
regions k and l at scale s we compute the length of
their common boundaries using the formula:

τ
[s]
k,l =

∑
ij

τ
[s−2]
ij , (23)

where the indices i and j sum respectively over all the
maximal decedents of k and l of level s− 2; i.e. i and j
are aggregates of level s − 2 that respectively belong
to k and l with largest interpolation weights relative
to all other nodes of scale s. Again, this property can
be accumulated recursively from one level to the next.

4 EXPERIMENTS

4.1 Segmentation benchmark

Evaluating the results produced by segmentation al-
gorithms is challenging, as it is difficult to come
up with canonical test sets providing ground truth
segmentations. This is partly because manual de-
lineation of segments in everyday complex images
can be laborious. Furthermore, people often tend to
incorporate into their segmentations semantic consid-
erations which are beyond the scope of data-driven
segmentation algorithms. For this reason many ex-
isting algorithms show only few segmentation re-
sults. An important attempt to produce an extensive
evaluation database for segmentation was recently
done at Berkeley [34]. This database however has
its own limitations, as can be noticed by the differ-
ences between subjects. In many cases images are
under-segmented, and semantic considerations seem
to dominate the annotated segmentations (see Fig.
3). Another benchmark was presented in [35]. In this
benchmark segmentation is evaluated by judging the
accuracy of segmenting only the most salient object
in each image (determined by two human subjects),
although the images in this benchmark often contain
several perceptually salient objects. In addition, the
issue of fragmentation is not considered in the evalu-
ation methodology.

To evaluate our method and compare it to recent
algorithms we have compiled a database containing
200 gray level images along with ground truth seg-
mentations. The database was designed to contain a
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Fig. 3: Example of human annotations from the Berke-
ley segmentation dataset (on the left are the original
images). Note the large variations in human annota-
tions and the difference in the underline number of
segments.

variety of images with objects that differ from their
surroundings by either intensity, texture, or other low
level cues. To avoid potential ambiguities we only
selected 100 images that clearly depict one object in
the foreground and another 100 images that clearly
depict two foreground objects, often with noticeable
scale differences.

To obtain ground truth segmentation we asked
about 100 subjects to manually segment the images
into either two or three classes, depending on the
image, with each image segmented by three differ-
ent human subjects. We further declared a pixel as
foreground if it was marked as foreground by at least
two subjects. A sample from the database is shown
in Figure 4. The complete database and the human
segmentation is available at [36].

We evaluated segmentation results by assessing
their consistency with the ground truth segmentation
and by their amount of fragmentation. For consistency
we used the F-measure [37]. Denote by P and R the
precision and recall values of a particular segmenta-
tion than the F-measure is defined as

F =
2RP

P +R
. (24)

The amount of fragmentation is given simply by
the number of segments needed to cover a single

foreground object.

4.2 Evaluation

We applied our segmentation algorithm to all 200
images in the database and compared our results to
several state of the art algorithms including:

1) Segmentation by weighted aggregation
(SWA)[17]. We tested two variants, one which
uses the full range of features described
in [32] (denoted by SWA V1) and a second
variant which relies only on features similar
to the ones used by our method, i.e., intensity
contrast and filter responses (denoted by
SWA V2) (WINDOWS implementation at
www.cs.weizmann.ac.il/∼vision/SWA/).

2) Normalized cuts segmentation including inter-
vening Contours [28] (Matlab implementation at
www.cis.upenn.edu/∼jshi/).

3) Mean-Shift [38]. This method uses inten-
sity cues only (EDISON implementation at
www.caip.rutgers.edu).

4) Contour Detection and Hierarchical Image Seg-
mentation (Gpb) [39] (Matlab implementation at
www.cs.berkeley.edu/∼arbelaez/UCM.html)

For our method only a single parameter, σnoise needed
to be specified. We set this parameter to a fixed value
for all images (σnoise = 18). The other algorithms were
run with several sets of parameters. The normalized
cuts algorithm was run with the a range of parameters
around the expected number of classes. For the Mean-
Shift and SWA we tested roughly 40 different sets
of parameters. In each case we selected for the final
score for each dataset the set of parameters that gave
the best performance for that dataset (i.e. one or two
objects).

We performed two tests. In the first test we selected
in each run the segment that fits the foreground the
best, according to the F-measure score. Note that for
the two objects dataset, we selected the best segment
separately for each foreground object. The results of
the single segment coverage test for the both datasets
are given in Tables 1-2.

In this test our method achieved the highest av-
eraged F-measure score on the single object dataset
and came in second on the two object dataset. The
Gpb algorithm, which achieved the best score in the
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(a)

(b)

Fig. 4: A sample from the evaluation dataset. The images in (a) include one foreground object while those
in (b) include two foreground objects. Each color represents a different number of votes given by the human
subjects according to the following key: blue=3, green=2, and red=1.
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Fig. 5: A sample of the results obtained by applying our algorithm to images from the single object database
compared to other algorithms. From top to bottom: original images, our method, SWA, Normalized cuts,
Mean-shift, and Gpb.
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Fig. 6: A sample of the results obtained by applying our algorithm to images from the single object database
compared to other algorithms. From top to bottom: original images, our method, SWA, Normalized cuts,
Mean-shift, and Gpb.
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Fig. 7: A sample of the results obtained by applying our algorithm to images from the two objects database
compared to other algorithms. From top to bottom: original images, our method, SWA, Normalized cuts,
Mean-shift, and Gpb.
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Algorithm F-measure Score
Our Method 0.86 ± 0.01

SWA V1 0.83± 0.02
SWA V2 0.76± 0.02
N-Cuts 0.72± 0.02

MeanShift 0.57± 0.02
Gpb 0.54± 0.01

TABLE 1: Single segment coverage test results for the single object dataset.

Algorithm F-measure average F-measure larger object F-measure smaller object
Gpb 0.72± 0.02 0.70± 0.02 0.75± 0.02

Our Method 0.68± 0.05 0.70± 0.02 0.65± 0.03
SWA V1 0.66± 0.06 0.74± 0.03 0.57± 0.04
SWA V2 0.61± 0.07 0.71± 0.03 0.50± 0.04
N-Cuts 0.58± 0.06 0.66± 0.04 0.49± 0.04

MeanShift 0.61± 0.02 0.65± 0.03 0.58± 0.03

TABLE 2: Single segment coverage test results for the two objects dataset.

Algorithm Averaged F-measure Average number
Score of fragments

Our Method 0.87± 0.02 2.66± 0.30
SWA V1 0.89± 0.01 3.92± 0.35
SWA V2 0.86± 0.01 3.71± 0.33
N-Cuts 0.84± 0.01 3.12± 0.17

Gpb 0.88± 0.02 8.20± 0.68
MeanShift 0.88± 0.01 12.08± 0.96

TABLE 3: Fragmented coverage test results for the single object dataset.

two object dataset performed significantly worse on
the single object dataset due to over-fragmentation.
The next best score is achieved by the SWA algorithm
utilizing its full set of features. Note that the perfor-
mance of the mean shift algorithm suffers since this
implementation does not handle texture.

In the second test, we permitted a few segments to
cover the foreground by combining segments whose
area overlaps considerably with the foreground object.
Then for each union of fragments, we measured the
F -measure score and the number of segments com-
prising it. The results of the fragmentation test for the
both datasets are given in Tables 3-4.

In this test the averaged F -measure of the different
algorithms is fairly similar. Yet, our method achieved
considerably less fragmentation compared to the other

methods, for both databases. A sample of results
of applying our algorithm to images from the two
databases is shown in Figures 5-7

In addition to this evaluation we have also evalu-
ated our method on the Berkeley Image Segmentation
Database [34]. Our algorithm (run with the same pa-
rameters as in the previous experiments) achieved an
F-score of 0.52 on region covering test and 0.55 on the
segmentation boundary test. These performances are
comparable to the results achieved by other leading
methods [32], [28] (region cover scores of 0.53-0.58
and boundary score of 0.59-0.66), but inferior to those
of [39] (respectively scores 0.65 and 0.74). A sample
of results obtained for the Berkeley database [34] is
shown in Figure 9.
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Algorithm Averaged F-measure Average number
Score of fragments

Our Method 0.85± 0.03 1.67± 0.25
SWA V2 0.85± 0.03 2.27± 0.46
N-Cuts 0.84± 0.04 2.64± 0.34

Gpb 0.84± 0.01 2.95± 0.26
SWA V1 0.88± 0.04 3.13± 0.75

MeanShift 0.78± 0.05 3.65± 0.75

Algorithm Larger segment Smaller segment
Average Average Average Average

F-measure fragmentation F-measure fragmentation
Our Method 0.87± 0.01 2.00± 0.16 0.84± 0.02 1.33± 0.09

SWA V2 0.88± 0.02 2.76± 0.30 0.82± 0.02 1.77± 0.16
Gpb 0.87± 0.02 3.60± 0.30 0.81± 0.02 2.30± 0.26

SWA V1 0.91± 0.01 3.88± 0.46 0.84± 0.02 2.37± 0.29
N-Cuts 0.88± 0.02 3.34± 0.20 0.80± 0.03 1.93± 0.14

MeanShift 0.85± 0.02 4.49± 0.42 0.71± 0.03 2.81± 0.33

TABLE 4: Fragmented coverage test results for the two objects dataset. The tables show the average F-measure
over both objects (top) and the results according to object size (bottom).

5 SUMMARY

We have presented an approach to image segmenta-
tion that is almost parameter-free. Our approach uses
a bottom-up aggregation procedure in which regions
are merged based on probabilistic considerations. The
framework utilizes adaptive parametric distributions
whose parameters are estimated locally using image
information. Segmentation relies on an integration of
intensity and texture cues, with priors determined by
the geometry of the regions. The method is modular,
and can readily be extended to handle additional cues.
We further applied the method to a large database
with manually segmented images and compared its
performance to several recent algorithms.
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