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a b s t r a c t

Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most
popular technique for human motion capture uses markers placed on the skin which are tracked by a
dedicated system. However, this technique may be inadequate for tracking animal movements, espe-
cially when it is impossible to attach markers to the animal’s body either because of its size or shape
or because of the environment in which the animal performs its movements. Attaching markers to an
animal’s body may also alter its behavior. Here we present a nearly automatic markerless motion cap-
ture system that overcomes these problems and successfully tracks octopus arm movements in 3D space.
The system is based on three successive tracking and processing stages. The first stage uses a recently
presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two
calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal
representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm
movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction
are especially difficult problems in the case of octopus arm movements because of the deformable, non-
rigid structure of the octopus arm and the underwater environment in which it moves. Our successful
results suggest that the motion-tracking system presented here may be used for tracking other elongated
objects.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Various research domains require tracking objects and move-
ments in space, e.g., in the analysis of motor control strategies
(Borghese et al., 1996; Cutting et al., 1978), analysis of movement
disorders (Legrand et al., 1998), imitation learning in robotics (Ilg
et al., 2003), computer graphics (Ilg and Giese, 2002), and in vision
applications, such as surveillance (Stauffer et al., 2000), driver assis-
tance systems (Avidan, 2001) and human–computer interactions
(Bobick et al., 2000). These studies use a wide range of motion-
tracking techniques.
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1.1. Tracking techniques

The most common automated technique for capturing human
movements is based on a computerized system which tracks in
real-time a set of markers that are attached at different points on
the skin. This technique derives from the passive tracking of light
points attached to the body (Johansson, 1973), which has evolved
into a general point-light based technique for capturing biological
motion (Thornton, 2006). This method generally provides efficient
and accurate tracking of objects moving in 3D space. However,
it usually involves expensive equipment and may be inadequate
for some objects or environments. In particular, this method is
inadequate for tracking movements of animals which resist hav-
ing markers attached to their body or behave unnaturally with the
markers attached.

Also available are markerless motion capture techniques which
receive video sequences as input. Kehl and Van Gool (2006) have
presented a model-based approach, which integrates multiple
image cues such as edges, color information and volumetric recon-
struction to fit an articulated model of the human body. Mamania et
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al. (2004) developed a method for determining the 3D spatial loca-
tions of joints of a human body. Domain specific knowledge tracks
major joints from a monocular video sequence, then various phys-
ical and motion constraints regarding the human body are used to
construct a set of feasible 3D poses. Another method uses visual
hull reconstruction and an a priori model of the subject (Corazza et
al., 2006). The visual hull of an object is the locally convex approx-
imation of the volume occupied by an object and is constructed by
the projection of the object’s silhouette from each of the camera
planes back to the 3D volume. Wagg and Nixon (2004) developed a
system for the analysis of walking human subjects in video data by
extending the greedy snake algorithm (Williams and Shah, 1992) to
include temporal constraints and occlusion modeling. This enabled
detection of the deformable contour of humans even in cluttered
environments. Chu et al. (2003) have achieved model-free marker-
less motion capture of human movements by extracting skeleton
curves for human volumes captured from multiple calibrated cam-
eras, then extracting human kinematics by focusing on skeleton
point features.

These methods aim at capturing human motion using either a
model-based or feature points approach to the problem of tracking
joints and are based on the articulated rigid structure of the model
of the human body. An exception is the analysis of video sequences
based on the contours (the boundary curve) of the moving object.
However, then only the object contour in a 2D sequence is detected,
and the positions of key elements in 3D space are not provided. Fry
et al. (2000) described a unique method to track free-flying insects
in 3D space which has led to successful tracking of the behavior
of flies and bees. Their approach tackles the challenge of acquiring
data from small and fast-moving animals, such as insects in flight.
However, the problems with our setting are of a different nature. As
far as we know, this is the first model-free markerless motion cap-
ture approach that can automatically track octopus arm movements
in 3D space.

Various computer vision techniques have also been used in dif-
ferent tracking problems. Avidan (2005) has considered tracking as
a binary classification problem, in which trained classifiers label
new pixels as belonging to an object or to the background. Wang
et al. (2004) detected movement by treating video as a space-time
(3D) volume of image data and using a mean shift technique to seg-
ment the data into contiguous volumes. Boiman and Irani (2005)
have addressed the problem of detecting irregularities in visual data
(e.g. detecting suspicious behavior in video sequences) by using
a probabilistic graphical model that identifies irregular elements
unlikely to be composed of chunks of data extracted from previous
visual examples. Curio and Giese (2005) have combined model-
based and view-based tracking of articulated figures to track human
body postures in video records. However, these methods rely on
either training examples or model-based information and gener-
ally aim at solving particular problems. Moreover, they all process
the data as projected on a camera plane and ignore the original 3D
information.

Generally, it seems that a method for motion capture must con-
sider some aspects in advance, e.g. are we interested in a movement
on a plane or in space? Are we interested just in the general position
of the moving object or also in its shape? Can we model the moving
object? Can we access the movement in real-time? What kind of
equipment can best be used with the object and its environment?
Such questions and the difficulties they raise were very relevant for
our development of an automatic tracking system for octopus arm
movements.

1.2. Octopus movement

Our group is conducting a large-scale research project inves-
tigating octopus motor control, focusing on octopus arm actions

and investigating kinematic, biomechanical and neural aspects
of movement. The octopus uses its arms for various tasks such
as locomotion, food gathering, hunting and sophisticated object
manipulation (Wells and Wells, 1957; Fiorito et al., 1990; Mather,
1998; Sinn et al., 2001). The efficient nature of the movements
is mainly due to the flexible structure of the octopus arm which
does not contain any rigid elements. Structural support and force
transmission are achieved through the arm’s musculature – the
biomechanical principles governing octopus arm movements differ
from those in arms with a rigid skeleton.

The analysis of motion of behaving octopuses by our group, par-
ticularly reaching movements (Gutfreund et al., 1996, 1998; Sumbre
et al., 2001; Yekutieli et al., 2005a,b) and fetching movements
(Sumbre et al., 2001, 2005, 2006), has already led to significant
insights. For example, the bend point which is propagated along the
arm during reaching movements was found to follow an invariant
velocity profile, and the fetching movement was generalized using
a vertebrate-like strategy in which the octopus arm is reconfig-
ured into a stiffened quasi articulated structure. These movements
were studied by analyzing the kinematics of specific, meaningful
points along the arm which were found to be quite stereotypical.
Electromyographic recordings and detailed biomechanical simula-
tions assisted in revealing common principles which reduce the
complexity associated with the motor control of these movements.
However, kinematic description of specific points along the arm
is insufficient for analyzing octopus arm movements in their full
complexity. Our interest in general, as yet unclassified, movements
require the analysis of the shape of an entire arm as it moves in 3D
space.

Capturing the movements of the entire octopus arm raises dif-
ficult problems, mainly because of the deformable nature of the
flexible arm which lacks support of rigid structures. Other difficul-
ties in detecting octopus arm movements arise from the cluttered
nature of the environment in which the octopus moves and reflec-
tions from the water or the glass when the octopus swims in
an aquarium. Techniques using markers are generally inadequate,
since octopuses behave unnaturally while trying to remove objects
attached to their skin. Yekutieli et al. (2007) have recently pre-
sented a semi-automatic system capable of achieving accurate 3D
description of a whole octopus arm in motion. As one of its first
stages, this system requires manual digitization of the contours of
the moving arm, a tiresome and time-consuming process, which
becomes a bottleneck when a large number of movements are to be
processed.

1.3. Objectives

The aim of the research presented here was to automate the
system presented by Yekutieli et al. (2007) by replacing the time-
consuming task of manual tracking with a movement segmentation
algorithm (Akselrod-Ballin et al., 2006; Galun et al., 2003) and a
smooth skeletal representation (Gorelick et al., 2004). We believe
that such a system, combined with advanced electrophysiologi-
cal and modeling techniques, will make a major contribution to
the research on movement control of muscular hydrostats and
can be used specifically as an efficient tool for assembling the
large amount of data required for the study of octopus motor con-
trol. Moreover, the automated system described below presents a
novel markerless motion capture technique that can capture move-
ments of other elongated objects, e.g. the human arm and the
elephant trunk. Our system is not considered model-based, since
the majority of the techniques we use neither depend on nor receive
any preliminary information about the moving object. The spe-
cific module which assumes an elongated characteristics of the
moving object can be adapted to capture other movements in 3D
space.
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Fig. 1. Tracking motion in space. A moving object is recorded by two calibrated
cameras, and each video record is processed separately by an application which
tracks the motion as projected on the camera plane. A 3D reconstruction application
then generates a spatio-temporal profile describing the motion in space as a function
of time.

2. System framework

Our automatic motion capture system for recording and
analyzing octopus behavior integrates segmentation, skeletal rep-
resentation and 3D reconstruction methods as described below
(Fig. 1). The input to the system is a pair of video sequences recorded
by two video cameras in stereo-configuration. It is necessary to
calibrate the cameras (see Section 3.3) to later reconstruct the 3D
movement.

The system uses the following three main steps. First, 3D
image segmentation is applied separately to each video sequence,
resulting in a pair of sequences in which the segmented arm is
represented by silhouettes (see Section 3.1). Using a 3D segmen-
tation algorithm allows to analyze efficiently the whole video
sequence simultaneously and not each frame separately and leads
to better results. This is done by considering the length and width
of the frames in the sequence as the first two dimensions and
time, i.e., the duration of the video sequence as the third dimen-
sion. Then, skeletal representation is extracted for each silhouette
of the arm, resulting in a pair of sequences in which the vir-
tual backbone of the arm is prescribed by 2D curves (see Section
3.2). Finally, each pair of 2D curves that describes the arm con-
figuration as seen by the two cameras is used to reconstruct a
3D curve, resulting in a single spatio-temporal sequence which
describes the configuration of the arm in space as a function of
time (see Section 3.3). Although we aim at a fully automated track-
ing system, two different user actions are involved in the detection
process (see Section 4). However, they are applied only once dur-
ing the analysis of each video sequence, independently of its
length.

Fig. 2. A pyramidal structure represents the segmentation process in which similar
parts are aggregated iteratively to form meaningful segments. See text for explana-
tion.

3. Methods

3.1. 3D image segmentation

Here we utilize a recently presented segmentation algorithm
SWA (Segmentation by Weighted Aggregation) that is capable of
extracting meaningful regions of images (Sharon et al., 2001; Galun
et al., 2003). The segmentation process is essentially a bottom-up
aggregation framework illustrated intuitively as a pyramid struc-
ture with a dynamic number of layers for each frame in the sequence
(Fig. 2). The process starts with the bottom layer that consists of
the pixels of the frame and adaptively aggregates similar pixels.
At first, pixels with similar intensity are merged. Then, features
such as texture and shape are adaptively accumulated, affecting the
aggregation process. As a result, regions with similar characteristics
are aggregated into meaningful segments at the higher levels. This
framework allows viewing results at very different scales of resolu-
tion (from fine to coarse), each corresponding to a different layer in
the bottom-up aggregation pyramid. We now give a mathematical
definition of the algorithm.

Given a (3D) video sequence, a 6-connected graph G = (V,W) is
constructed as follows. Each voxel i is represented by a graph node
i, so V = {1, 2,. . ., N} where N is the number of voxels. A weight is
associated with each pair of neighboring voxels i and j. The weight
wij reflects the contrast between the two neighboring voxels i and j

wij = e−˛
∣∣Ii−Ij

∣∣
, (1)

where Ii and Ij denote the intensities of the two neighboring voxels,
and ˛ is a positive constant. We define the saliency of a segment by
applying a normalized-cut-like measure as follows. Every segment
S ⊆ V is associated with a state vector u = (u1, u2,. . ., uN), repre-
senting the assignments of voxels to a segment S, i.e., ui = 1 if i ∈ S,
otherwise ui = 0. The saliency � associated with S is defined by

� (S) = uT Lu

0.5uT Wu
, (2)

which sums the weights along the boundaries of S divided by the
internal weights. Segments which yield small values of � (S) are
considered salient. The matrix W includes the weights wij, and L is
the Laplacian matrix of G.
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Our objective is to find those partitions which are characterized
by small values of � . To find the minimal cuts in the graph we
construct a coarse version of it. This coarse version is constructed
so that we can use salient segments in the coarse graph to predict
salient segments in the fine graph using only local calculations. This
coarsening process is recursively repeated, constructing a full pyra-
mid of segments (Fig. 2). Each node at a certain scale represents an
aggregate of voxels. Each segment S, which is a salient aggregate (i.e.,
� (S) is low), emerges as a single node at a certain scale.

The coarsening procedure proceeds recursively as follows. Start-
ing from the given graph G[0] = G, we create a sequence of graphs
G[1],. . ., G[k] of decreasing size (Fig. 2). Similarly to the classical alge-
braic multigrid (AMG) setting (Brandt et al., 1982), the construction
of a coarse graph from a fine one is divided into three stages: first a
subset of the fine nodes is chosen to serve as the seeds of the aggre-
gates (the latter being the nodes of the coarse graph). Then, the rules
for interpolation are determined, establishing the fraction of each
non-seed node belonging to each aggregate. Finally, the weights of
the edges between the coarse nodes are calculated.

This segmentation algorithm can segment an object in motion
by processing the frames of a video sequence simultaneously as
one 3D data structure (Galun et al., 2005). It has also yielded very
good results for the segmentation of 3D fMRI images which capture
activity in the human brain (Akselrod-Ballin et al., 2006). Analyzing
the whole sequence as one piece of data allows definition of seg-
ments not only according to their static properties, but also allows
us to take advantage of the captured dynamic behavior. We have
therefore chosen to process a video sequence of 2D frames simul-
taneously as a single 3D data structure (where the third dimension
is of time and not of space). We found that this approach yields
much better segmentation results than separately processing each
individual frame.

3.2. Skeletal representation

Since the octopus arm shows no well-defined landmarks or fea-
tures, a skeletal representation can be naturally used to model the
octopus arm by curves which prescribe its virtual backbone. In
Yekutieli et al. (2007) the backbone of the arm was found by a ‘grass
fire’ algorithm in which two waves propagated from the two sides of
the arm contour inwards and their loci of collision marked the mid-
dle line of the arm. The input to this method was the arm contour
divided into two separate curves, the dorsal and the ventral curves.
As we replaced the manual tracking by an automatic segmentation
method, whose output is a silhouette of the arm and not the con-
tour of the two sides of the arm, we had to develop a different way
of extracting the skeletal representation from the silhouettes.

3.2.1. Extracting skeletal points
A common technique for extracting the skeleton of an object is

the distance transform, which assigns to any point within a silhou-
ette a value reflecting its minimal distance to the boundary contour.
However, this technique may result in unsmooth skeletons that are
inadequate in our case. We use an alternative method based on the
solution of the Poisson equation of a given silhouette (Gorelick et
al., 2004). This method comprises the following three steps:

To each internal point in a given silhouette S, we assign a value
which reflects the mean time U required for a random walk from the
point to hit the boundaries. This measure is computed by solving a
Poisson equation of the form:

�U(x, y) = −1, (3)

with (x,y) ∈ S, where the Laplacian of U is defined as �U = Uxx + Uyy,
subject to the boundary condition U(x,y) = 0 at the bounding
contour ∂S. This gives smooth level sets which can be seen as topo-
graphic lines of the silhouette (Fig. 6).

The skeletal structure is derived using U to calculate the curva-
ture of the level set passing trough each internal point:

∇� = −∇
(

∇U∥∥∇U
∥∥
)

, (4)

such that high values � mark locations where level sets are signif-
icantly curved.

To further emphasize the skeleton a scale invariant version of �
is defined as:

�̃ = − U�∥∥∇U
∥∥ , (5)

such that the small values of U near the boundaries attenuate the
skeletal measure and the small values of ||�U|| near ridge locations
emphasize the skeletal measure. The skeletal points are chosen as
those whose value exceeds a predefined threshold (Fig. 7 presents
the skeleton extracted for the silhouettes presented in Fig. 5).

3.2.2. Constructing skeletal curves
Skeletal curves prescribing the arm virtual backbone are con-

structed by ordering relevant skeletal points from the base to the
tip of the arm, such that noisy irrelevant points are filtered. We
have developed an algorithm which constructs a skeletal curve by
aggregating skeletal points that form a continuous smooth curve.
The aggregation of points starts from two adjacent points located in
the middle arm area, and is done in two directions: towards the base
of the arm and towards the tip of the arm. The algorithm consists
of the following steps:

We first preprocess the skeletal points in each frame:

1. Shrinking any group of adjacent points to a minimally connected
stroke.

2. Cutting short noisy branches that split from junction points.
3. Initializing the aggregation process with two adjacent points.

We then aggregate skeletal points in two opposing directions
(base/tip), starting from the two initialization points, by iteratively
applying the following:

Given a point c as the current point, we find a set P of candidate
(nearby) points, from which the next point will be chosen:

P = {p :
∣∣�p − �c

∣∣< thdist} (6)

where thdist is a predefined distance threshold. We use two mea-
sures to choose the best point from the set P: the angle �past from
point c to the preceding point (irrelevant for the initialization point)
and a weighted average of angles between point c and the candi-
date points pi ∈ P. Then we calculate an expected angle �̃ from point
c to the proceeding point as the average of the two measures:

�̃ = 0.5�past + 0.5

∑n
i=1d−1

i′′ �i∑n
i=1d−1

i′′
, (7)

where di is the distance from point c to point pi, used as the weight
of the angle �i between them. Finally, a dissimilarity score si is
assigned to each point pi by considering both its distance to point c
(di), and the difference between the expected angle (�̃) to the actual
angle between the points (�i):

si = wddi + w�

∣∣�i − �̃
∣∣ (8)

where wd and w� are weights (we use the standard deviations of
the values {di}i and {�i}i as weights, such that the two terms are
normalized to the same scale). The point with the minimal score is
chosen as the point proceeding point c. The iterative process stops
when there is no further available point (P = 	), and the aggregated
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Fig. 3. Three representative sample frames of the octopus reaching movement. The frames correspond to the beginning (t = 50 ms), the middle (t = 500 ms) and the end
(t = 950 ms) of the movement as recorded by one of two calibrated cameras. The sequence is shown after conversion to grayscales for processing (original color can be seen
in Fig. 9).

points are ordered from the base to the tip of the arm forming the
arm’s skeleton.

3.3. 3D reconstruction

A single 3D curve is reconstructed from the pair of 2D curves,
which are each the projection of the 3D curve on a different
plane. This reconstruction is achieved by a recently developed 3D
reconstruction application that demonstrated successful results

(Yekutieli et al., 2007). The reconstruction process is based on
knowledge of the projection properties for each camera, deter-
mined in advance by camera calibration. A known calibration object
is recorded by each of the cameras, such that enough points are
clearly visible and detectable. Marking the position of correspond-
ing points on each of the views allows estimation of the cameras’
parameters, such that the points fit the known 3D geometry of the
object. The result is a projection matrix M for each of the two cam-
eras, which relates any 3D point q to its projection p on the camera

Fig. 4. 3D segmentation result for the reaching movement. The result is presented in three consecutive resolution scales, from coarser (upper) to finer (lower) segmentation.
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Fig. 5. The binary sequence. The segmented arm is represented by a silhouette which consists of the appropriate parts detected by the segmentation algorithm.

Fig. 6. The solution of a Poisson equation for the binary sequence is shown as a topographic map of the input silhouette which consists of smooth level sets. The value of
each point corresponds to the mean distance from that point to the shape boundaries. These values are further processed to extract points that lie on skeletal elements of the
shape.

plane expressed by p = Mq. Knowing the projection matrices and a
pair of corresponding 2D points, one for each view, we can calculate
the 3D origin of these points using the Direct Linear Transform (DLT)
procedure (Abdel-Aziz and Karara, 1971; Gutfreund et al., 1996).

Each pair of skeletons is reconstructed in 3D by matching pairs
of projected points that originated from the same 3D point and then
reconstructing this 3D point using the DLT procedure. Correspond-
ing points are matched using the epipolar geometry relation of the
two camera planes pT

1Fp2 = 0, where F is a fundamental matrix
(here derived from the projection matrices), and p1 and p2 are a
pair of the corresponding points. This relation states that for any
point p1 in one view, there is a line l2 in the other view on which the
matching point p2 should lie, i.e., lT2p2 = 0, and this line is expressed
as lT2 = pT

1F . Therefore, the epipolar relation reduces the search for
each matching pair, from a 2D search (on the whole plane) to a 1D
search on that line. Here we narrow the search further by using

the correct intersection between the epipolar line and the skeletal
curve as the desired match. The output of this reconstruction stage
is a 3D middle line curve of the octopus arm. Further details and
technical descriptions of these procedures are given in Yekutieli et
al. (2007).

4. Results

Octopus arm movements were video recorded while an octopus
was kept in a large glass water tank. For details on animals, exper-
imental setup and recording sessions see Gutfreund et al. (1996)
and Yekutieli et al. (2007). Here we present the results of apply-
ing each of the steps described above to the video recordings of
reaching movement by the octopus arm. The two input sequences
are each of 1 s duration and contain 20 RGB frames, in which the
octopus extends its arm toward a target. For simplicity, we present

Fig. 7. A skeletal representation of the movement as projected on a camera plane. Skeletal points found by solving the Poisson equation of the segmented silhouettes are
filtered and ordered, forming a continuous and relatively smooth curve for each arm configuration. These 2D curves prescribe the virtual backbone of the octopus arm during
the movement.
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Fig. 8. The figure shows a manual procedure required by the user (once for each
video sequence). In order to construct the curves prescribing the virtual backbone
of the arm, the user is asked to use polygons to mark two informative domains
corresponding to the areas in which the distal part (left) and the proximal part
(right) of the arm moves. The algorithm uses these domains to sort skeletal points
into distal and proximal groups.

the results of three time instances corresponding to the beginning
(t = 50 ms), middle (t = 500 ms) and end (t = 950 ms) of the move-
ment; the segmentation and skeletal representation results are
presented for only one sequence.

The beginning, middle and end of the reaching movement
sequence are shown in grayscale in Fig. 3. Conversion to grayscale
allows easy improvement of poor quality video sequences using
Matlab routines. However, the main reason for the conversion is
that the segmentation algorithm cannot process the three RGB
channels simultaneously.

Segmentation results for these frames are presented in Fig. 4.
The three different resolution scales in the figure are taken from
the higher part of the pyramid structure describing the process by
which meaningful segments emerge through aggregating smaller
segments with the same structural characteristic (see Section 3.1).

Fig. 10. 3D reconstruction of the octopus arm backbone. The presented 3D curves
correspond to those in Fig. 9. Each was reconstructed from a pair of 2D curves
which prescribe the same arm configuration from different angles. This final result
is essentially a spatio-temporal profile.

The figure shows that segments at the coarser level (higher row)
are further segmented in the finer resolution scales (lower rows).
The resolution scale in which the octopus arm (or any other object)
is optimally segmented is not fixed and may take different val-
ues in different sequences. Therefore, at this point in the process,
the user is asked to mark the optimal scale for those segments
which are entirely within the movement. Generally, the optimal
scale is such that the movement comprises as few segments as
possible (but not necessarily a single segment). This user action
must be done only once per video sequence and not for each
frame.

Fig. 9. Tracking results for an octopus arm reaching movement as recorded by two calibrated video cameras (a) and (b). The tracking process was applied separately for each
of the two video sequences. The detected curves are processed further to reconstruct the final description of the arm movement in 3D space (see Fig. 10).
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Fig. 11. Detection results for octopus arm movements not yet classified into types. The octopus performed these arm movements before moving its body (a), during a
movement of the body (b) or while stationary (c–d). The movements were recorded in a setting in which unnecessary objects were removed and phosphorescent yellow
stones in the background gave a relatively good contrast to the texture of the octopus skin.
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Fig. 11. (Continued ).

Segmentation results in the generation of a sequence of sil-
houettes, with each silhouette standing for the octopus arm in
the corresponding frame. This process is straightforward and is
achieved simply by generating a binary sequence of the same size
as the video sequence which is initialized by 0’s, and assigning 1’s
for the segments that have been just marked by the user (Fig. 5).

In the next step we extract skeletal representation for each sil-
houette (see Section 3.2) by evaluating the average distance of
internal points to the silhouette boundary (Fig. 6) and extracting
skeletal point. These points are then filtered and ordered from the
base to the tip of the octopus arm. The process results in a single
continuous and smooth curve which prescribes the skeleton of the
silhouette (Fig. 7).

The skeletal points are ordered by an aggregation process (see
Section 3.2) which must be initialized by two adjacent points in
each frame. This requires a user intervention. A few frames from
the video sequence of the movement are presented embedded on
a single frame and the user must mark with a polygon the area in
which the distal part of the arm moves (Fig. 8). Then, two adjacent
points for each frame of skeletal points are initialized, such that
one point lies inside the polygon and the second one lies outside
the polygon. As in the previous user action, this marking must be
carried out only once per video sequence and not for each frame.

We have no quantitative measure to assess the quality of our
results and can only suggest evaluating the results qualitatively
by visual inspection. We consider a result good when the skele-
ton smoothly prescribes the virtual backbone of the octopus arm,
starting from the base and ending as close as possible to the tip.
Fig. 9a shows that this condition is fulfilled. The extracted skele-
tons can be easily superimposed on the corresponding input frame.
Fig. 9b gives the representation of the skeleton achieved for the
video sequence of the same reaching movement recorded by the
second camera. Finally, Fig. 10 presents the 3D reconstruction of
these three pairs of 2D skeletons as curves in 3D space. The full
spatio-temporal profile that models the analyzed reaching move-
ment of the octopus arm consists of 20 curves describing this 1 s
movement in 3D space.

Next we present results for as yet unclassified octopus arm
movements. Only the skeletal representation is given here, since
we are demonstrating the ability of our system to automatically
capture the octopus arm movements in video sequences and to
integrate the results with a 3D reconstruction application. Fig. 11

presents results of four different movements performed by the
octopus either before or during a movement of its body or while
remaining stationary. Although we cannot assign clear functions to
these movements, we are interested in reconstructing them, since
these movements appear complex enough to be composed of ele-
mentary movements. Studying such movements may allow us to
identify motor primitives in the motor system of the octopus (Flash
and Hochner, 2005).

The quality of the detection results, particularly of the segmen-
tation, strongly depends on the quality and characteristics of the
video input sequences. The movements in Fig. 11 were recorded
by better equipment (two identical and synchronized video cam-
eras with high resolution) than used for the movement in Fig. 9.
We also improved the setting by clearing unnecessary objects from
the background and placing phosphorescent yellow colored stones
in the water tank. This image of the color was found to contrast
well with the texture and color of that of octopus skin that changes
to match its environment. Although a homogenous background is
optimal, it is not a required condition for high quality results as
shown in Fig. 11(c and d). Fig. 11(a and b) presents high quality
results where the contrast between the octopus skin and the back-
ground is relatively low.

Our system can be used to track elongated objects other than
the octopus arm. The characteristics of the moving object do not
have to match the non-rigid and deformable characteristics of the
octopus arm. Here we present automated detection results for the
motion of two other elongated objects: Fig. 12 presents tracking
results for a human arm performing a free movement by detect-
ing its approximated backbone. Fig. 13 presents tracking results
for an elephant trunk drawing a picture. As with the octopus arm,
the detected curve prescribes the virtual backbone of the elephant
trunk.

5. Discussion

We present a novel motion capture system for 3D tracking of
octopus arm movements. Since the octopus has a flexible arm
lacking a rigid skeleton and with no well-defined features to be
tracked, the model-based methods successfully used for the anal-
ysis of human and other object movements are not useful. Marker
techniques are similarly unsuitable as they would require special
equipment to cope with the octopus’ underwater environment and
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Fig. 12. Tracking results for a human arm performing a free movement (from upper left to lower right).

since the octopus does not behave naturally when markers are
attached to its body or arms. Indeed, we have observed them quickly
removing marker strips attached to their arms.

The motion capture system we developed to analyze octo-
pus arm movements is thus not based on markers. Although we
generally aim for a system which is not based on a model, two
assumptions which refer to the shape of the analyzed object and
the movement it performs are taken by the skeletalization mod-
ule. The skeletalization module, which first finds the skeletal points
of the extracted silhouettes regardless of their shape, assumes an
elongated shape of the moving object while it sequentially orders
the extracted skeletal points as a smooth 2D curve. However, since
skeletalization is applied on each frame separately, assembling
points in one frame does not use any of the information gathered

by analyzing the former frame. The skeletalization module also
assumes the ability to mark (by the user) a stationary region and a
moving region for the analyzed object. This assumption essentially
refers not the shape of the object but more to the characteristic of
the movement it performs.

The system receives a pair of video sequences of an arm
movement which has been recorded by two calibrated cameras
positioned at different angles. Each video input is a projection of the
movement on the 2D plane of the camera. Rather than each frame
being analyzed separately, each sequence is processed as one piece
of data by a segmentation algorithm that detects the silhouettes
of the moving arm. Two-dimensional curves are then extracted to
prescribe the virtual backbone of these silhouettes, yielding a skele-
tal representation of the projected movement. Finally, each pair of



Author's personal copy

I. Zelman et al. / Journal of Neuroscience Methods 182 (2009) 97–109 107

Fig. 13. Tracking results for an elephant trunk during painting (from upper left to lower right).

2D curves, describing the same arm configuration from different
angles, is reconstructed into a 3D curve. This describes a temporal
configuration of the arm in space, resulting in a spatio-temporal
sequence of the analyzed movement. The automatic procedures
used by our system allow it to efficiently analyze a large amount
of data, and only two types of user actions are required once per an
entire video sequence independently of its length: the first inter-
vention occurs when the user is asked to mark the optimal scale for
the results of the segmentation procedure using only a single click.
In the second intervention the user is asked to use two polygons
that mark two areas. One of them corresponds to the area of the
stationary part of the analyzed object, e.g., the base of the octopus
arm, while the second one corresponds to the moving part of the
analyzed object, e.g., the distal part of octopus arm during a reach-
ing movement (Fig. 8). We believe that these two interventions
are relatively minor and hence the system can still be considered
almost fully automatic, both because they are fast and easy to per-
form and because they refer once to the entire video sequence,
regardless to the number of frames it consists of. Eventually, a 3D
reconstruction of a movement requires the analysis of a pair of

video sequences, therefore altogether four user interventions are
required.

Our system is not restricted to the analysis of octopus arm move-
ments, since it can process movements of both rigid and non-rigid
elongated bodies. The restriction to elongated bodies is due to
the procedure used by our skeletal representation method which
orders skeletal points along a smooth curve as described above.
Adjusting the skeletal representation module to fit other shapes
allows the system to analyze movements of differently shaped
bodies in 3D space. Obviously, tracking an object which can be
represented by just a point is even easier, as the module which cur-
rently orders skeletal points is not needed. However, shapes like
that of the octopus head, for example, have to be handled differ-
ently.

Occasionally the system may fail to automatically track the
movement of the octopus arm due to problems arising in either the
detection or the reconstruction stage. Automatic segmentation may
fail to detect a part of the arm which is occluded by other parts of
the octopus. Self-occlusion of the arm may be harder to track since
the virtual backbone may no longer consist of a simple curve. The
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segmentation algorithm may also fail to detect the tip of the arm,
which seems to fade out in the case of a video sequence of poor
quality. However, our experience shows that the level of detection
of the tip is satisfying in most cases. Where the level of detection
is not satisfying, we must go back and use the simpler, more robust
and much more time-consuming method of manually marking the
arms. Furthermore, in many octopus arm movements, the tip move-
ments are passive, i.e., shaped mainly by the drag forces of the water.
Here, our method captures the kinematics of the arm which most
probably consists of the important features of the movement. The
3D configuration of the arm is generally reconstructed from the
projections of the arm on the viewing planes of stereo-configured
cameras. When the approximated plane on which the octopus arm
lies is perpendicular to the viewing plane of one of the camera, the
loss of essential information may lead to the failure of 3D recon-
struction. However, the cameras are configured so as to significantly
minimize these cases.

In general, the performance of our system depends on the quality
of its inputs. We assume that it will be harder to track movements
in an environment which is more complex due to: occlusions, light
conditions, object texture and viewpoint angles. Our work in gen-
eral aims for research questions, in which the sheer amount of data
can compensate for small losses in either accuracy or completeness
of the data. The great advantage of our automatic method is that it
allows extensive analysis of movement data making a small percent
of failures acceptable.

Where greater accuracy is required, the system can be improved
in several ways. Incorporating model-based techniques may signif-
icantly improve its ability to cope with occluded arms and other
difficult cases. We believe that a full model-based system will
also be capable of dealing with reconstruction problems caused
by inappropriate viewpoint angles. The segmentation algorithm,
which currently processes grayscale sequences, can be further
developed to simultaneously process the three colored channels
of RGB sequences. Since the automatic tracking process is sepa-
rately applied to each video sequence before the 3D reconstruction
stage, the system can be naturally extended to a multi-camera setup
(Yekutieli et al., 2007) and therefore can cope with the reconstruc-
tion problems mentioned above.

Our main interest is the analysis of different types of octopus
arm movements to determine whether octopus motor control is
based on the use of motor primitives. Motor primitives can be
regarded as a minimized set of movements, which can be com-
bined in many different ways to create the richness of human and
animal movement repertoires and to allow learning new motor
skills. Analysis for motor primitives in octopus arm movements
may contribute to our understanding of how the brain handles the
complexities associated with the control of hyper-redundant arms
(Flash and Hochner, 2005) and may also facilitate designing control
systems for hyper-redundant manipulators. Our system can signif-
icantly facilitate such analyses by allowing efficient analysis of a
large number of different arm movements and modeling them. The
system aims at tracking the virtual backbone which prescribes the
octopus arm. It does not investigate the biomechanics of muscle
contractions which results in some unique and interesting phenom-
ena. Dealing with the complexities of octopus biomechanics would
require integration of the tracking results with other methods, such
as dynamic modeling. Overall the system here is a powerful tool, not
only for motor control studies, but for any domain requiring motion
capture and analysis.
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