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Q1 In this problem we will look at the daily returns of 31 stocks (companies) over the period
2010-2014. The file A.txt contains 1258 lines each with 31 columns. Each line contains
the (closing) price of 31 stocks on a specific day. The list of stock tickers is available in
the file stock list.txt. For each stock we are interested in its daily return in percentage
points, defined as

Ri(t) = 100× (Pi(t)− Pi(t− 1))/Pi(t− 1).

where Pi(t) is the closing price of stock i on trading day t.

This gives a matrix of size 1257x31 that appears in the file B.txt. The corresponding
trading days [year month day] appear in the file dates.txt

In matlab, for example, the operation to compute B from A is simply
B = 100 * diff(A)./A(1:end-1,:).

In future exercises we will also look at individual stocks, but for now, we will only consider
the daily return averaged over these 31 stocks.

1. Plot the mean of daily returns (namely a vector of length 1257). What is the average
and standard deviation of this random variable ?

2. A crucial part of data analysis is to detect outliers / abnormal points in the data. Find
the date with the lowest return - which date was it? How many standard deviations
was this return far from the mean daily return? Would you consider this as an
outlier/abnormal observation, explain your answer! If interested at what happened
during the few days around that date, take a look at
en.wikipedia.org/wiki/August 2011 stock markets fall

3. Compute a non-parametric density estimate of the average daily returns. Choose the
kernel of your choice and find the bandwidth h via cross validation. Provide details
on how precisely the bandwidth h was found.

Compare the estimated density to a fit assuming the random variable in question was
distributed as a Gaussian N(µ, σ2), with their parameters estimated by Maximum
Likelihood. Namely, plot (x, p̂KDE(x)) and (x, p̂N (x)) on the same graph. In your
opinion, is a Gaussian distribution a good fit to the daily returns? Explain your
answer.

Q2 Let {(xi, Yi)}ni=1 be n observations from the following regression model:

Yi = β1xi,1 + . . .+ βkxi,k + εi, 1 ≤ i ≤ n,

where ε ∼ N(0, σ2I). Let β̂ be the OLS estimator, and for each i, let Ŷi be the corre-

sponding predicted value xTi β̂. Show that σ̂2 ≡
∑n

i=1(Yi−Ŷi)2
n−k−1 is an unbiased estimator of

σ2.
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Q3 [OLS solution invariant to scaling] Let D ≡ Diag(λ1, . . . , λp) denote a diagonal matrix
with λi on its i’th entry (i.e., Dii = λi). Denote by β̂X the OLS estimator based on the
n observations {(xi, yi)}ni=1, with xi = (xi,1, . . . , xi,k), 1 ≤ i ≤ n. Similarly, denote by β̂Z ,
the OLS estimator based on {(yi, zi)}ni=1, where zi ≡ Dxi. For a new observation x∗, show
that β̂TXx

∗ = β̂TZz
∗, where z∗ ≡ Dx∗.

Q4 [OLS solution is a maximum likelihood estimator] Similar, but slightly different from the
linear settings of Q1, assume that ε ∼ N(0, Diag(σ21, . . . , σ

2
n)). Namely, each observed Yi

has a different and known noise level σi.

1. Show that ML estimator of β is given by the solution of the following optimization
problem:

argminβ∈Rk

n∑
i=1

(yi − βTxi)2/σ2i

2. Solve for β. Show that β̂ = (XTD−1X)−1XTD−1y, where D = Diag(σ−21 , . . . , σ−2n )
and X is the n× k design matrix whose rows are the observations xTi .

3. More generally, let w ≡ (w1, . . . , wn) be a weight vector (i.e., wi > 0 for all i). Write
a formula for the solution for the following optimization problem

argminβ∈Rk

n∑
i=1

wi(yi − βTxi)2.
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