Statistical Inference and Learning- Ex-3

Yaniv Tenzer and Boaz Nadler

Due on Tuesday, June 25, 2019, email submissions: stat.wisdom@gmail.com

Q1 In this problem we will look at the daily returns of 31 stocks (companies) over the period 2010-2014. The file A.txt contains 1258 lines each with 31 columns. Each line contains the (closing) price of 31 stocks on a specific day. The list of stock tickers is available in the file stock_list.txt. For each stock we are interested in its daily return in percentage points, defined as

 $R_i(t) = 100 \times (P_i(t) - P_i(t-1))/P_i(t-1).$

where $P_i(t)$ is the closing price of stock *i* on trading day *t*.

This gives a matrix of size 1257x31 that appears in the file B.txt. The corresponding trading days [year month day] appear in the file dates.txt

In matlab, for example, the operation to compute B from A is simply B = 100 * diff(A)./A(1:end-1,:).

In future exercises we will also look at individual stocks, but for now, we will only consider the daily return averaged over these 31 stocks.

- 1. Plot the mean of daily returns (namely a vector of length 1257). What is the average and standard deviation of this random variable ?
- 2. A crucial part of data analysis is to detect outliers / abnormal points in the data. Find the date with the lowest return - which date was it? How many standard deviations was this return far from the mean daily return? Would you consider this as an outlier/abnormal observation, explain your answer! If interested at what happened during the few days around that date, take a look at

3. Compute a non-parametric density estimate of the average daily returns. Choose the kernel of your choice and find the bandwidth h via cross validation. Provide details on how precisely the bandwidth h was found.

Compare the estimated density to a fit assuming the random variable in question was distributed as a Gaussian $N(\mu, \sigma^2)$, with their parameters estimated by Maximum Likelihood. Namely, plot $(x, \hat{p}_{KDE}(x))$ and $(x, \hat{p}_N(x))$ on the same graph. In your opinion, is a Gaussian distribution a good fit to the daily returns? Explain your answer.

Q2 Let $\{(\mathbf{x}_i, Y_i)\}_{i=1}^n$ be *n* observations from the following regression model:

$$Y_i = \beta_1 x_{i,1} + \ldots + \beta_k x_{i,k} + \epsilon_i, \ 1 \le i \le n,$$

where $\epsilon \sim N(\mathbf{0}, \sigma^2 I)$. Let $\hat{\beta}$ be the OLS estimator, and for each i, let \hat{Y}_i be the corresponding predicted value $\mathbf{x}_i^T \hat{\beta}$. Show that $\hat{\sigma}^2 \equiv \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-k-1}$ is an unbiased estimator of σ^2 .

- Q3 [OLS solution invariant to scaling] Let $D \equiv Diag(\lambda_1, \ldots, \lambda_p)$ denote a diagonal matrix with λ_i on its i'th entry (i.e., $D_{ii} = \lambda_i$). Denote by $\hat{\beta}_X$ the OLS estimator based on the *n* observations $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, with $\mathbf{x}_i = (x_{i,1}, \ldots, x_{i,k}), 1 \leq i \leq n$. Similarly, denote by $\hat{\beta}_Z$, the OLS estimator based on $\{(y_i, \mathbf{z}_i)\}_{i=1}^n$, where $z_i \equiv Dx_i$. For a new observation \mathbf{x}^* , show that $\hat{\beta}_X^T \mathbf{x}^* = \hat{\beta}_Z^T \mathbf{z}^*$, where $\mathbf{z}^* \equiv D\mathbf{x}^*$.
- Q4 [OLS solution is a maximum likelihood estimator] Similar, but slightly different from the linear settings of Q1, assume that $\epsilon \sim N(\mathbf{0}, Diag(\sigma_1^2, \ldots, \sigma_n^2))$. Namely, each observed Y_i has a different and known noise level σ_i .
 - 1. Show that ML estimator of β is given by the solution of the following optimization problem:

$$\operatorname{argmin}_{\beta \in \mathbb{R}^k} \sum_{i=1}^n (y_i - \beta^T \mathbf{x}_i)^2 / \sigma_i^2$$

- 2. Solve for β . Show that $\hat{\beta} = (\mathbf{X}^T D^{-1} \mathbf{X})^{-1} \mathbf{X}^T D^{-1} \mathbf{y}$, where $D = Diag(\sigma_1^{-2}, \ldots, \sigma_n^{-2})$ and \mathbf{X} is the $n \times k$ design matrix whose rows are the observations \mathbf{x}_i^T .
- 3. More generally, let $\mathbf{w} \equiv (w_1, \ldots, w_n)$ be a weight vector (i.e., $w_i > 0$ for all *i*). Write a formula for the solution for the following optimization problem

$$\operatorname{argmin}_{\beta \in \mathbb{R}^{k}} \sum_{i=1}^{n} w_{i} (y_{i} - \beta^{T} x_{i})^{2}.$$