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Abstract

Spectral clustering methods are common graph-based approaches to clustering of
data. Spectral clustering algorithms typically start fromlocal information encoded
in a weighted graph on the data and cluster according to theglobal eigenvectors of
the corresponding (normalized) similarity matrix. One contribution of this paper
is to present fundamental limitations of this general localto global approach. We
show that based only on local information, the normalized cut functional is not a
suitable measure for the quality of clustering. Further, even with a suitable simi-
larity measure, we show that the first few eigenvectors of such adjacency matrices
cannot successfully cluster datasets that contain structures at different scales of
size and density. Based on these findings, a second contribution of this paper is
a novel diffusion based measure to evaluate the coherence ofindividual clusters.
Our measure can be used in conjunction with any bottom-up graph-based cluster-
ing method, it is scale-free and can determine coherent clusters at all scales. We
present both synthetic examples and real image segmentation problems where var-
ious spectral clustering algorithms fail. In contrast, using this coherence measure
finds the expected clusters at all scales.
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1 Introduction

Spectral clustering methods are common graph-based approaches to (unsupervised) clustering of
data. Given a dataset ofn points{xi}n

i=1 ⊂ R
p, these methods first construct a weighted graph

G = (V,W ), where then points are the set of nodesV and the weighted edgesWi,j are computed
by some local symmetric and non-negative similarity measure. A common choice is a Gaussian
kernel with widthσ, where‖ · ‖ denotes the standard Euclidean metric inR

p

Wi,j = exp

(

−‖xi − xj‖2

2σ2

)

(1)

In this framework, clustering is translated into a graph partitioning problem. Two main spectral
approaches for graph partitioning have been suggested. Thefirst is to construct a normalized cut
(conductance) functional to measure the quality of a partition of the graph nodesV into k clusters[1,
2]. Specifically, for a 2-cluster partitionV = S ∪ (V \ S) minimizing the following functional is
suggested in [1]

φ(S) =
∑

i∈S,j∈V \S

Wi,j

[

1

a(S)
+

1

a(V \ S)

]

(2)

wherea(S) =
∑

i∈S,j∈V Wi,j . While extensions of this functional to more than two clusters are
possible, both works suggest a recursive top-down approachwhere additional clusters are found by
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minimizing the same clustering functional on each of the twosubgraphs. In [3] the authors also
propose to augment this top-down approach by a bottom-up aggregation of the sub-clusters.

As shown in [1] minimization of (2) is equivalent tomaxy(yTWy)/(yTDy), whereD is a diag-
onaln × n matrix withDi,i =

∑

j Wi,j , andy is a vector of lengthn that satisfies the constraints
y

TD1 = 0 andyi ∈ {1,−b} with b some constant in(0, 1). Since this maximization problem is
NP-hard, both works relax it by allowing the vectory to take on real values. This approximation
leads to clustering according to the eigenvector with second largest eigenvalue of the normalized
graph Laplacian,Wy = λDy. We note that there are also graph partitioning algorithms based on a
non-normalized functional leading to clustering according to the second eigenvector of the standard
graph Laplacian matrixD −W, also known as the Fiedler vector [4].

A second class of spectral clustering algorithms does not recursively employ a single eigenvector,
but rather proposes to map the original data into the firstk eigenvectors of the normalized adjacency
matrix (or a matrix similar to it) and then apply a standard clustering algorithm such ask-means
on these new coordinates, see for example [5]-[11] and references therein. In recent years, much
theoretical work was done to justify this approach. Belkin and Niyogi [8] showed that for data uni-
formly sampled from a manifold, these eigenvectors approximate the eigenfunctions of the Laplace
Beltrami operator, which give an optimal low dimensional embedding under a certain criterion.
Optimality of these eigenvectors, including rotations, was derived in [9] for multiclass spectral clus-
tering. Probabilistic interpretations, based on the fact that these eigenvectors correspond to a random
walk on the graph were also given by several authors [11]-[15]. Limitations of spectral clustering
in the presence of background noise and multiscale data werenoted in [10, 16], with suggestions to
replace the uniformσ2 in eq. (1) with a location dependent scaleσ(xi)σ(xj).

The aim of this paper is to presentfundamental limitations of spectral clustering methods, and
propose a noveldiffusion based coherence measure to evaluate the internal consistency of individ-
ual clusters. First, in Section 2 we show that based on the isotropic local similarity measure (1),
the NP-hard normalized cut criterion may not be a suitable global functional for data clustering.
We construct a simple example with only two clusters, where we prove that the minimum of this
functional does not correspond to the natural expected partitioning of the data into its two clusters.
Further, in Section 3 we show that spectral clustering suffers from additional limitations, even with
a suitable similarity measure. Our theoretical analysis isbased on the probabilistic interpretation
of spectral clustering as a random walk on the graph and on theintimate connection between the
corresponding eigenvalues and eigenvectors and the characteristic relaxation times and processes of
this random walk. We show that similar to Fourier analysis, spectral clustering methods are global
in nature. Therefore, even with a location dependentσ(x) as in [10], these methods typically fail to
simultaneously identify clusters at different scales. Based on this analysis, we present in Section 4
simple examples where spectral clustering fails. We conclude with Section 5, where we propose a
novel diffusion based coherence measure. This quantity measures the coherence of a set of points as
all belonging to a single cluster, by comparing the relaxation times on the set and on its suggested
partition. Its main use is as a decision tool whether to divide a set of points into two subsets or leave
it intact as a single coherent cluster. As such, it can be usedin conjunction with either top-down or
bottom-up clustering approaches and may overcome some of their limitations. We show how use of
this measure correctly clusters the examples of Section 4, where spectral clustering fails.

2 Unsuitability of normalized cut functional with local information

As reported in the literature, clustering by approximate minimization of the functional (2) performs
well in many cases. However, a theoretical question still remains: Under what circumstances is
this functional indeed a good measure for the quality of clustering ? Recall that the basic goal of
clustering is to group together highly similar points whilesetting apart dissimilar ones. Yet this
similarity measure is typically based only onlocal information as in (1). Therefore, the question can
be rephrased - is local information sufficient for global clustering ?

While thislocal to global concept is indeed appealing, we show that it does not work in general. We
construct a simple example where local information is insufficient for correct clustering according
to the functional (2). Consider data sampled from a mixture of two densities in two dimensions

p(x) = p(x1, x2) =
1

2
[pL,ε(x1, x2) + pG(x1, x2)] (3)
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Figure 1: A dataset with two clusters and result of normalized cut algorithm [2]. Other spectral
clustering algorithms give similar results.

wherepL,ε denotes uniform density in a rectangular regionΩ = {(x1, x2) | 0 < x1 < L,−ε <
x2 < 0} of lengthL and widthε, andpG denotes a Gaussian density centered at(µ1, µ2) with
diagonal covariance matrixρ2I. In fig. 1(a) a plot ofn = 1400 points from this density is shown
with L = 8, ε = 0.05 � L, (µ1, µ2) = (2, 0.2) andρ = 0.1. Clearly, the two clusters are the
Gaussian ball and the rectangular stripΩ.

However, as shown in fig. 1(b), clustering based on the secondeigenvector of the normalized graph
Laplacian with weightsWi,j given by (1) partitions the points somewhere along the long strip in-
stead of between the strip and the Gaussian ball. We now show that this result is not due to the
approximation of the NP-hard problem but rather a feature ofthe original functional (2). Intuitively,
the failure of the normalized cut criterion is clear. Since the overlap between the Gaussian ball and
the rectangular strip is larger than the width of the strip, acut that separates them has a higher penalty
than a cut somewhere along the thin strip.

To show this mathematically, we consider the penalty of the cut due to the numerator in (2) in the
limit of a large number of pointsn → ∞. In this population setting, asn → ∞ each point has an
infinite number of neighbors, so we can consider the limitσ → 0. Upon normalizing the similarity
measure (1) by1/2πσ2, the numerator is given by

Cut(Ω1) = lim
n→∞

1

|V |
∑

x∈Ω1

∑

y∈Ω2

Wi,j =
1

2πσ2

∫

Ω1

∫

Ω2

p(x)p(y)e−‖x−y‖2/2σ2

dxdy (4)

whereΩ1,Ω2 ⊂ R
2 are the regions of the two clusters. Forε � L, a vertical cut of the strip at

locationx = x1 far away from the ball (|x1 − x0| � ρ) gives

Cut(x > x1) ' lim
σ→0

∫ ∞

0

∫ 0

−∞

1

L2

1

2πσ2
e−(x−x′)2/2σ2

dxdx′ =
1

2πL2
(5)

A similar calculation shows that for a horizontal cut aty = 0,

Cut(y > 0) ' 1

L

e−µ2

2
/2ρ2

√
8πρ

(6)

Finally, note that for a vertical cut far from the rectangle boundary∂Ω, the denominators of the
two cuts in eq. (2) have the same order of magnitude. Therefore, if L � ρ andµ2/ρ = O(1) the
horizontal cut between the ball and the strip haslarger normalized penalty than a vertical cut of the
strip. This analysis explains the numerical results in fig. 1(b). Other spectral clustering algorithms
that use two eigenvectors, including those that take a localscale into account, also fail to separate
the ball from the strip and yield similar results to fig.1(b).A possible solution to this problem is to
introduce multiscale anisotropic features that capture the geometry and dimensionality of the data
in the similarity metric. In the context of image and texturesegmentation, the need for multiscale
features is well known [17, 18, 19]. Our example highlights its importance in general data clustering.

3 Additional Limitations of Spectral Clustering Methods

An additional problem with recursive bi-partitioning is the need of a saliency criterion when required
to returnk > 2 clusters. Consider, for example a dataset which containsk = 3 clusters. After



the first cut, the recursive algorithm should decide which subgraph to further partition and which
to leave intact. A common approach that avoids this decisionproblem is to directly find three
clusters by using the first three eigenvectors ofWv = λDv. Specifically, denote by{λj ,vj} the
set of eigenvectors ofWv = λDv with eigenvalues sorted in decreasing order, and denote by
vj(xi) the i-th entry (corresponding to the pointxi) in the j-th eigenvectorvj . Many algorithms
propose to map each pointxi ∈ R

p into Ψ(xi) = (v1(xi), . . . ,vk(xi)) ∈ R
k, and apply simple

clustering algorithms to the pointsΨ(xi) [8, 9, 12]. Some works [6, 10] use the eigenvectorsṽj of
D−1/2WD−1/2 instead, related to the ones above viaṽj = D1/2

vj .

We now show that spectral clustering that uses the firstk eigenvectors for findingk clusters also
suffers from fundamental limitations. Our starting point is the observation thatvj are also eigen-
vectors of the Markov matrixM = D−1W [13, 12]. Assuming the graph is connected, the largest
eigenvalue isλ1 = 1 with |λj | < 1 for j > 1. Therefore, regardless of the initial condition the
random walk converges to the unique equilibrium distributionπs, given byπs(i) = Di,i/

∑

j Dj,j .
Moreover, as shown in [13], the Euclidean distance between points mapped to these eigenvectors is
equal to a so called ’diffusion distance’ between points on the graph,

∑

j

λ2t
j (vj(x) − vj(y))

2
= ‖p(z, t |x) − p(z, t |y)‖2

L2(1/πs) (7)

wherep(z, t |x) is the probability distribution of a random walk at timet given that it started at
x, πs is the equilibrium distribution, and‖ · ‖L2(w) is the weightedL2 norm with weightw(z).
Therefore, the eigenvalues and eigenvectors{λj ,vj} for j > 1, capture the characteristicrelaxation
times and processes of the random walk on the graph towards equilibrium. Since most methods use
the first few eigenvector coordinates for clustering, it is instructive to study the properties of these
relaxation times and of the corresponding eigenvectors.

We perform this analysis under the following statistical model: we assume that the points{xi} are
random samples from a smooth densityp(x) in a smooth domainΩ ⊂ R

p. We write the density in
Boltzmann formp(x) = e−U(x)/2 and denoteU(x) as the potential. As described in [13], in the
limit n → ∞, σ → 0, the random walk with transition matrixM on the graph of points sampled
from this density converges to a stochastic differential equation (SDE)

ẋ(t) = −∇U(x) +
√

2ẇ(t) (8)

wherew(t) is standard white noise (Brownian motion), and the right eigenvectors of the matrixM
converge to the eigenfunctions of the following Fokker-Planck operator

Lψ(x) ≡ ∆ψ −∇ψ · ∇U = −µψ(x) (9)

defined forx ∈ Ω with reflecting boundary conditions on∂Ω. This operator is non-positive and its
eigenvalues areµ1 = 0 < µ2 ≤ µ3 ≤ . . .. The eigenvalues−µj of L and the eigenvaluesλj of M
are related byµj = limn→∞,σ→0(1−λj)/σ. Therefore the top eigenvalues ofM correspond to the
smallest ofL. Eq. (7) shows that these eigenfunctions and eigenvalues capture the leading charac-
teristic relaxation processes and time scales of the SDE (8). These have been studied extensively in
the literature [20], and can give insight into the success and limitations of spectral clustering [13].
For example, ifΩ = R

p and the densityp(x) consists ofk highly separated Gaussian clusters of
roughly equal size (k clusters), then there are exactlyk eigenvalues very close or equal to zero, and
their corresponding eigenfunctions are approximately piecewise constant in each of these clusters.
Therefore, in this setting spectral clustering withk eigenvectors works very well.

To understand the limitations of spectral clustering, we now explicitly analyze situations with clus-
ters at different scales of size and density. For example, consider a density with three isotropic
Gaussian clusters: one large cloud (cluster #1) and two smaller clouds (clusters 2 and 3). These cor-
respond to one wide well and two narrow wells in the potentialU(x). A representative 2-D dataset
drawn from such a density is shown in fig. 2 (top left).

The SDE (8) with this potential has a few characteristic timescales which determine the structure of
its leading eigenfunctions. The slowest one is the mean passage time between cluster 1 and clusters
2 or 3, approximately given by [20]

τ1,2 =
2π

√

|U ′′
minU

′′
max|

e(U(xmax)−U(xmin)) (10)



wherexmin is the bottom of the deepest well,xmax is the saddle point ofU(x), andU ′′
min, U

′′
max

are the second derivatives at these points. Eq. (10), also known as Arrhenius or Kramers formula
of chemical reaction theory, shows that the mean first passage time is exponential in the barrier
height [20]. The corresponding eigenfunctionψ2 is approximately piecewise constant inside the
large well and inside the two smaller wells with a sharp transition near the saddle pointxmax. This
eigenfunction easily separates cluster 1 from clusters 2 and 3 (see top center panel in fig. 2).

A second characteristic time isτ2,3, the mean first passage time between clusters 2 and 3, also given
by a formula similar to (10). If the potential barrier between these two wells is much smaller than
between wells 1 and 2, thenτ2,3 � τ1,2. A third characteristic time is the equilibration time inside
cluster 1. To compute it we consider a diffusion process onlyinside cluster 1, e.g. with an isotropic
parabolic potential of the formU(x) = U(x1)+U

′′
1 ‖x−x1‖2/2, wherex1 is the bottom of the well.

In 1-D the eigenvalues and eigenfunctions are given byµk = (k − 1)U ′′
1 , with ψk(x) a polynomial

of degreek − 1. The corresponding intra-well relaxation times are given by τR
k = 1/µk+1 (k ≥ 1).

The key point in our analysis is that if the equilibration time inside the wide well isslower than
the mean first passage time between the two smaller wells,τR

1 > τ2,3, then the third eigenfunction
of L captures the relaxation process inside the large well and isapproximately constant inside the
two smaller wells. This eigenfunction cannot separate between clusters 2 and 3. Moreover, if
τR
2 = τR

1 /2 is still larger thanτ2,3 then even the next leading eigenfunction captures the equilibration
process inside the wide well, see a plot ofψ3, ψ4 in fig. 2 (rows 1,2). Therefore, even this next
eigenfunction is not useful for separating the two small clusters. In the example of fig. 2, onlyψ5

separates these two clusters.

This analysis shows that when confronted with clusters of different scales, corresponding to a mul-
tiscale landscape potential, standard spectral clustering which uses the firstk eigenvectors to findk
clusters will fail. We present explicit examples in Section4 below. The fact that spectral clustering
with a single scaleσ may fail to correctly cluster multiscale data was already noted in [10, 16]. To
overcome this failure, [10] proposed replacing the uniformσ2 in eq. (1) withσ(xi)σ(xj) where
σ(x) is proportional to the local density atx. Our analysis can also provide a probabilistic interpre-
tation to their method. In a nutshell, the effect of this scaling is tospeed up the diffusion process at
regions of low density, thus changing some of its characteristic times. If the larger cluster has low
density, as in the examples in their paper, this approach is successful as it decreasesτR

1 . However, if
the large cluster has a high density (comparable to the density of the small clusters), this approach is
not able to overcome the limitations of spectral clustering, see fig. 3. Moreover, this approach may
also fail in the case of uniform density clusters defined solely by geometry (see fig. 4).

4 Examples

We illustrate the theoretical analysis of Section 3 with three examples, all in 2-D. In the first two ex-
amples, then points{xi} ⊂ R

2 are random samples from the following mixture of three Gaussians

α1N(x1, σ
2
1I) + α2N(x2, σ

2
2I) + α3N(x3, σ

2
3I) (11)

with centersxi isotropic standard deviationsσi and weightsαi (
∑

i αi = 1). Specifically, we
consider one large cluster withσ1 = 2 centered atx1 = (−6, 0), and two smaller clusters with
σ2 = σ3 = 0.5 centered atx2 = (0, 0) andx3 = (2, 0). We present the results of both the NJW
algorithm [6] and the ZP algorithm [10] for two different weight vectors.

Example I: Weights(α1, α2, α3) = (1/3, 1/3, 1/3). In the top left panel of fig. 2,n = 1000
random points from this density clearly show the differencein scales between the large cluster and
the smaller ones. The first few eigenvectors ofM with a uniformσ = 1 are shown in the first
two rows of the figure. The second eigenvectorψ2 is indeed approximately piecewise constant and
easily separates the larger cluster from the smaller ones. However,ψ3 andψ4 are constant on the
smaller clusters, capturing the relaxation process in the larger cluster (ψ3 captures relaxation along
they-direction, hence it is not a function of thex-coordinate). In this example, onlyψ5 can separate
the two small clusters. Therefore, as predicted theoretically, the NJW algorithm [6] fails to produce
reasonable clusterings for all values ofσ. In this example, the density of the large cluster islow, and
therefore as expected and shown in the last row of fig. 2, the ZPalgorithm clusters correctly.

Example II: Weights(α1, α2, α3) = (0.8, 0.1, 0.1). In this case the density of the large cluster is
high, and comparable to that of the small clusters. Indeed, as seen in fig. 3 and predicted theoretically
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Figure 2: A three cluster dataset corresponding to example I(top left), clustering results of NJW
and ZP algorithms [6, 10] (center and bottom left, respectively), and various eigenvectors ofM vs.
thex coordinate (blue dots in 2nd and 3rd columns). The red dottedline is the potentialU(x, 0).

−10 −5 0 5

−5

0

5

Original Data

x

y

−10 −5 0 5

−5

0

5

ZP results k
NN

 = 7

−10 −5 0

0

5

10

ZP − ψ
2

x
−10 −5 0

−5

0

5

10

ZP − ψ
3

x

Figure 3: Dataset corresponding to example II and result of ZP algorithm.

the ZP algorithm fails to correctly cluster this data for allvalues of the parameterkNN in their
algorithm. Needless to say, the NJW algorithm also fails to correctly cluster this example.

Example III: Consider data{xi} uniformly sampled from a domainΩ ⊂ R
2, which consists of

three clusters, one a large rectangular container and two smaller disks, all connected by long and
narrow tubes (see fig. 4 (left)). In this example the container is so large that the relaxation time inside
it is slower than the characteristic time to diffuse betweenthe small disks, hence NJW algorithm fails
to cluster correctly. Since density is uniform, the ZP algorithm fails as well, fig. 4 (right).

Note that spectral clustering with the eigenvectors of the standard graph Laplacian has similar limi-
tations, since the Euclidean distance between these eigenvectors is equal to the mean commute time
on the graph [11]. Therefore, these methods may also fail when confronted with multiscale data.

5 Clustering with a Relaxation Time Coherence Measure

The analysis and examples of Sections 3 and 4 may suggest the use of more thank eigenvectors
in spectral clustering. However, clustering withk-means using 5 eigenvectors on the examples
of Section 4 produced unsatisfactory results (not shown). Moreover, since the eigenvectors of the
matrixM are orthonormal under a specific weight function, they become increasingly oscillatory.
Therefore, it is quite difficult to use them to detect a small cluster, much in analogy to Fourier
analysis, where it is difficult to detect a localized bump in afunction from its Fourier coefficients.
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Figure 5: Normalized cut and coherence measure segmentation on a synthetic image.

Based on our analysis, we propose a different approach to graph-based clustering. Given the impor-
tance of relaxation times on the graph as indication of clusters, we propose a novel and principled
measure for the coherence of a set of points as belonging to a single cluster. Our coherence mea-
sure can be used in conjunction with any clustering algorithm. Specifically, letG = (V,W ) be
a weighted graph of points and letV = S ∪ (V \ S) be a possible partition (computed by some
clustering algorithm). Our aim is to construct a meaningfulmeasure to decide whether to accept
or reject this partition. To this end, letλ2 denote the second largest eigenvalue of the Markov
matrix M corresponding to the full graphG. We defineτV = 1/(1 − λ2) as the characteristic
relaxation time of this graph. Similarly,τ1 andτ2 denote the characteristic relaxation times of the
two subgraphs corresponding to the partitionsS andV \ S. If V is a single coherent cluster, then
we expectτV = O(τ1 + τ2). If, however,V consists of two weakly connected clusters defined
by S andV \ S, thenτ1 andτ2 measure the characteristic relaxation times inside these two clus-
ters whileτV measures the overall relaxation time. If the two sub-clusters are of comparable size,
then τV � (τ1 + τ2). If however, one of them is much smaller than the other, then we expect
max(τ1, τ2)/min(τ1, τ2) � 1. Thus, we define a setV as coherent if eitherτV < c1(τ1 + τ2) or if
max(τ1, τ2)/min(τ1, τ2) < c2. In this case,V is not partitioned further. Otherwise, the subgraphs
S andV \ S need to be further partitioned and similarly checked for their coherence. While a the-
oretical analysis is beyond the scope of this paper, reasonable numbers that worked in practice are
c1 = 1.8 andc2 = 10. We note that other works have also considered relaxation times for clustering
with different approaches [21, 22].

We now present use of this coherence measure with normalizedcut clustering on the third example
of Section 4. The first partition of normalized cut on this data withσ = 1 separates between the large
container and the two smaller disks. The relaxation times ofthe full graph and the two subgraphs
are(τV , τ1, τ2) = (1350, 294, 360). These numbers indicate that the full dataset isnot coherent, and
indeed should be partitioned. Next, we try to partition the large container. Normalized cuts partitions
the container roughly into two parts with(τV , τ1, τ2) = (294, 130, 135), which according to our
coherence measure means that the big container is a single structure that should not be split. Finally,
normalized cut on the two small disks correctly separates them giving(τV , τ1, τ2) = (360, 18, 28),
which indicates that indeed the two disks should be split. Further analysis of each of the single disks
by our measure shows that each is a coherent cluster. Thus, combination of our coherence measure
with normalized cut not only clusters correctly, but also automatically finds the correct number of
clusters, regardless of cluster scale. Similar results areobtained for the other examples in this paper.

Finally, our analysis also applies to image segmentation. In fig. 5(a) a synthetic image is shown.
The segmentation results of normalized cuts [24] and of the coherence measure combined with
[23] appear in panels (b) and (c). Results on a real image are shown in fig. 6. Each segments is



Original Image Coherence Measure Ncut 6 clusters Ncut 20 clusters

Figure 6: Normalized cut and coherence measure segmentation on a real image.

represented by a different color. With a small number of clusters normalized cut cannot find the
small coherent segments in the image, whereas with a large number of clusters, large objects are
segmented. Implementing our coherence measure with [23] finds salient clusters at different scales.
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