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Q1[Ridge regression] Consider a standard linear regression setting: We observe n samples
(xi, yi) of the form

yi = β0 + β1xi,1 + . . .+ βpxi,p + ϵi, ϵn×1 ∼ N(0n×1, σ
2In×n).

Let B̂ be the standard OLS solution, B̂ =
(
XTX

)−1
XTy, where X is the design matrix.

(a). What is the mean and variance of B̂? Is this estimation unbiased ? Suppose that the
matrix XTX has few large eigenvalues and several eigenvalues rather small (namely the
matrix is ill-conditioned). Would you recommend using the least squares estimate B̂ in
this case?
One approach to overcome this ill-conditioning, is to consider the following penalized op-
timization problem for some λ > 0:

arg min
β∈Rp

n∑
i=1

(
yi − β0 − β1xi,1 − . . .− βpxi,p

)2
+ λ

p∑
j=1

β2
j

(b) Show that the solution to the above optimization problem is β̃ =
(
XTX+λI

)−1
XTy,

(c) Show that β̃ is a biased estimator of β.
(d) Denote by V (β̂) a vector with the variances of the individual components of an esti-
mator β̂. Show that for all i, V (β̃)i ≤ V (B̂)i.

Q2 We say that a r.v. X follows a chi-square inverse distribution with ν degrees of freedom,
denoted by X ∼ χ−2

ν , iff 1/X ∼ χ2
ν .

1. Let Y1, . . . , Ym ∼ N(µ, σ2), and assume that µ is known. Assume that the prior
distribution of σ2 is aχ−2

ν , for some parameter a > 0. Show that the prior density
function of σ2 is given by:

πa,ν(σ
2) =

aν/2

2ν/2Γ(ν/2)

(
σ2

)−( ν
2
+1)

e−
a

2σ2 .

Is this prior distribution self-conjugate under the Gaussian setting?
2. Find the prior distribution according to Jeffrey’s rule and its corresponding posterior.
3. Next we consider a general setting where the observed data consists of n independent

realizations z = (z1, . . . , zn) or a random variable Z ∼ fZ(z, θ). Let θ̂(z) be a point-
wise estimator of θ, and define its loss as L(θ̂, θ) ≡ ∥θ − θ̂∥22. Define the risk of an
estimator θ̂(x) to be R(θ̂) ≡ EZ[L(θ̂, θ)]. We think of θ as a random variable, with
some unknown distribution. Let π(θ) be a prior distribution on θ, and define the
Bayes risk of θ̂ to be Eπ

[
R(θ̂)

]
. Show that θ∗Bayes(z) ≡ E[θ|z] minimizes the Bayes

risk. Note that θ∗Bayes is known as the Bayes estimator.
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4. Based on your answers to (1) and (2), find the Bayes estimator and the corresponding
risk of each case, and compare between the two.

Q3 Let (x1, . . . , xn) be n i.i.d. observations from a probability distribution with density p(x).
Recall that in class we considered kernel density estimator of the form

p̂(x) =
1

nh

n∑
j=1

K

(
x− xj

h

)
(1)

with a suitably chosen kernel function K.
1. Suppose that p(x) is a smooth density such that its second derivative is smooth and
bounded, and in particular satisfies

|p′′(x)− p′′(y)| ≤ L|x− y| ∀x, y ∈ R

What is then an upper bound on the mean squared error E[(p̂(x0)−p(x0))
2] at some fixed

point x0 and how does it depend on n? What are the conditions that the kernel K must
satisfy for this upper bound to hold ?
2. In practice we need to estimate the bandwidth h. A common method is leave-one-
out cross-validation. Explain this method and the resulting formula for estimating the
bandwidth.
3. In some cases, we know a-priori that the density p(x) has a compact support in an
interval I. For example, if x is a physical quantity that cannot be negative then x ≥ 0,
and I = [0,∞). Let us study what happens to the kernel density estimate (1) for points
near the boundary, when the kernel K is symmetric and supported on [-1,1].
To this end, write x = hz, where z ∈ [0, 1]. Show that

E[p̂(hz)] = a0(z)p(0)− h(a1(z)− za0(z))p
′(0) +O(h2).

where aj(z) =
∫ z
−1 u

jK(u)du.
4. In particular what is E[p̂(0)] ? Is it a consistent estimator of p(0) as n → ∞ and h → 0?
Suggest a correction method to give a consistent estimate of p(0).

Q4 LDA=Linear Discriminant Analysis.
Consider a binary classification problem. We have a pair of random variables (X,Y ) where
X ∈ Rd and Y ∈ {−1, 1}, with the following explicit distribution:

if Y = 1 then X ∼ N(µ, σ2I)

if Y = −1 then X ∼ N(−µ, σ2I)

and with Pr[Y = 1] = Pr[Y = −1] = 1/2.
A classifier is a function f : Rd → {−1, 1}. We measure the risk of a classifier by its
average (generalization) error rate,

R(f) = E(X,Y )[1(f(X) ̸= Y )] = Pr[f(X) ̸= Y ]

(a) Prove that the optimal classifier f∗ = argminR(f) is given by

f∗(x) =

{
1 ∥x− µ∥ < ∥x+ µ∥

−1 otherwise

Show that an equivalent representation is f(x) = sign(xTµ). Assume d = 2 and
µ = (1, 2). Plot the two centers and the decision boundary.
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(b) Prove that the error rate of the optimal classifier is

R(f∗) =

∫ −∥µ∥/σ

−∞

1√
2π

e−t2/2dt

The quantity ∥µ∥/σ is the signal-to-noise ratio of this problem. Show that the error
rate is exponentially small in this quantity.

(c) In practice, even if the two classes indeed follow the assumed Gaussian model, the
value of µ is typically unknown. Suppose we have a labeled data {xi, yi}ni=1, where
n/2 samples are from class 1 and another n/2 samples are from class −1.
A common approach is then to estimate µ by

µ̂ =
1

n

∑
yixi

and construct the plug-in classifier f̂n that uses µ̂ instead of µ, namely f̂n(x) =
sign(xT µ̂).
Prove that µ̂ − µ ∼ N(0, σ

2

n I). What is E[∥µ̂ − µ∥2] ? Prove that the probability
that ∥µ̂−µ∥2 is far from its expected value is exponentially small in n. Namely that
this quantity is tightly concentrated around its mean.

(d) Suppose that both n ≫ 1 and d ≫ 1. Show that the effective signal to noise ratio of
this classifier is smaller, of the approximate form for some scalar α,

∥µ∥
σ

1− σ
∥µ∥

α√
n

1 + σ
∥µ∥

α√
n
+ 1

2
σ2

∥µ∥2
d
n

(e) Simulation study: Generate labeled data from this mixture model with n = 100,
namely 50 samples from each class, and with a vector µ = (1, 1/2, 1/4, 1/8, . . .), and
σ = 1. For different dimensions d = 20, 50, 100, 500, 1000, 5000, 10000, 50000.
For each dimension d, estimate µ̂, the corresponding f̂n and its error rate on a test set
of 10,000 independent samples. Plot a graph of this error rate versus the dimension.
Also plot on this graph a horizontal line with the Bayes error of the optimal classifier
f∗.
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