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Abstract:  Phase measurement is a long-standing challenge in a wide
range of applications, from X-ray imaging to astrophysics and spectroscopy.
While in some scenarios the phase is resolved by an interferometric
measurement, in others it is reconstructed via numerical optimization, based
on some a-priori knowledge about the signal. The latter commonly use
iterative algorithms, and thus have to deal with their convergence, stagna-
tion, and robustness to noise. Here we combine these two approaches and
present a new scheme, termed double blind Fourier holography, providing
an efficient solution to the phase problem in two dimensions, by solving a
system of linear equations. We present and experimentally demonstrate our
approach for the case of lens-less imaging.
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1. Introduction

In a wide range of wave phenomena in nature one does not have direct access to the signal
under study but only to its time-average, losing the phase information. This is the characteristic
case in optics [1], X-ray fields [2—-6], high harmonic generation [7-9] and electron diffraction
[10], often in the context of imaging. Retrieval of this inaccessible phase can be achieved by
interferometry and holography, where one source, having a trivial or a-priori known phase is
interfered with the signal of interest. Interferometry converts the phase modulation of the signal
into amplitude changes in the interference pattern via the cross term that mixes the amplitudes
and phases of both signals. Whereas in a simple interferometer a single phase is measured,
this idea can be extended to the measurement of multiple phases by spatial multiplexing, as
in holographic imaging. For imaging applications, holographic phase measurements can be
performed either in the spatial domain or in the Fourier conjugate frequency domain [11].
Both of these have been extensively utilized in various applications such as quantitative phase
imaging [7, 12] and multidimensional spectroscopy [13].

Yet, there exist many important physical scenarios where interferometry and holography are
not feasible, particularly due to the difficulty in generating a stable, well-characterized refer-
ence beam. In such cases, various indirect pathways to retrieve the phase have been developed,
known as coherent diffraction imaging (CDI) [2]. In CDI, a coherent wave illuminates an object,
and its far field diffraction pattern is measured. If the illuminated object has a finite support and
the diffraction pattern is sampled at a rate sufficiently higher than the Nyquist frequency such
that the number of independently measured intensities is more than the number of unknown
variables of the object, the phase information is commonly uniquely encoded in the diffraction
intensities [14, 15]. However, the uniqueness of the solution does not imply the existence of a
simple algorithm to retrieve it. In general, finding this solution is known to be a computation-
ally difficult problem [16]. In fact, some instances of the phase retrieval problem are known
to be nondeterministic polynomial (NP)-complete [17]. Over the years several iterative phase
retrieval algorithms have been derived [1, 18, 19]. Despite broad use and notable successes,
these iterative algorithms are associated with computational issues such as the convergence,
stagnation and robustness to noise.

Both approaches described above - holography and CDI - have been independently applied
in numerous applications [3, 5, 11, 20, 21]. In this paper, through a combination of these two
approaches, we propose and demonstrate double blind Fourier holography as a new tool for
2D phase retrieval. On the one hand, our proposed method takes advantage of the holographic
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approach by measuring two independent components of the signal of interest and their inter-
ference. On the other hand, due to the oversampling of the diffraction intensities, the compact
support can be utilized to overcome the absence of a well-characterized reference signal which
is essential in holography [11,12,22,23]. In our method, both signals can be viewed symmetri-
cally as an object and reference since both are unknown and can be, for instance, two arbitrary
objects. We thus call this setup double blind Fourier holography. In contrast to common iter-
ative 2D phase retrieval schemes, which in essence try to solve a challenging set of quadratic
equations, in our approach the compact support constraint is translated to a set of linear equa-
tions, enabling the use of standard linear algebra tools for its solution. Moreover, our scheme
allows a dimensionality reduction. Rather than solving a 2D problem, we dissect it into multiple
1D problems. The 1D case, whose properties were investigated in our previous work [24,25],
offers significant computational savings and is presented in more details below. Thus, this ap-
proach provides a direct and robust solution to the phase retrieval problem, without the need for
either an external known reference as in holography, or an iterative reconstruction procedure as
in CDL

Double blind Fourier holography can be realized in a broad range of experimental scenarios.
The two components of the signal can be associated with various attributes that yield different,
overlapping Fourier transforms, such as two polarization vectors, spin states, propagation direc-
tions or quantum paths. As a proof of concept, we experimentally demonstrate this new scheme
in a lensless optical imaging setup. In this case, our method might be viewed as holography in
which both the object and reference fields are unknown and are complementary regions of a
single 2D object. The fields are retrieved computationally using the compact support informa-
tion.

2. Lensless imaging: problem setup and related works

CDI is a potent tool that has found applications in physics, material sciences, nanoscience and
biology [3, 5,20, 21,26-29], recently attracting a significant attention in the context of X-ray
imaging. In CDI, an object is illuminated by a spatially coherent plane wave and its far-field
oversampled diffraction pattern is measured. For simplicity, we consider the case where the
diffraction pattern is proportional to the square of the 2D Fourier transform of the object.

In the basic approach to CDI, only a single diffraction pattern is acquired. In this case, most
phase retrieval methods are based on a combination of the oversampling method [14] with itera-
tive algorithms, such as the Gerchberg-Saxton algorithm [30] and variants thereof developed by
Fienup and others [1,7,17,18,31]. These iterative algorithms have to deal with computational
difficulties such as their potentially slow convergence, stagnation and robustness to noise.

In general, the computational difficulties associated with a single diffraction measurement
can be alleviated by an increased experimental complexity. One example is Fourier hologra-
phy [11,32], where a known reference beam is used to directly deduce the missing Fourier-
domain phase. This scheme can be difficult or even unfeasible to apply, as the reference arm
has to be interferometrically stabilized relative to the observed signal. An alternative approach
is ptychography, also known as scanning CDI [33]. Here, rather than measuring a single diffrac-
tion pattern, multiple parts of the object are repeatedly measured through a limiting aperture
at different spatial positions. The significant spatial overlap between the different exposures
yields additional consistency constraints that accelerate the convergence of the iterative recon-
struction algorithm. Ptychography has been successful in various scenarios [10, 34] and has
mitigated convergence and robustness issues. However, it is not applicable in certain scenarios,
such as few small and separated objects (compared to the scanning aperture size). Moreover,
unlike our method, the robustness of ptychography depends on the number of measured aper-
tures (See appendix E for comparison to ptychography).
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Other methods, which come with mathematical guarantees of convergence and noise-
robustness [35, 36], are computationally intensive and require an even higher degree of ex-
perimental complexity, for example by illuminating the sample through multiple masks with
known parameters and positions. Although promising, these have not yet been experimentally
demonstrated.

3. The proposed method

Our approach is based on diffraction pattern measurements of two independent signals, and
recovery of their interference. The interference measurement already reveals significant in-
formation about the relative phase between the signals. This is, however, insufficient for full
reconstruction since multiplication of both measured signals by a common phase pattern will
not alter the result of any of the measurements. We have previously shown that in the 1D case,
the constraint of a (possibly unknown) compact support is sufficient to fully resolve the phases
of both signals, as it constrains the common phase to a unique solution [24,25]. Moreover, this
solution can be obtained by solving a set of linear equations. This approach can be readily gen-
eralized to the 2D case. Yet, for a n x n image this would lead to a very large system of linear
equations with n? unknowns, not amenable to direct inversion.

A natural pathway to address this difficulty is to dissect the 2D problem into a set of many
independent 1D blind-holography problems and then properly stitch the 1D solutions to the 2D
one. This provides a direct pathway for solving the 2D double blind holography problem. The
reduced dimensionality is in general not possible in other phase retrieval schemes except for
zeros localization methods as in [37], since in general there is no unique solution to the 1D
phase problem. This reduction enables scalability of the reconstruction procedure to very large
images. In the following, we first briefly describe the attributes of the 1D scheme (also termed
VPR - vectorial phase retrieval), then show its generalization to two dimensions, and conclude
with an experimental demonstration in the optical domain.

The basic principles for the 1D case are summarized below. For simplicity we focus on the
noise-free measurement of a signal of length n with a known support of length n/2 (see appen-
dices A and B for a detailed description and [25] for a more general case of noisy measurements
of a signal whose compact support is unknown). Let us consider a two component vectorial sig-
nal Ej »(x;) of length n of which E »(x;) = 0 for i > n/2. Importantly, these two components
need not be scalar components of a particular physical vector. *Vectorial’ merely means that
the two components are packed in a vector form. The Fourier Transform of the signal is rep-
resented as £y 5 (k) = |E} 2(k)|e’?2(*) where k is the Fourier domain coordinate and ¢y » (k) is
the unknown phase in the Fourier domain. With |E »(k)|* and their interference, £} (k)E; (k)
as input, 1D VPR recovers the vector of 2n unknown phases X Lg(k) = ¢912(K) pased on the fol-
lowing set of linear equations. First, the interference measurements provide » linear equations,

E1(k)E5 (k)X (k) = |Ey (k)| Ex (k)| X1 (k) (D

Second, the known support provides n additional equations, which can be written using the
inverse Fourier transform. The following equality holds for all values of x outside the compact
support of E| »(x):
Y |E12(k)| X12(k)e™ =0 )
k
According to Egs. (1) and (2), there is a total of 2n linear homogeneous equations for 2n un-
known variables. The non-trivial solution is almost always unique up to multiplication by an
arbitrary global phase [25].
One can envision numerous applications of the extension of 1D VPR to two dimensions. As
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Fig. 1. Schematic layout of double blind Fourier holography in lensless imaging method.
(a) Three diffraction patterns are measured from a sample by varying the illumination area.
The varied illumination area is produced by a large (b) and two small (c) apertures. The
apertures are positioned in proximity to the sample (either before the object or after it). The
small apertures (b) are at two neighboring positions, their union covers the same area as the
large aperture (c).

an example, we focus on the case of lensless imaging. Such 2D phase retrieval problems have
been a subject of intensive studies, and remain a challenge in practical lensless applications.

The realization of 2D VPR in a lensless imaging scenario is schematically illustrated in
Fig. 1(a) in which an object is defined by a 2n, x n, aperture (Fig. 1(b)). As described above,
conventional lens-less methods reconstruct the object by first measuring a single oversampled
diffraction pattern and then applying an iterative algorithm. In 2D VPR, in contrast, we first split
the image into two parts Ey »(x,y), associated with the two smaller n, x n, apertures shown in
Fig. 1(c). These define the two vectorial components of the image. We then follow the scheme
illustrated in Fig. 2. The top panels in Fig. 2 show three 2D diffraction patterns, measured with
the two small apertures (denoted as |E (k)| and |E,(k)|?) and the large aperture (denoted as
|E3(K)|? = |Ey (k) + E2(k)[?). The 2D VPR scheme first determines £/ (k)3 (k) from the three
diffraction pattern measurements. The real part of this quantity is resolved by the following
identity,

-~

2Re[E1 (k)E3 (k)] = |E3(K)|* — |E2(R) > — |Ea (F) . 3)

)E>

Next, the imaginary part of £y (k) E; (k) is recovered by performing a Hilbert transform (see ap-

pendix B for more details). The real and imaginary parts are then combined to form £ (k) £} (k).
At this point, given |E; (k)|?, |E2(k)|* and E;(k)E;(k) we could apply our VPR scheme

directly (by applying a 2D version of Eqs. (1) and (2)). This, however, leads to a very large

system of linear equations with &(n?) unknowns. Instead, we now show how the 2D problem

can be dissected into a set of many 1D problems. This can be done by applying the 1D VPR

for each row and coloumn of the 2D signal separately, and then combining them together. To
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l Vertical Slicing

gl 1c 1d l|2d

l VPR column-by-column lVPR row-by-row

Stitching
-

X

Fig. 2. Image reconstruction based on double blind Fourier holography. The scheme is
demonstrated using experimental data of a sample consisting of the letters WIS. The sam-
ple is illuminated by a Gaussian laser beam. Top panel: three diffraction patterns measured
from the letter W (left), the letters IS (middle) and the entire WIS structure (right). Each
diffraction pattern is sliced into columns (middle left) and rows (middle right). For clarity,
only two columns and rows are shown. The rows and columns are then solved by the 1D-
phase-retrieval algorithm to obtain spatial-spectral maps (bottom left and bottom right pan-
els). The two reconstructed spatial-spectral maps are then stitched (see section 3) to form
the reconstructed object (bottom middle panel). The relative intensity of the reconstructed
letters WIS faithfully recovers the Gaussian illumination pattern used in the experiment.

this end, we decompose |E| (k)|2, |E2(k)|? and E, (k)E (k) into a set of 1D slices along the
horizontal direction, as schematically shown in Fig. 2 (for graphical clarity we describe only
2 such slices, denoted a and b). The slices of the three diffraction patterns are then combined
to form 1D vectorial signals. By using the 1D VPR scheme, we can directly retrieve the phase
vector associated with each slice up to an arbitrary global phase &) (for each 1-D slice),
which depends on the slice index k.

We repeat the above process in the perpendicular direction and obtain the phase vectors
associated with each vertical slice (denoted ¢ and d in Fig. 2), up to an arbitrary global phase
¢'V(&) | which depends on the slice index k. Finally, the 2D image is found by a consistent
stitching of the vertical and horizontal solutions. The two solutions, which represent the same
object, should be equal to each other up to a multiplicative factor ¢!(¥*)=9(&)) Their ratio is
therefore a rank 1 matrix, whose left and right eigenvectors are e/¥*x) and e=#*)_ These can
be easily found numerically by a singular value decomposition (SVD) and subtracted from the
reconstruction to give the correct 2D phase, which is consistent with the compact support in
both directions. For more details on the algorithm see appendices A-D.
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Fig. 3. Experimental demonstration of double blind Fourier holography in lensless imag-
ing. The sample (e) comprises of a transmission mask of a tree, milled onto a thin metallic
plate (the diameter of the circular sample is 3.5mm) The vertical black stripe in the mid-
dle (which is a part of the image) defines the two apertures. Panels a-c: Three diffraction
patterns measured from the two small and one large aperture, respectively. The two small
apertures were realized by constructing a movable slit to define the left and right parts of
the sample. d, 2D image reconstruction from the three diffraction patterns using 2D VPR.
The reconstructed image is in good agreement with the original sample structure.

4. Experimental demonstration

To illustrate the 2D double blind holography scheme, we built an experimental system based
on a He-Ne laser with a wavelength of 632.8 nm. The sample is a transmission mask milled
onto a thin metallic plate, shown in Fig. 3(e). Three diffraction patterns were acquired from the
sample by using two small apertures and a larger aperture. The illumination of the two small
apertures was achieved by constructing a movable slit to define two regions within the sample.
The diffraction patterns were measured by a charge-coupled device (CCD) at a resolution pro-
viding sufficient oversampling for direct phase determination. Figures 3(a)-(c) show the three
diffraction patterns, acquired with two small apertures and a large one, respectively. By using
the 2D phase retrieval scheme discussed above, we directly determined the phase information
of the diffraction intensity and reconstructed the sample structure (Fig. 3(d)), which is in good
agreement with the direct image of the sample (Fig. 3(e)). In our direct phase determination,
the size and position of the compact support were unknown and computationally identified by
our scheme (see appendix D for more details). In the experiment the object contained a zero
valued region which we used to define the boundary between the two different components. If
no such region exists, the experimental difficulty increases due to the necessity to prevent over-
lap between the two components. However, this is the only major alignment challenge, since
as long as there is no overlap, our method is oblivious to the exact shape and position of the
compact support.
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5. Conclusions

In conclusion, in this manuscript we propose and experimentally demonstrate a conceptually
new scheme for direct 2D phase determination, based on only three diffraction pattern measure-
ments. Our method reduces the 2D phase problem to a set of linear equations and is hence
scalable, efficient, and robust to noise. While the proof-of-principle experiment was conduct-
ed with an optical laser, this method can be readily adapted to the reconstruction of complex
objects using other sources such as high harmonic generation and synchrotron radiation. Al-
though we focused on the lensless imaging application in this manuscript, due to the ubiquitous
nature of the phase problem the proposed double blind Fourier holography scheme might have
applications in other fields as well.

Appendix A: general setup

The inputs of our proposed method are three measurements of diffraction patterns of an object
with a finite support: the first two, | £ (k)|? and |E>(K)|2, are both taken with a small aperture
at neighboring positions, aligned in the x axis. The third pattern, |E3(K)[? = |E (k) + E» (k) 2,
is taken with a large aperture of double size in the x direction (see Fig .1(b) and (c)). Under the
Fraunhofer approximation, each of the diffraction patterns £ 5 3 (75) is given by the 2D discrete
Fourier transform (DFT) of the corresponding Ej » 3(X). It is useful to recall that the 2D DFT
F»p can be represented as a sequence of two 1D DFT’s %, and %, in the x and y directions,
respectively:

74

Fx
E]('xvy) — E](k)ﬁy)

F,
2

Z'x

Ej(x, ky) - Ej(kkay)

Let the small aperture be of size n, X n, pixels and the larger aperture be of size 2n, X n,.
For simplicity, we consider sampling of the diffraction pattern at exactly the Nyquist rate of
E5 (the advantages of denser sampling will be discussed later), so that the measured intensities
|E1253 (k)|? are images of size 4n, x 2n,. These measured patterns are related to the original
signals Ej » 3(X) through a zero padded 2D DFT. Since we measure absolute values, the exact
location of the padding can be chosen arbitrarily, as it only introduces a multiplicative phase
factor.

The apertures implicitly introduce a finite support on Ej 5 3(X), of size at most n, x n,, for
E\,E; and 2n, X ny, for E3. Given the arbitrary choice of location for the zero-padding, without
loss of generality, we assume that in the spatial domain the three signal’s supports are given by:

Si = {x<n, and y<n,}
Sy = {ny<x<2n, and y <n,} 4)
S3 = {x<2n, and y <n,}.

Next, note that even though E () is supported on the subset of indices S and is zero elsewhere,
its 2D Fourier transform £ (75) is in general non-zero at all 4n, x 2n, pixels. The key principle
that allows dissection of the 2D VPR problem into a sequence of 1D problems is based on
the following observation: the intermediate 1D Fourier transforms, % E; and .%,E, do have a
finite support (see Fig. 4). In particular, E > (x,k,) are zero for x > n, and E3(x,k,) is zero for
x > 2n,. Similarly, E 5 3(ky,y) are zero for y > n,. This property, illustrated in Fig. 4, will be
useful in the developments below.
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Fig. 4. Fourier transform changes the support in the direction it acts, but maintain the sup-
port in the perpendicular direction.

Appendix B: reconstructing £, £; from |E, |, |E;|, |Es|

2, |E»|* and the interference

Our vectorial phase retrieval scheme requires, as input, both |E|

E (%)E; (k). The first two are directly measured. As for the third one, its real part can be easily
recovered from the diffraction measurements, since, as stated in Eq. (3):

1

Re[E\E;] = = (B3> — |Ei > — |Eo]) .

|

In our previous works [24,25] we assumed a fourth measurement |Ey| = |E| +iE,|, which
allowed recovery of the imaginary part by a formula similar to Eq. (3).

Here, we show how to recover the imaginary part without such an additional measurement,
but at the expense of sampling the Fourier transform at a higher rate. Indeed, this factor 2
sampling rate is implicit in our description, since we assumed measurements of 4n, Fourier
coefficients in the x direction (instead of 2n,, which is the Nyquist rate for Ey, E»).

To recover the required imaginary part, note that by the convolution theorem for 1D Fourier
transforms, . .

E\(K)E5 (k) = Zy [E1(x,ky) % Ex (40, — X, ky)]

where *, denotes convolution in the x direction. As Ej(x,k,) vanishes for all x > n, and
E»(4ny — x,ky) vanishes for all x < 3n,, their convolution E; (x,ky) %, E»(4n, — x,ky) has a sup-
port of size at most 2n, — 1. Moreover, its support is not arbitrary but rather given by the indices
x=2,...,2n,.

#214582 - $15.00 USD  Received 23 Jun 2014; revised 18 Aug 2014; accepted 25 Aug 2014; published 6 Oct 2014
(C) 2014 OSA 20 October 2014 | Vol. 22, No. 21 | DOI:10.1364/0OE.22.024935 | OPTICS EXPRESS 24944



Let us denote by R(x,k,) = ;! [Re{El (R)E; (%)}} and I(x, ky) = 7! [zm{El (R)E; (75)}] .
For any fixed k,, both R(x,k,) and I(x,k,) are vectors of length 4n,. From Eq. (5) it follows that

R(x,ky) is known and hence our goal is to recover /(x,ky). By the linearity of the DFT and the
fact that E (x, ky) *x E2(—x, ky) is non-zero only at the indices {2,...,2n,}, we have

R(x,ky)+1l(x,ky) =0 for x =1 and for x =2n,+1,...,4n,. 5)

That is, I(x,k,) = iR(x,k,) at these indices. Finally, since /(x,k,) is the inverse DFT of a real
valued function,

I(x,ky) = I"(4ny — x,ky).
Together with Eq. (5) this allows complete reconstruction of /(x,ky) from R(x, k).

Remark: The above scheme is intimately related to the Kramers-Kronig relations [38],
whereby the imaginary part of an analytic signal is recovered from knowledge of its real part. In
our setup the support of E| (x, ky) %, E2(x,ky) plays a role analogous to that of temporal causality
in the Kramers-Kronig case.

Appendix C: the 2D VPR reconstruction algorithm
As outlined in the main text, our proposed algorithm consists of three steps:
i) Reconstruct £ (k)E3 (k) from |Ey |, |E,], |Es);

ii Reconstruct the phases independently for each row and column of the 2D signal. At this

point we remain with an overall phase for each row and column which we denote by
ei¢<k}') and ei‘l/(kx).

iii) Reconstruct, up to a single global phase, the unknown phases e'? (k) and ei¥ (ko)

Step 1) was described in the previous section. For a more detailed description of the two
remaining steps, we now introduce some notations. First, recall our notation for the unknown
phases, £12(k) = |Ey2(k)|X1 2(k), where X 2(k) = ¢12() are the unknown phases to be re-
trieved. As discussed in the main text, for each fixed k, = m, we obtain a 1-D vectorial phase re-
trieval problem. For each fixed k, = m we combine the two unknown vectors of phases X (ky,m)
and X (k,,m) into a single unknown vector of length 8n,,

Xm = [X1 (kyx,m), Xa (ky,m)].

Following our previous works [24,25], the vector x,, can be recovered via the non-trivial solu-
tion to the following set of homogeneous linear equations

ApXpy = 0;

where the matrix A,, is of size 8n, X 8n,, and its entries are given by

. + jli+2nx)2m
|Ey(j,m)|e" o i <2ny,j < 2ny
|Ez(j—2nx7m)|ei% dny > 0> 2n,4n, > j > 2ny
(Am)i ;=1 E, (j—4ne,m)E5 (j—4nyg,m) j>dng, j—d4n, =i (©6)
—|E1(j—4ne,m)||E2(j — d4ny,m)|  j>dny, j=i
0 otherwise
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As proven in [25], for spectrally independent signals in the ideal case of noise-free measure-
ments, the matrix A,, has a singular value 0 with multiplicity one, whose corresponding singular
vector (upon proper normalization) is a phase vector yielding the exact solution to the phase
retrieval problem.

In the presence of noise, we look for the column of A,, with maximal norm, and set the
corresponding entry of x,, to one. We denote the vector x,, without this index by X,,—, the
corresponding column of A, by a), and the matrix A,, without this column by (A,,) _. For each
ky, = m, we then compute the minimizer X,, of |[(A;)—Xpu— — a,1n||2. This recovers X, up to
an unknown multiplicative phase €% If the data is over-sampled at a rate higher than the
Nyquist rate, then there are more equations than unknowns, which improves the robustness to
noise.

Next, we repeat the above procedure in the perpendicular direction, solving for k, = m the
unknown phases ym, = [X; (m, ky), X2 (m, ky)] up to an unknown multiplicative phase !¥(¥).

At this point, since the 1-D VPR was applied independently to each row and column, we are
left with an overall unknown phase for each one, denoted by ¢'¢(*) and e1¥(%x) The last step in

reconstructing the 2D object E »(x,y), is to recover the those phases. To this end, we construct
the matrix z(ky,ky) = % where x(ky,ky) and y(k,k,) are the phases reconstructed in the
previous step (by applying 1-D VPR) for the rows and the columns respectively, and the ratio is
defined element-wise. This is implemented by multiplying x(ky, ky) by the complex conjugate
of y(ky,ky) instead of using explicit division. Since in the noise free case both x and y contain
the exact phase of 177172(7{)) up to a multiplicative phase factor V() or &) their ratio is of
the form:

2l ky) = k) itot)-wiko).

y(ky, ky)
Namely, z(ky,ky) is a rank 1 matrix, whose left and right singular vectors are V) and 100,
Via an SVD of this matrix we thus recover the unknown phase factors V@) and 7190, Sub-
tracting these from x(ky, k) and y(k, ky) respectively gives the solution of the phase problem.
Table 1 summarizes the algorithm for solving the 2D phase problem with the proposed ex-
perimental setup.

Appendix D: unknown compact support

The algorithm described above assumes a known compact support, which is not always the
case. To deal with this issue, the 1-D vectorial phase retrieval algorithm in fact contains a
model selection step which estimates the compact support, as described in [25]. The basic
idea behind this step is that while the system of linear equations we solve always has some
solution (in least squares sense), for incorrect assumed compact support, the matrix A,, either
has a minimal singular value strictly larger than zero, or has multiplicity at the zero singular
value. In both cases, the resulting solution is not a phase vector and upon normalization into a
phase vector it has a larger residual energy outside the assumed support. Thus, by scanning the
possible supports length and checking the residual outside the assumed support we can estimate
the correct support length. Note that our scan for the support size is not a 2D scan, as we can
look for the support length separately for the rows and for the columns.

Figure 5 shows the results of the compact support model selection scans for the data shown
in figure 3 of the main text. The x axis represent the assumed support length and the y axis
represent the normalized energy of the VPR solution outside the assumed support, as described
in [25]. The estimated compact support is the x value for which the energy outside the compact
support is minimal
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Table 1: Algorithm for solving the vectorial lensless phase problem
Algorithm Solution of the 2D phase problem

Input: |E, (k)|2 |E2(K) %, |E3(K)|2, ny, ny.
Algorithm:
1: Compute £ (k)

~ JiR(x,ky) x < 2n,

(iR(4ny —x,ky))*  x>2n,

d: E1(k)E} (k) = Z [R(x,ky) +1I(x,ky)] .
2: Solve the vectorial phase retrieval line-by-line.

For m = 1...2n, do:

Compute the minimizer %,, of ||(4,)_x_ —al ||

End For.
3: In a similar manner, solve the vectorial phase retrieval row-by-row, and get yp,.
4: Find the y dependent phase.

. — X(ky ky)
a: Compute z(ky, ky) = y(kx.k;)
b: Find L, the largest left singular vector of the matrix z

C: X] 2= xL*
5: Reconstruct the image: E1 2 (x,y) = Z5) [|E12|X1 2]
Output: £;,(x,y).

o N o

Energy outside support [Arb. units]

Energy outside assumed support [Arb. Units]

0 75 80 85 90 95 100 10%40 145 150 155
Assumed Support t [Arb. units] Assumed support © [Atb. Units|]

o
of
g

65 7 160

Fig. 5. Estimating the compact support: The right panel shows a scan over the support of the
horizontal axis. The left panel shows a scan over the assumed support of the small aperture
in the vertical axis.

Appendix E: comparison to Ptychography

Ptychography is a lensless imaging method in which the image is reconstructed from a series of
diffraction patterns, each taken with the same aperture at a different location. The spatially over-
lapping regions between the shifted aperture locations are used as additional constraints in the
phase retrieval procedure. The image is reconstructed using an iterative reconstruction method,
known as PIE (Ptychographic Iterative Engine). The experimental similarity between PIE and
double blind Fourier holography (DBFH) is obvious: both methods require illumination of the
sample with multiple different (or shifted) apertures. However, the working principle is quite
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different as are several computational and experimental aspects. In the following we list some
of the similarities and differences between the methods, followed by numerical reconstructions
for the noise-free and noisy cases for comparison.

1. Principle of operation: PIE is based on Fienup-type iterative algorithms utilizing com-
pact support and additional constraints from the multiple aperture positions (and possibly
other object dependent constraints). In contrast, DBFH is based on a holographic scheme
without a known reference field, and compensates for the absence of a known reference
by using the compact support constraint. As a consequence, while PIE iteratively solves
a nonlinear problem, DBFH uses the interference term to reduce it to a linear one, solved
by linear algebra tools.

2. Convergence: PIE has no mathematical guarantees of convergence to the exact solution
even for the noise-free measurements (even though in practice it does converge for many
cases). In contrast, DBFH is based on solving a set of linear equations, which is guaran-
teed to yield the correct solution if it is unique, which is the general case [39].

3. Apertures positioning: PIE requires one aperture while DBFH requires two apertures of
different dimensions. While PIE is sensitive to the exact positioning of the apertures [40]
DBFH only requires that there is no overlap between the small apertures. Moreover, if
there is a zero valued region within the objects (or simply two separated objects), as in
this paper, this potential difficulty of DBFH is also alleviated.

4. Number of apertures: PIE depends on the number and overlap of the apertures (to get
sufficient additional constraints). In fact, for the object below, PIE did not converge to
the correct solution using only 3 aperture positions. In contrast, DBFH requires exactly
3 apertures.

5. Small objects: PIE cannot be used for objects which are significantly smaller than the
mask. In contrast, for DBFH it is possible to image two separate small objects, measuring
the diffraction from each of them separately and from both of them together.

6. Numerical experiment: In practice, as numerically demonstrated below, PIE converges
very quickly to the correct solution, almost irrespectively of the choice of the initial guess,
for some objects. Yet, for other objects, it stagnates at local minima and almost never
reconstructs the object correctly. Exact conditions for convergence of ptychography are
not known. For example, as can be seen below, for the object reconstructed in this paper
(see Fig. 3) PIE does not converge to the correct solution even in the noise-free case (for
5 aperture positions with 50% overlap). In contrast, for noise-free measurements DBFH
always reconstructs the object if the problem has a unique solution.

To compare noiseless reconstructions, we considered two different objects: the Weizmann
tree mask on which we performed our experiment (object 1) and the sample (object 2) proposed
in http://www.psi.ch/sls/csaxs/PublicationsEN/thesis_dierolf.pdf, which is also the source for
the PIE matlab code we used for the simulations. In both cases, PIE does not converge to
the correct solution with 3 aperture positions used, but converges to a reasonable solution for
5 positions with 50% overlap. For object 2, PIE always converged to nearly the exact solution
after about 150 iterations (Fig. 6). In contrast, it never converged to the exact solution for object
1, though the reconstruction is similar to the original object (Fig. 7). DBFH reconstructed both
objects exactly (with an error comparable to the machine error). A detailed study of the reason
why PIE does not converge for some objects is beyond the scope of this work.
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Fig. 6. PIE reconstruction of object 2 with 5 aperture positions and 50% overlap: Left -
original object. Right - its reconstruction after 500 iterations. The reconstruction is nearly
perfect.
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Fig. 7. PIE reconstruction of object 1 with 5 aperutre positions and 50% overlap: Left -
original object. Right - its reconstruction after 1000 iterations. Bottom - Error vs. itera-
tion number. As can clearly be seen, the algorithm stagnates at a non-zero error, and the
reconstruction is not perfect even for the noise-free case.

In order to compare robustness to noise, we performed a Monte-Carlo simulation, in which
we used noisy diffraction patterns to reconstruct the objects, and plotted the median of the
reconstruction mean squared error (MSE) as a function of the noise level. The median is plotted
rather than the average, since there exist rare events in which the PIE doesn’t converge to a
reasonable reconstruction. These bias the average but not the median. 100 realizations of an
uncorrelated zero mean Gaussian noise were used. For PIE we used 5 aperture positions with
50% overlap. We performed the numerical simulations for both object 1 and object 2, as can
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be seen in Fig. 8. Since PIE uses 5 positions and DBFH 3 aperture positions, the overall signal
to noise ratio in PIE is higher. This explains the differences in the reconstruction error at low
noise level of object 2.
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Fig. 8. Reconstruction error vs. noise level: Left - object 1, Right - Object 2.
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