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Abstract

Active Learning (AL) is increasingly im-
portant in a broad range of applications.
Two main AL principles to obtain accu-
rate classification with few labeled data
are refinementof the current decision
boundary andexplorationof poorly sam-
pled regions. In this paper we derive
a novel AL scheme that balances these
two principles in a natural way. In
contrast to many AL strategies, which
are based on an estimated class condi-
tional probability p̂(y|x), a key compo-
nent of our approach is to view this quan-
tity as a random variable, hence explic-
itly considering theuncertaintyin its es-
timated value. Our main contribution
is a novel mathematical framework for
uncertainty-based AL, and a correspond-
ing AL scheme, where the uncertainty
in p̂(y|x) is modeled by a second-order
distribution. On the practical side, we
show how to approximate such second-
order distributions for kernel density clas-
sification. Finally, we find that over a
large number of UCI, USPS and Caltech-
4 datasets, our AL scheme achieves sig-
nificantly better learning curves than pop-
ular AL methods such as uncertainty sam-
pling and error reduction sampling, when
all use the same kernel density classifier.

1 INTRODUCTION

In many applications, including computer vision
and natural language processing, unlabeled data
abounds while procuring labels for training is
costly. Pool-based active learning (AL) schemes ju-
diciously select those among the unlabeled points
that are deemed most informative, and thought to
help achieve a steeper learning curve. The prospect
of reduced labeling effort has spurred intense ef-
forts to improve AL. On the theoretical side, sev-
eral works considered the sample complexity and
potential benefits of AL, see (Beygelzimer et al.,
2009; Balcan et al., 2010; Hanneke, 2011). On
the practical side, various works suggested concrete
AL schemes, recently e.g. (Huang et al., 2010; Sid-
diquie and Gupta, 2010), with large gains over ran-
dom labeling in various applications, see (Settles,
2010) for a comprehensive review.

In this paper we focus on pool based AL. We first re-
view a potential weakness common to many popular
AL methods, and then derive a new pool-based AL
scheme. In a pool-based setting, one typically starts
with a small (possibly empty) set of labeled samples
L = {xi, yi}

ℓ
i=1, and a large pool of unlabeled sam-

plesU = {xj}
n
j=ℓ+1. Most pool-based AL schemes

rely on a classifier – or more precisely, a regressor
– that outputs not only a predicted class labelŷ at
a new samplex, but also an estimatêp(y|x) of the
conditional class probabilitiesPr[Y = y|X = x]
for all classesy. Then, sequential one-step looka-
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Figure 1: Active learning on the XOR problem. Small black symbols are unlabeled data, large colored
symbols are the labeled ones. (a) Class-conditional probability and decision boundary estimated by kernel
density classification, with labeled data in only 3 out of 4 quadrants. (b), (c) Training utility values (TUV)
of uncertainty sampling and the proposed DEAL, lighter color representing a higher TUV. Uncertainty sam-
pling prematurely concentrates on local refinement of the current decision boundary. DEAL keeps exploring
before reverting to refinement. (d) Resulting learning curves.

head AL schemes compute a Training Utility Value
(TUV) for any unlabeled sample, and query the la-
bel of the sample with largest TUV.

One popular and successful AL strategy is uncer-
tainty sampling (US) which iteratively selects the
sample whose current class prediction is least con-
fident1 (Baum, 1991; Hwang et al., 1991; Seung
et al., 1992; Lewis and Gale, 1994).

Another common strategy is to query that sample
whose inclusion in the training set may contribute
most towards a “confident” classification. Here,
confidence is measured by the entropy of the class
conditional probabilities, or the expected estimated
risk (MacKay, 1992; Roy and McCallum, 2001;
Zhu et al., 2003): the more assertive the resulting
classifier, the better, according to these algorithms.
A variant in the regression context has been pro-
posed in (Boutilier et al., 2003).

Yet another popular AL strategy is to select samples
that minimize the uncertainty in the estimated pa-
rameters of a classifier, e.g. by maximally reducing
the version space of a SVM (Tong and Koller, 2002)
or by minimizing the variance of the parameter es-

1Note that this can be defined in many possible ways,
in particular in multi-class settings.

timates in multinomial logistic regression (Schein
and Ungar, 2007).

A common theme to all these AL schemes is their
use of point estimateŝp(y|x), possibly combined
with density estimateŝp(x), but without consider-
ation of the inherent random uncertainties in these
quantities. By definition,̂p(y|x) is estimated from
the finite, and often small, currently labeled setL.2

Hence, at anyx, p̂(y|x) is a random variable, which
may have small bias and variance in some regions,
but high uncertainty in others.

In this paper, we propose to capitalize on this seem-
ing flaw, and to put the unavoidable uncertainty in
the estimateŝp(y|x) at the very heart of a novel AL
scheme: Distributional Estimate Active Learning
(DEAL). First, in Section 2 we propose to quantify
the uncertainty in the estimatêp(y|x) via asecond-
order distribution, see Eq. (1). Next, in Section 3
we show how such a second-order distribution can
be approximated for kernel density classification;
and in Section 4 we show how such distributions
can be used, in a principled mathematical frame-
work, for uncertainty-based AL. In Section 5 we
show empirically that with a baseline implementa-

2And, in the case of semi-supervised active learning,
also from the unlabeled setU .



tion using kernel density classification, DEAL per-
forms significantly better than two highly popular
AL schemes and random sampling in a thorough
benchmark on more than 40 classification prob-
lems from the UCI (Frank and Asuncion, 2010) and
USPS (LeCun et al., 1990) databases, and on an im-
age classification task using the Caltech-4 dataset.

Our approach is somewhat related to the mini-
mization of uncertainty in Gaussian process regres-
sion for space-filling experimental design (Sacks
et al., 1989). In the machine learning commu-
nity, several works devised efficient approximations
for the intractable posterior distribution in Gaussian
process classification models (Nickisch and Ras-
mussen, 2008). In particular, these distributions
were used to compute Bayesian predictive distribu-
tions (Snelson and Ghahramani, 2005), which for
classification arepoint estimatesof the class condi-
tional probabilities. Gaussian processes were also
used for active learning, though there the authors
suggested to label those samples whose normalized
margin is smallest (Kapoor et al., 2007). Thus, even
though second-order distributions were derived for
logistic regression and Gaussian processes, to the
best of our knowledge, these have not been used
in AL for classification. In this paper we thus em-
phasize the importance, use, and potential benefit
of second-order distributions in AL classification
problems. As discussed in Section 6, second-order
distributions may see potential use beyond AL.

2 CLASSIFIER UNCERTAINTY
AND ACTIVE LEARNING

In statistical pattern recognition, agreement prevails
that a classifier should not be forced to make a pre-
diction unless reasonably confident about it. This
principle is formalized by introducing an auxiliary
“doubt” class that the classifier can always vote for,
at a fixed cost (Ripley, 2008). In the generic case of
a symmetric loss function, minimizing the expected
risk leads to an algorithm that, given a samplex,
votes for the class with highest conditional proba-
bility, ŷ = argmaxy p̂(y|x), provided that the ex-
pected loss of this decision is smaller than the fixed

cost of the “doubt” class.

The “doubt” class captures the uncertainty of a pre-
diction ŷ at locationsx where no class is clearly
dominant. Even if the class conditional probabilities
are perfectly known, this type of “first-order” uncer-
tainty is still present wherever two classes overlap
in feature space. As a direct consequence to AL, if
the current labeled set makes it quite clear that two
classes are equally probable at some region in fea-
ture space, it is futile to attempt reducing this first-
order uncertainty by requesting more labels there!

In practice,p(y|x) is unknown, and thus estimated
from a finite training set. This induces asecond
kind of uncertainty: not only how confident are we
in the predicted label̂y, but also how accurate is
our point estimatêp(y|x). An inaccurate point esti-
mate may result in a misleading classifier that errs
and votes for the wrong class, with a class condi-
tional probability margin that is deceptively large.
Asking for the label of additional training samples
in such regions can result in a decisive change in
the current decision boundary. Hence, samples with
highly uncertain class conditional probability esti-
mates should be prime candidates of a good AL cri-
terion. A point in case is the classical XOR prob-
lem, illustrated in Fig. 1. Starting with 10 labeled
data in only 3 out of 4 quadrants (an event whose
probability is∼20% with 10 randomly selected la-
beled data), nearest-neighbor type classifiers give
an erroneous prediction at the remaining quadrant,
with a deceptively large margin. Consequently, AL
schemes based on̂p(y|x) do not sample points in
the remaining quadrant. This overconfidence of AL
schemes was also noted by (Baram et al., 2004),
who suggest to label at random once in a while.

Motivated by the above insights, in this paper we
derive an AL scheme that incorporates this random-
ness inp̂(y|x) in a natural way. The key ingredient
in our scheme is asecond-order distribution

Gx(q) = Pr[p̂(y = 1|x) ≤ q] (1)

which measures our uncertainty in the point esti-
mate p̂(y|x). Before deriving the DEAL scheme,
we first show how such a second-order distribution
can be estimated for the kernel density classifier.



3 SECOND-ORDER
DISTRIBUTIONS FOR THE
KERNEL DENSITY CLASSIFIER

Kernel density classification is a prototypical non-
parametric generative classifier. While with lim-
ited training data this classifier will likely have a
lower accuracy compared to modern discriminative
classifiers, we choose it since it is:(i) conceptu-
ally simple and easy to implement,(ii) usable in all
the active learning criteria that we wish to bench-
mark and(iii) representative of an entire class of
more advanced methods. While beyond the scope
of this paper, second-order distributions can also be
derived for discriminative classifiers, and then used
in our AL scheme.

For simplicity, in the rest of this paper we focus on
the binary classification problem, with class labels
y ∈ {−1,+1}. To derive second-order distribu-
tions for the unknown class probabilitiesp(1|x) =
Pr[Y =1|X=x], we use Bayes rule

p(1|x) =
p(x|1)π1

p(x|−1)π−1 + p(x|1)π1
(2)

with πy the prior probability for classy. In kernel
density classification, the unknown class densities
p(x|1) and p(x|− 1) are replaced by their Parzen
window estimates. To derive second-order distribu-
tions, we thus need to approximate the distribution
of these point estimates.

Let K be a normalized (
∫
K(u)du = 1) isotropic

kernel. Then the kernel density estimate

p̂(x|Y =y) =
1

ny

∑

xi:yi=y

K (x− xi) (3)

is a random variable. With only a single observation
from classy (ny = 1), the exact distribution of this
random variable is given by

Pr[p̂(x|y) ≤ z] =

∫
1 (K(u− x) ≤ z) p(u|y)du

(4)
This distribution depends on the location of the
queryx, on the kernel functionK and on the un-
known densityp(x|Y = y). Qualitatively, for non-
negative and monotonically decaying kernelsK, the

resulting density must be zero forz < 0 and for
z > K(0). Forny i.i.d. observations from classy,
the distribution of the class density kernel estimate
is given by any-fold convolution of the probability
density that corresponds to Eq. (4).

Since the exact densityp(x|Y = y) is unknown
(otherwise no learning would be necessary), we
resort to an approximation of the distribution of
p̂(x|y). Key requirements are that the approximate
distribution be continuous, infinitely divisible, have
no mass atz < 0 and its derivative should de-
cay to zero asz → ∞. A good candidate meet-
ing these criteria is the Gamma distribution which,
with its shape and location parametersk andθ, is
also sufficiently rich to faithfully model a variety
of situations that arise in practice. A standard esti-
mate of mean and variance of the kernel density es-
timate (Ḧardle et al., 2004, chap. 3) allows to apply
the method of moments and obtain the shape param-
eterky = nyp̂(x|Y =y)/C2 and location parameter
θy = C2/ny, whereC2 =

∫
K2(x)dx.

When the class priorπy is estimated by the ratio
ny/n, we obtain the following approximate distri-
bution for the random variablêp(x|y)

p̂(x|y)π̂y ∼ Γ
(
δ +

ny p̂(x|y)
C2

, C2

ny
·
ny

n

)
. (5)

Here,δ is a small positive constant added both to
regularize Eq. (2) in low-density regions, and to
guarantee that the shape parameter of the Gamma
distribution is strictly positive, even when no la-
beled observations are available yet for classy.

With θ := C2/n, inserting Eq. (5) into Eq. (2) gives

p̂(Y =1|x) ∼
Γ(δ + k1, θ)

Γ(δ + k−1, θ) + Γ(δ + k1, θ)

= Beta(δ + k1, δ + k−1) = Beta(α, β) (6)

In particular, for ad-dimensional isotropic Gaussian
kernel with bandwidthh, we obtain

ky = 2d/2
∑

xi:yi=y

exp
(
−‖x− xi‖

2
/2h2

)
. (7)



4 DISTRIBUTIONAL ESTIMATE
ACTIVE LEARNING (DEAL)

Our novel AL scheme requires a method (for in-
stance the one described in the previous section, or
a Gaussian process classifier) that outputs a second-
order distributionGx(q), Eq. (1).

Our point of departure in deriving our AL scheme,
is the following key observation (Friedman, 1997):
The performance of a classifier, as measured by its
misclassification error, depends only on the location
of its decision boundary, and not on the precise esti-
mates of the conditional class probabilities. In par-
ticular, inaccurate point estimateŝp(y|x) may still
yield the optimal Bayes classifier as long as they re-
sult in the same decision boundary.

A second-order distribution can thus help assess
the uncertainty in the currently estimated decision
boundary. In more detail, given a second-order dis-
tribution with densitygx(q)= d

dqGx(q), we can ex-
tract a point estimate for the posterior probability

p̂(1|x) =

∫ 1

0

q gx(q)dq (8)

and a corresponding classifier, which for a symmet-
ric loss function is simply

f̂(p̂(1|x)) = sgn(p̂(1|x)− 1/2). (9)

The goal of classification is to build a classifierf̂
that minimizes the overall risk

R =

∫
R[x, f̂ ]p(x)dx (10)

where the local risk atx is

R[x, f̂ ] = EY [L(y, f̂)] =
∑

y=±1

L(y, f̂)p(Y = y|x).

(11)
In general, the exact local risk atx is unknown,
as we do not know the exact posterior probabilities
p(y|x). Replacing these by their estimates gives

R̂[x, f̂(p̂(1|x))]=
∑

y±1

L(y, f̂(p̂(1|x))) p̂(y|x).

(12)

Note that this formula does not take into account the
inherent uncertainty in the estimatep̂(y|x). For ex-
ample, a second-order distributionGx(q) with some
spread and expectation of 1/2 implies thatp(1|x)
could be much different from 1/2! In such cases,
Eq. (12) is hence overly pessimistic.

A second-order distribution mitigates the over-
pessimism in such regions. A more balanced esti-
mate of the risk that takes into account a second-
order distribution is

ÊR[x]=Eq[R̂[x, f̂(q)]=

∫ 1

0

∑

y

L(y, f̂(q))gx(q)dq

(13)
The intuition behind this estimate is as follows: if
the second-order distribution has significant mass
near both limits of its domain (i.e., it has a high
density for values ofq = p̂(y|x) close to 0 and
1), then it may be possible to construct a classi-
fier with low risk atx, by querying additional la-
bels in its neighborhood. As an extreme example,
consider a second-order distribution forp̂(Y =1|x)
given by Bernoulli(0.5), which implies that the con-
ditional probability of class +1 is either 0 or 1.
Then, R̂[x] = 0.5, but ÊR[x] = 0. This fact is
taken into account by Eq. (13) but not by Eq. (12).

It is easy to prove that for any densitygx(q), from
which p̂(1|x) andf̂ are derived via Eqs. (8) and (9),
R̂[x] ≥ ÊR[x]. Moreover, equality holds iff the en-
tire mass of the second-order distribution lies on one
side of the decision threshold, or if it is a Dirac dis-
tribution at 1/2. Interestingly, in these two cases it
is of no benefit to query the label atx.

These properties suggest that the differenceR̂[x]−

ÊR[x] is a good indicator for the potential impor-
tance of acquiring a label atx, though other choices
seem possible. Consequently, taking also into ac-
count that theoverall risk is a density-weighted
mean of the local risk (see Eq. (10)), we propose
the following training utility value (TUV):

TUV (x) =
(
R̂[x]− ÊR[x]

)
· p̂(x) (14)

where p̂(x) is some (non-parametric) estimate of
the density atx. The weighting by the total den-
sity concentrates the learning effort on those regions



Table 1: One iteration of DEAL

Algorithm DEAL

Input: Labeled setL, unlabeled setU .
Output: Selected samplex ∈ U

and its labely(x)
Algorithm:
1: compute density estimatêp(x)
2: for all x ∈ U do

- compute second-order distribution
of p̂(Y =1|x) by Eq. (6)

- computeTUV (x) by Eq. (14)
3: query labely of x ∈ U with largestTUV
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Figure 2: Training utility values, as a function of the
two parametersα/(α + β) andα + β in a second-
order distribution of typeBeta(α, β), for space-
filling experimental design (Sacks et al., 1989), un-
certainty sampling and DEAL. Roughly,α andβ
measure the local amount of evidence for either
class (Eqs. (6),(7)). Not taking sample density into
account, the most interesting points for DEAL are
those with little evidence for either class as yet (A),
followed by points with evidence for both classes
(B), followed by points with strong evidence for
one and little for the other class (C). In contrast, US
merely takes into account the distance from the de-
cision boundary, pretending (A)≡(B). Space-filling
experimental design prefers unexplored regions, re-
gardless of their estimated class conditional proba-
bilities, so that (B)≡(C).

of feature space that are actually relevant. Table 1
describes the pseudo-code of a single iteration of
DEAL. Of course, the density estimatêp(x) need
be computed only once at the start of the AL pro-
cess. Fig. 2 compares the TUV of DEAL to criteria
used in experimental design and for US.

5 RESULTS

We compare the empirical performance of DEAL to
that of random sampling (RS), uncertainty sampling
(US) (Lewis and Gale, 1994) and error reduction
sampling (ERS) (Roy and McCallum, 2001). For
a meaningful comparison, all methods use the same
kernel density classifier, with an isotropic Gaussian
kernel whose bandwidth is chosen according to the
normal reference rule (Scott, 1992, chapter 6). The
densityp̂(x) in Eq. (14) is also estimated by kernel
density estimation with the same kernel and band-
width selection rule.

As is well known, non-parametric kernel density es-
timation with a limited number of samples may be
highly inaccurate in high dimensions (Scott, 1992,
chapter 7). Therefore, we first project the data to its
d leading principal components, where the dimen-
siond is chosen according to the resampling via per-
mutation scheme of (Zhu and Ghodsi, 2006), with
the minimum number of components set to two.

We always start with an empty setL of labeled
points. In case of RS, US and ERS, the first query
points are selected randomly until there is at least
one label for each class. In case of DEAL, its deter-
ministic strategy can be applied from the very be-
ginning, with the first label requested for the point
with the highest density estimate. In all our exper-
iments, we setδ = 0.5, consistent with Jeffreys’
prior for the Bernoulli distribution (Jeffreys, 1946).

5.1 UCI DATA SETS BENCHMARK

We considered 32 of the most frequently used UCI
data sets3. Each dataset was preprocessed as fol-
lows: (i) Categorical variables with more than two
outcomes were replaced by #outcomes−1 indica-
tor variables,(ii) missing values in categorical vari-
ables were treated as a separate outcome,(iii) miss-
ing values in continuous inputs were replaced by
the respective mean, and(iv) the data was normal-
ized to unit variance in each dimension. If a dataset

3We excluded datasets with only categorical variables,
or with significant missing data. We did not exclude
datasets on which our AL scheme did not perform well.



had more than two classes, the classes were joined
to create binary problems such that the new classes
were approximately equally abundant.

All results are obtained from 10-fold cross valida-
tion (CV), i.e., nine tenths of the data were used in
active learning, with one tenth reserved for testing.
To average out the randomness of the initial labeling
for RS, US and ERS, all experiments are repeated 5
times for each of the 10 CV folds. Fig. 3(a) shows
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Figure 3: Learning curves for two data sets
(“Pendigits” and “USPS, Grouping 10”) where
DEAL works well. Note that DEAL does not out-
perform the competing methods on every single
data set, but on average across multiple data sets
(see tables). The top horizontal line is the asymp-
totic performance of the classifier, at the end of the
complete learning curve (estimated by 10-fold CV
for UCI and on separate test set for the USPS data).

the learning curve for the Pendigits dataset. All oth-
ers appear in the supplementary material.

To reward both initial steepness of the learning
curve and early convergence to a high accuracy, we
propose to measure performance by the area un-
der the learning curve. All curves are truncated
when the worst method achieves 90% of the accu-
racy of the classifier trained with the completely la-
beled training data4, but at the latest after 200 itera-
tions. As we compare only the relative performance

4Defined as the average of the 10-fold CV accuracies,
each with a different set of 9/10 of the data fully labeled.

Table 2: Average accuracy of the compared AL
strategies for 32 data sets from the UCI database
with preprocessing as described in text, wheren is
the total size of the data set andd the dimension
of the PCA subspace. The mean rank is computed
based on ordering the performance of the AL strate-
gies for each data set. The best and second best
methods are indicated by bold font and italics, re-
spectively. The mean rank test statistic is used for
the statistical hypothesis tests described in the text.

Dataset (n,d) RS US ERS DEAL
Anneal (898,17) .813 .849 .802 .857

Audiology (226,9) .664 .650 .680 .666
Autos (205,14) .653 .638 .614 .678

Balance S. (625,2) .717 .705 .716 .715
Breast C. (286,16) .644 .656 .640 .617
Breast W (699,2) .807 .835 .820 .855
Dermatol. (366,4) .802 .841 .789 .878
Diabetes (768,2) .684 .682 .687 .695

Ecoli (336,3) .796 .793 .793 .852
Glass (214,4) .646 .688 .669 .668

Heart C (303,8) .733 .722 .748 .753
Hepatitis (155,7) .782 .796 .781 .801

Hyperth. (3772,11) .863 .889 .865 .919
Ionosphere (351,5) .782 .802 .817 .841

Iris (150,2) .793 .809 .807 .924
Led 24 (1000,2) .667 .643 .667 .695
Letter (20000,5) .631 .627 .632 .652

Liver (345,2) .530 .541 .516 .539
Lymph (148,9) .671 .712 .681 .692

Optdig. (5620,18) .819 .849 .791 .887
Pendigits (7494,5) .783 .804 .783 .861
Primary Tu (339,9) .652 .650 .647 .696
Satimage (6435,3) .777 .819 .790 .852
Segment (2310,3) .830 .741 .737 .871

Sonar (208,8) .695 .714 .699 .725
Soybean (683,20) .786 .811 .764 .831
Vehicle (846,4) .720 .736 .721 .734

Vote (435,8) .803 .799 .812 .841
Vowel (990,16) .671 .540 .627 .694

Waveform (5000,2) .767 .793 .787 .787
Wine (178,3) .831 .847 .856 .895
Yeast (1484,2) .571 .562 .577 .592

Mean Rank 3.09 2.56 2.97 1.38

of different AL strategies for the same classifica-
tion algorithm, this measure is equivalent to the one
proposed in (Baram et al., 2004) and also used in
(Schein and Ungar, 2007). The results for all data



Table 3: Average accuracy of the compared AL
strategies for 10 different groupings of the USPS
Zip Data with preprocessing as described in text.
The best and second best method are indicated using
bold font and italics, respectively. The mean rank is
computed based on ordering the performance of the
AL strategies for each grouping.

Grouping RS US ERS DEAL
{1, 2, 3, 4, 5} 0.777 0.807 0.829 0.832
{0, 1, 2, 3, 4} 0.786 0.808 0.831 0.837
{1, 3, 5, 7, 9} 0.782 0.819 0.832 0.830
{0, 1, 7, 8, 9} 0.774 0.811 0.817 0.830
{1, 3, 4, 5, 9} 0.793 0.810 0.828 0.838
{1, 2, 3, 7, 8} 0.782 0.797 0.825 0.833
{0, 1, 6, 8, 9} 0.777 0.813 0.824 0.846
{0, 5, 6, 7, 9} 0.777 0.805 0.815 0.830
{0, 2, 4, 5, 8} 0.750 0.805 0.815 0.821
{3, 4, 5, 6, 9} 0.791 0.799 0.825 0.840
Mean Rank 4.000 3.000 1.900 1.100

sets are presented in Table 2.

We compare the performance of the different strate-
gies as recommended in (Demšar, 2006). The Fried-
man test, which uses the mean performance ranks of
Table 2, yields ap-value ofp = 2.53× 10−9 for the
null hypothesis of equal performance of all strate-
gies. For comparing all classifiers to each other, we
use the two-tailed Nemenyi test. At a1% signif-
icance level its threshold for differences in Mean
Rank is1.004. This means that DEAL performs
significantly better than each of the other strategies.
The performances of the other methods do not differ
significantly from each other, even at the10% level
(corresponding to a threshold of0.739).

5.2 USPS ZIP DATA

To obtain challenging classification tasks with con-
voluted decision boundaries, the digit images from
the USPS corpus (LeCun et al., 1990) were grouped
into two classes in various ways, see Table 3. All
images were projected to thed = 39 leading prin-
cipal components, with 7291 samples eligible for
active learning and an independent set of 2007 sam-
ples held out for testing purposes.

Table 4: Average accuracy of the compared AL
strategies for 3 different groupings of the Caltech-
4 data set with preprocessing as described in text.
The best and second best method are indicated us-
ing bold font and italics, respectively.

Grouping RS US ERS DEAL
{1, 2} vs. {3, 4} 0.818 0.846 0.807 0.877
{1, 3} vs. {2, 4} 0.799 0.829 0.803 0.840
{1, 4} vs. {2, 3} 0.803 0.836 0.797 0.872

Mean Rank 3.333 2.000 3.667 1.000

As Table 3 shows, DEAL performed best in 9 out
of the 10 groupings. Fig. 3(b) shows one learning
curve, all others are in the supplementary material.

5.3 CALTECH-4

Caltech-4 is a well established standard benchmark
for object categorization (Fergus et al., 2003) and
has also been used in AL (Kapoor et al., 2007). This
dataset consists of 4 different image groups: air-
planes (category 1; 800 images), rear views of cars
(2; 1155), frontal faces (3; 435) and motorbikes (4;
798). Fig. 4 shows one example from each category.
We represent the images by the “Color and Edge Di-
rectivity Descriptor” (CEDD) (Chatzichristofis and
Boutalis, 2008). The resulting 144-dimensional fea-
tures were then projected to the 17 leading princi-
pal components. To create challenging two-class
problems with convoluted decision boundaries, we
grouped the 4 categories in three possible ways.

Table 4 presents the resulting performances, based
on 10-fold CV with 5 repetitions (see Section 5.1).
It shows that DEAL performs best for all group-
ings. Moreover, for this dataset, US is the second
best strategy, probably because the problem is not as
challenging as the Zip Data, that originally consists
of 10 categories. Interestingly, ERS performs worse
than random sampling in two out of three tasks.

6 DISCUSSION

In this paper we derived a new AL strategy, which
considers not only the density and distance of an
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Figure 4: Left: Example images of the 4 object categories of Caltech-4 (airplane, car, face, motorbike).
Right: Learning curves for three possible groupings of the 4categories. DEAL performed best in all cases
and US second best. Interestingly, ERS is not better than RS here (see also Table 4). The top horizontal line
is the asymptotic accuracy of the classifier, with all training data labeled (estimated by 10-fold CV).

unlabeled sample to the decision boundary, but also
the number of labeled points in its neighborhood.
All this information is taken into account by requir-
ing that the underlying classifier provide a distribu-
tional estimate at each unlabeled point, leading to a
natural definition of its training utility value.

Information similar to that contained in a second-
order distribution isimplicitly used by methods
that minimize the expected estimated risk (MacKay,
1992; Roy and McCallum, 2001; Zhu et al., 2003).
These AL schemes indirectly measure the uncer-
tainty of a point estimate, by perturbing the current
classifier with hypothetical new labels and invest-
ing where the potential reduction in estimated risk
is greatest.

In contrast, DEAL makes this dependence on the
uncertainty explicit. Not only is it simple to im-
plement, it also empirically outperformed error re-
duction sampling, uncertainty and random sampling
schemes on a large collection of UCI, USPS and
Caltech data sets. Note that one cannot expect a sin-
gle strategy to perform best on all data sets. For in-
stance, if the decision boundary is simple, strongly
favoring exploitation over exploration (as in uncer-
tainty sampling) may be the best strategy. For more
challenging classification problems with complex
class boundaries, balancing exploration and refine-
ment, as DEAL does, seems a crucial ingredient for
active learning.

While our AL scheme is general and applicable
to any classifier that outputs second-order distribu-
tions, in this paper we focused for simplicity on
its implementation with kernel density classifica-
tion. As we shall describe in a future publication,
second-order distributions can be derived for other
classifiers, most notably random forest (Breiman,
2001). Encouragingly, with random forest as the
base classifier, not only are lower classification er-
rors achieved, but also the advantage of DEAL over
the other AL strategies continues to hold.

Finally, we note that second-order distributions are
not limited to AL. In the presence of few training
data, they may be used to extend the “doubt” class
to also include poorly explored regions with high
uncertainty. While beyond the scope of this paper,
second-order distributions are also useful for out-
lier detection, in applications such as optical inspec-
tion, where not all defects are known in advance
when training the classifier. These extensions, as
well as generalizing our AL scheme to multi-class
problems, and deriving second-order distributions
for other (discriminative) classifiers, are interesting
topics for future research.
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