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Abstract

The goal of natural image denoising is to estimate a
clean version of a given noisy image, utilizing prior knowl-
edge on the statistics of natural images. The problem has
been studied intensively with considerable progress made
in recent years. However, it seems that image denoising
algorithms are starting to converge and recent algorithms
improve over previous ones by only fractional dB values. It
is thus important to understand how much more can we still
improve natural image denoising algorithms and what are
the inherent limits imposed by the actual statistics of the
data. The challenge in evaluating such limits is that con-
structing proper models of natural image statistics is a long
standing and yet unsolved problem.

To overcome the absence of accurate image priors, this
paper takes a non parametric approach and represents the
distribution of natural images using a huge set of1010

patches. We then derive a simple statistical measure which
provides a lower bound on the optimal Bayesian minimum
mean square error (MMSE). This imposes a limit on the
best possible results of denoising algorithms which utilize a
fixed support around a denoised pixel and a generic natural
image prior. Our findings suggest that for small windows,
state of the art denoising algorithms are approaching op-
timality and cannot be further improved beyond∼ 0.1dB
values.

1. Introduction

Natural image denoising is defined as the problem of es-
timating a clean version of a noise corrupted image, given a-
priori knowledge that the original unknown signal is a natu-
ral image. The main idea in this setting is that image denois-
ing can be performed using not only the noisy image itself
but rather using a suitable prior on natural image statistics.
Image denoising algorithms have drastically advanced over
the last few decades [17, 7, 20, 21, 3, 10, 8]. Various im-
age priors have been learned [20, 21, 26], and particularly
impressing results have been obtained with non parametric
techniques such as non local means [3] or BM3D [8], and
sparse representation methods such as KSVD [10]. How-

ever, it seems that the performance of denoising algorithms
is starting to converge. Recent techniques typically improve
over previous ones by only fractional dB values. In some
cases the difference between the results of competing algo-
rithms is so small and inconclusive, that one actually has to
successively toggle between images on a monitor to visually
compare their denoising quality. This raises the question of
whether the error rates of current denoising algorithms can
be reduced much further, or whether there are inherent lim-
itations imposed by the statistical structure of natural im-
ages? The goal of this paper is to derive alower boundon
the best possible denoising error under a well defined sta-
tistical framework. Such a bound can help us understand
if there is hope to significantly improve the current state-
of-the-art image denoising with even better algorithms, or
whether we have nearly approached the fundamental limits.

Understanding the limits of natural image denoising is
also important as an instance of a more fundamental com-
puter and human vision challenge: modeling the statistics
of natural images and understanding the inherent limits of
their statistical power. Several works attempted to estimate
the entropy of natural images [15, 4]. However, there is
no direct relation between entropy and our ability to solve
low level vision tasks. Furthermore, numerous research at-
tempts have been devoted to the learning of natural image
priors [27, 2, 21, 26, 18, 12]. However, it is not clear if
these models actually capture the full statistical structure of
natural images. In principle, a perfectly accurate naturalim-
age prior would allow us to compute optimal Bayesian es-
timators for low level vision tasks such as denoising, super-
resolution, deconvolution and others. Therefore, under-
standing how far from optimality do current denoising al-
gorithms stand, will give us an indication of how far are we
from understanding and modeling the statistical structureof
natural images.

Several works studied the limits of image denoising.
Some methods focused mostly on SNR arguments [13, 24,
23] without taking into account the strength of natural im-
age priors. Similarly, limits on the related problem of super-
resolution have been derived in the past [1, 16], but they
again account for the numerical stability of the linear sys-
tem being inverted, and do not model the additional gain
provided by natural image priors. In fact, in the same paper,
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Baker and Kanade [1] show that their super-resolution lim-
its can be broken using a face class prior. In the statistical
literature, sharp bounds on image denoising and edge de-
tection have been obtained. However, these bounds assume
over-simplified image models, such as piecewise constant
regions separated by sharp edges with smooth boundaries
[19, 14]. The non local means denoising algorithm [3] is
proven to be asymptotically optimal given an infinitely large
image. However, its expected error and deviation from op-
timality on realistic finite-size images is unclear. Recently,
Chatterjee and Milanfar [5, 6] derived denoising bounds
that do account for natural image statistics. Their model as-
sumes that the image patches can be factorized into a small
number of clusters, and each such cluster can be described
using second order statistics. This, however, is a strong as-
sumption which can largely affect the conclusions.

The lack of a more detailed analysis which accounts for
the statistics of natural images is due to the fact that mod-
eling the statistics of natural images is an extremely hard
problem, with no agreeably good model suggested up to
this day. Thus, any evaluation which would rely on one
of the existing image priors will be strongly biased by the
inaccuracy of the prior. In order to overcome this challenge,
our aim in this paper is to estimate a lower bound on image
denoisingwithout using any particular parametric model.

Using the sum of square differences error metric, we de-
rive a lower bound on the smallest possible reconstruction
error of denoising algorithms which consider ak × k pix-
els support around a noisy pixel, and use agenericnatural
image prior onk × k patches. Thus, the possible gain by
image specific priors [3, 10, 8], rather than generic ones, is
beyond the scope of this analysis.

Our approach builds on the success of recent large image
databases approaches in high level vision and graphics ap-
plications [11, 22], and represents the distribution of natural
images in a non-parametric way using a huge set of1010

patches. We use this patch set to approximate the optimal
Bayesian minimum mean squared error (MMSE) estimator
and its expected error. While every finite set of samples
provides only an approximation for the actual MMSE, we
derive statistical formulas which, under certain conditions,
allow us to compute both a lower bound and an upper bound
on the MMSE. We show that for small support sizek or for
large noise variance, the number of patches (1010) is large
enough. Hence, the lower and upper bounds coincide and
we can estimate the actual MMSE. At the more challenging
cases of very large patch sizes or very small noise levels, we
only get a lower bound on the best possible denoising error.

Our calculations suggest that for the tested support sizes,
the state of the art denoising results of BM3D [8] are already
close to optimality, and cannot be further improved beyond
0.1 dB values. On the other hand, increasing the support
size does carry some potential for improved denoising per-
formance. However, this increase should probably require
switching to parametric approaches, since non-parametric

approaches are inherently limited by the density of nearest
neighbors, which drastically decreases with window size.
Developing parametric models which can achieve state of
the art denoising results is also useful since they can be ap-
plied to other low-level vision tasks, and more importantly,
because their generalization power can improve our under-
standing of natural images.

2. Bounding denoising performance

2.1. Problem formulation

In image denoising, one is given a noisy versiony of a
clean imagex

y = x + n (1)

and the aim is to estimate a cleaner versionŷ from y. In
this paper, we consider random noise vectorsn whose en-
tries are distributed according to a zero mean i.i.d. Gaussian
with varianceσ2.1 We restrict the discussion to denoising
algorithms which denoise each pixel separately using ak×k
pixels support around it. Equivalently, we assume thatx, y
arek × k patches and focus on the estimation of the central
pixel in each patchx, which we denote byxc.

The success of image denoising algorithms is usually
evaluated by PSNR values, which essentially measure the
mean squared error (MSE) in reconstruction, averaged over
a set ofM test patches{(xj , yj)}M

j=1

PSNR= 10 log10

„

1

MSE

«

, M̂SE
1

M

X

j

(xj,c − ŷj,c)
2. (2)

As discussed in [25], the MSE may not provide an ultimate
visual quality prediction. Nonetheless, we adopt the MSE
for two reasons: a) it is the classical measure being opti-
mized by most existing denoising algorithms, and b) it is
correlated, though not perfectly, with visual quality. There-
fore, a limit on MSE denoising is a reasonable proxy on how
much we can improve visual quality. The study of lower
limits corresponding to other quality measures is an inter-
esting future research problem.

Since each noisy patchy could actually be generated by
multiple latent patchesx, the problem is fundamentally am-
biguous and one cannot hope for a zero reconstruction er-
ror. Our goal is to understand what is the lowest possible
MSE achievable by any denoising algorithm based onk×k
patches, given a-priori knowledge that the input image has
been randomly sampled from the set of natural images.

To this end, we denote byp(x) the density ofk × k
patches of natural images, and byp(y) the resulting den-
sity of k × k noisy patches. When context requires, we use
the notationpσ(y) to emphasize the explicit dependence of
the density of noisyy patches on the noise levelσ.

1The Gaussian i.i.d. noise assumption is not a hard one and thetech-
nique can be applied with many other noise models. The non parametric
approach mostly requires the ability to computep(y|x).
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2.2. Bayesian Minimum Mean Square Error

There are two equivalent interpretations for the MSE –
the error interpretation and the variance interpretation.In
the error view, we randomly sample clean patchesxi from
p(x), add noise to generateyi, denoiseyi and measure the
reconstruction error(xi,c − ŷi,c)

2. The average of this re-
construction error is

MSE =

Z

p(x)

Z

p(y|x)(xc − ŷc)
2dydx (3)

An equivalent interpretation of the MSE, which will serve
us below, is the variance interpretation– start from a noisy
patchy, and measure the variance ofp(x|y) around it. That
is, compute the sum of weighted distances betweenŷ and
all possiblex explanations:

MSE =

Z

p(y)

Z

p(x|y)(xc − ŷc)
2dxdy (4)

Eq. (4) is obtained from Eq. (3) by switching the order
of integration and applying Bayes rule. The advantage
of the variance view is that from it, one can easily de-
rive the optimal estimator, namely the Bayesian minimum
mean squared error (MMSE) estimator [13], which is sim-
ply given by the conditional mean

µ(y) = E[xc|y] =

∫

p(x|y)xcdx (5)

=

∫

p(y|x)

p(y)
p(x)xcdx

The MMSE at any fixedy is then the conditional variance,

V(y) = E[(xc − µ(y))2|y] =

Z

p(x|y) (xc − µ(y))2 dx (6)

whereas the overall MMSE is

MMSE = E[V(y)] =

∫

p(y)V(y)dy. (7)

In the framework of natural image denoising, the MMSE
in (7) is the lowest achievable denoising error by any de-
noising algorithm. To compute this MMSE and the cor-
responding optimal estimatorµ(y), we need access to the
true natural image densityp(x). However, as discussed
in the introduction, an accurate model for this density is
a long standing research problem [20, 21, 26, 9]. One op-
tion would be to fit some parametric modelq(x), for ex-
ample, a field of experts model [21] or a Gaussian mix-
ture model. We can then compute an approximated mean
µ̂(y) = 1/q(y)

∫

p(y|x)q(x)xcdx. However, sinceq(x)
is only an approximation to the true natural image density
p(x), the error of the estimator̂µ(y), like the error of any
denoising algorithm, is only an upper bound on the MMSE.
The difference in MSE depends on the quality of the ap-
proximation, which is not easy to evaluate, in particular

sincep(x) is unknown. Our goal, in contrast, is to esti-
mate the MMSE without committing to any specific approx-
imate parametric model, or essentially, without even explic-
itly knowing p(x). The key idea is that even thoughp(x) is
unknown, we are still able to sample from it. Therefore we
consider a non-parametric representation of the distribution,
using a large set of aboutN = 1010 natural image patches.
This allows us to approximate the integral of Eq. (5) by av-
eraging over samples:

µ̂(y) =
1
N

P

i p(y|xi)xi,c

1
N

P

i p(y|xi)
, (8)

where for Gaussian noise

p(y|x) =
1

(2πσ2)d/2
e
−

‖x−y‖2

2σ2 (9)

andd = k2. As N → ∞, µ̂(y) indeed converges to the
true MMSE estimator. However, for any finite set, Eq. (8)
is only an approximation, and thus, like any other denoising
algorithm, its average error provides an upper bound on the
MMSE. However, our goal is to bound the MMSE from
below, still, without knowingp(x) explicitly, but having at
our disposalN ≫ 1 samples from it. The main idea in
deriving both an upper and a lower bound on the MMSE, is
to use the two MSE formulations in Eqs. (3) and (4). Given
a set ofM clean and noisy pairs{(x̃j , yj)}M

j=1 and another
independent set ofN clean patches{xi}N

i=1, both randomly
sampled from natural images, we compute

MMSEU =
1

M

∑

j

(µ̂(yj) − x̃j,c)
2 (10)

MMSEL =
1

M

∑

j

V̂(yj) (11)

whereV̂(yj) is the approximated variance:

V̂(yj) =
1
N

P

i p(yj |xi)(µ̂(yj) − xi,c)
2

1
N

P

i p(yj |xi)
(12)

MMSEU and MMSEL are both random variables which de-
pend on the particular set ofx, y samples. When the sample
size approaches infinity, they converge to the exact MMSE.
However, we show that for a finite sample, in expectation,
MMSEU and MMSEL provideupperandlower boundson
the best possible MMSE. Note the key difference between
these two quantities: MMSEU uses explicit knowledge of
the original noise-free patch̃xj , while MMSEL does not
involve it. Since MMSEU basically measures the error of
the estimator̂µ(yj), it provides, like every denoising algo-
rithm, an upper bound on the MMSE. The term MMSEL is
analyzed in Sec. 2.3.

WhenN is sufficiently large, the two computed values
MMSEU and MMSEL are similar, and we get an accurate
estimate for the actual optimal MMSE. As we show in sec-
tion 3 this happens when the patch sizek is small, or when
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the noise varianceσ2 is high, since in such cases there is a
large number of valid nearest neighbors around each patch.
In the harder cases, we cannot compute the MMSE exactly,
but MMSEL still provides a lower bound on the best de-
noising results we can expect.

2.3. The sample variance as a lower bound on the
MMSE

Our goal is to show that the approximated variance es-
timated from a finite set of samples (Eq. (12)), provides a
lower bound on the correct variance (Eq. (6)). To see this at
an intuitive level, consider the numerator of Eq. (12). Since
µ̂(y) is the weighted mean of{xi}N

i=1, it minimizes the
mean squared distance from these patches, and in partic-
ular, it achieves a smaller squared distance compared to the
exact unknown meanµ(y):

∑

i

p(yj |xi)(xi,c − µ̂(yj))
2 ≤

∑

i

p(yj |xi)(xi,c − µ(yj))
2

Thus, in expectation

EN

"

1

N

X

i

p(yj |xi)(xi,c − µ̂(yj))
2

#

≤

EN

"

1

N

X

i

p(yj |xi)(xi,c − µ(yj))
2

#

= p(yj)V(yj),

(13)

whereEN [·] denotes expectation with respect to all possi-
ble sets ofN i.i.d. patches fromp(x). The denominator
of Eq. (12) is also a random variable whose expectation is
p(yj), thus, roughly,EN [V̂(y)] ≤ V(y). However, since
both numerator and denominator are random variables, a
more careful analysis of̂V(y) is needed.

The following claim derives a second order approxima-
tion toEN [V̂(y)] for a fixed patchy.

Claim 1 Asymptotically, as the training set sizeN → ∞,
the expected value of the approximated variance defined in
Eq. (12) is

EN [V̂(y)] = V(y) + C(y)B(y) + o

„

1

N

«

, (14)

with

B(y) = Eσ[x2
c |y] − 3Eσ[xc|y]2 − 2Eσ∗ [x2

c |y]

+4Eσ[xc|y]Eσ∗ [xc|y] (15)

C(y) =
1

N

pσ∗(y)

(4πσ2)d/2pσ(y)2
(16)

wherepσ, Eσ[·], pσ∗ , Eσ∗ [·] denote probability and expec-
tation of random variables with noise standard derivationσ
andσ∗ respectively.σ is the actual standard deviation and
σ∗ = σ/

√
2.

The proof of Claim 1 is provided in the appendix. It uses
an asymptotic expansion of̂V(y) in N , and neglects high
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Figure 1. Evaluating the bias of̂V(y). (a) For a 1D Gaussian den-
sity p(x), we compare the expected sample varianceEN [V̂(y)] to
its exact valueV(y), which is constant iny for a Gaussian distri-
bution. As predicted theoretically,EN [V̂(y)] ≤ V(y), with the
bias decreasing with increasing number of samples or at highden-
sity regions. (b) Plug-in bias estimateŝB(y) of real natural image
patches, sorted in ascending order. Note that up to small numerical
errors, the bias estimates of all patches are negative.

order terms. It is hence valid for sufficiently largeN and
sufficiently commony.

Next, we consider a local Gaussian approximation for
p(x) aroundx = y, e.g., a Laplace approximation consist-
ing of a second order Taylor expansion ofln p(x). For a
Gaussian distribution we can analytically compute the lead-
ing order bias termC(y)B(y) from Eqs. (15) and (16). The
following claim, proven in the appendix, shows thatB(y) is
negative for ally values. SinceC(y) > 0, it follows that
EN [V̂(y)] ≤ V(y). Thus, in expectation, MMSEL provides
a lower bound on the MMSE, as we aim to show.

Claim 2 For a Gaussian distribution,B(y) ≤ 0 for all y.

Figure 1(a) considers a simple case of a 1D Gaussian
distribution and compares the exact varianceV(y) with
EN [V̂(y)], averaged over10, 000 realizations of sets of
N = 5, 10 or 15 samples. The bias is always negative and
EN [V̂(y)] ≤ V(y). As evident from Eq. (16),C(y) is large
whenp(y) is small, and so for a Gaussian distribution, the
bias increases exponentially with|y|.

The density of natural image patches is not Gaussian, so
a Laplace approximation might be inaccurate and Claim 2
may not directly apply. To evaluate this on real data, we
used a plug-in estimator̂B(y) for the termB(y). That is,
we consideredM = 2, 000 noisy3 × 3 patches{yj} with
noise varianceσ = 18. For eachyj the expectations in
Eq. (15) were estimated by averaging over an independent
large set of clean patches{xi}. Figure 1(b) shows the re-
sulting B̂(yj) values, sorted in ascending order for visual-
ization purposes. As seen in the plot, the estimated values
B̂(yj) are all negative up to small numerical errors.

3. Experiments

To evaluate the MMSE we use a set of20, 000 images
from the LabelMe dataset [22]. We thus implicitly con-
sider this dataset an unbiased representative of noise-free
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(a)σ = 18 (b) σ = 55 (c) σ = 170
Figure 2. PSNR values of several recent denoising algorithms along with our MMSE lower and upper bounds. As predicted by the theory,
the performance of all algorithms are bounded by our MMSEL estimate, although BM3D approaches the bound by fractionaldB values.
(Note that since PSNR= −10 log 10(MSE), the MMSE lower bound turns into an upper bound on the best achievable PSNR).

natural image statistics.2 To avoid quantization and JPEG
artifacts we first low-passed all images and down-sampled
them by a factor of two. These images provide a set of about
N = 1010 natural image patches{xi}. We use another
M = 2, 000 clean and noisy pairs of patches{(x̃j , yj)},
denoise them by computing the weighted mean of Eq. (8),
and measure the mean squared error MMSEU (Eq. (10)),
and the lower bound MMSEL (Eq. (11)). This is an inten-
sive computation, which took about a week of computation
on a100 CPUs cluster.

In Figure 2 we compare the PSNR values of various
denoising algorithms to MMSEU and MMSEL with three
noise levelsσ = 18, 55, 170, for image intensities in the
[0, 255] range. We plot our bounds as a function of the
window sizek. We tried to match the support size of the
tested algorithms as well. We used the BM3D [8] algo-
rithm with patch sizes of4, 8 and12 pixels (for8, 12 pix-
els we used the authors’ parameters, and for4 pixels, our
adaptation). We associate the KSVD [10] and Portillaet
al. GSM[20] algorithms with the largest support sizek con-
sidered, since these are global denoising algorisms that do
not consider finite support patches. As a baseline compar-
ison we also present a linear minimum mean square error
(LMMSE) estimator [13]. This estimator, also known as
the Wiener filter, uses only the second order statistics of
the data, by fitting a singlek2 dimensional Gaussian to the
set ofN image patches. When computing our MMSEU and
MMSEL scores we used the bootstrapping method to evalu-
ate the variance, by drawing multipleN patch subsets. The
standard deviation of the estimation is rather small, ranging
from 0.05dB for smallk values to0.2dB at the large ones.

The results in Figure 2 suggest several observations
which we discuss below.

2Even if these input images do contain a small amount of noise,it is
negligible w.r.t. the noise level added in our experiments.If nonetheless,
these patches do contain a small amount of noise, then the goal is formu-
lated as the reconstruction of signals with this slightly perturbed distribu-
tion, which is still a statistically well defined problem.

Tightness of bounds: For small window sizes or high
noise, the upper and lower bounds coincide and hence we
have obtained an accurate estimate of the exact optimal
MMSE value. For harder cases, there is a gap between the
upper and lower bounds. While we are unable to estimate
the exact MMSE, we still get a valid lower bound on it. This
happens when there are too few samples at a normalized
distance ofσ2 from the noisy patch. To demonstrate that,
we measured the number of nearest neighbors within nor-
malized distance of one standard deviation from each noisy
patch. Under the assumption of Gaussian noise the differ-
ence‖y − x‖2 follows aχ2 distribution withk degrees of
freedom. Therefore, for each noisy patchyj we consider all
patches at a squared distance ofσ2(1 +

√
2/k2):

nj = #



xi

∣

∣

1

k2
‖xi − yj‖2 < σ2

„

1 +

√
2

k

«ff

(17)

In Figure 3 we plot the cumulative distribution ofnj values,
for two window sizesk = 3 andk = 9, both withσ = 18.
We see that for smallk, most patches have a large number of
nearest neighbors, whereas fork = 9, 13% of the patches
have zero neighbors. Accordingly, atk = 9, σ = 18, there
is a gap between MMSEU and MMSEL in Fig 2(a).

Near optimality of state of the art denoising results: As
predicted by the theory, the empirical errors of all denoising
algorithms are larger than our lower bound. Nonetheless,
for most cases the PSNR values of BM3D are within0.1dB
of the optimal ones, suggesting that the BM3D results are
quite close to optimality, for small patch sizes. Thus, future
denoising algorithms that use small patches have very little
room for improvement over BM3D3. However, while0.1dB
seems like a very small improvement, it may still be visually
noticeable.

3This does not directly imply that BM3D cannot be further improved,
since while BM3D is a patch based algorithm, it utilizes a wider support
by looking for neighbors in the entire image.
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(a)k = 3 (b) k = 9
Figure 3. Cumulative distribution function of the number ofneigh-
bors within distanceσ2(1 +

√
2/k), computed atσ = 18. For

3 × 3 patches,99% of the examples had more than2, 000 neigh-
bors. In contrast, for a9 × 9 patch size,13% of the examples had
no neighbors within this distance.

Support size: It seems that increasing the support size
carries some potential for increasing the PSNR. Due to the
curse of dimensionality, non-parametric techniques suffer
from an unavoidable tradeoff between patch size and the
number of valid nearest neighbors, and hence are unlikely
to be applicable for large window sizes. Developing algo-
rithms which utilize a larger support size thus probably re-
quires switching from non-parametric approaches to para-
metric ones. Unfortunately, at the moment parametric de-
noising algorithms are far behind the non parametric ones.

Denoising at extreme noise levels: In Fig 2(c), the noise
level isσ = 170. At this high noise level, the image prior
results are very similar to the results of a simple linear mini-
mum mean square error (LMMSE) estimator which utilizes
only the second order statistics of the data. This happens
since at high noise levels the signal content is lost and all
the prior can do is to estimate a flat image. The square error
of such an estimator is proportional to the variance of the
data, therefore natural image priors or Gaussian priors uti-
lizing second order statistics give similar results. The other
extreme that we did not evaluate here is very low noise. For
low noise the effect of the prior is small and the error is
proportional to the noise variance. Therefore, natural im-
age priors have an interesting effect only at medium noise
levels.

Visual results: In Figure 4 we used thePeppersimage at
half resolution to visualize the denoising results of several
recent denoising algorithms compared with our approach,
which is the best possible denoising with a generic natural
images prior. We usedσ = 75 and12 × 12 windows for
our approach and for BM3D. Numerically, our result out-
performs BM3D by0.07dB, and this difference leads to a
slightly better visual quality. The visualization of optimal
denoising in Fig 4(c) is only a proof-of-concept, but not
a practical denoising algorithm- denoising this100 × 100
image required two weeks of computation on100 CPUs.
However, one can think of several ways to accelerate the

(a) Original image (b) Noisy input

(c) Opt. MMSE, PSNR=23.93dB (d) BM3D, PSNR=23.86dB

(d) KSVD, PSNR=22.41dB (e) GSM, PSNR=23.28dB

Figure 4. Visual comparison of our optimal MMSE and other al-
gorithms, forσ = 75. The optimal MMSE and BM3D use12×12
windows. Our approach achieves slightly higher PSNR comparing
to BM3D, and a somewhat better visual quality.

search with approximated nearest neighbor techniques and
a smarter encoding of the large set of1010 image patches.

Image specific bounds: Our analysis is based on the
knowledge of a generic image prior. An interesting ques-
tion for future research, as recently considered by [5, 6], is
whether there is a significant advantage in adapting the prior
to the specific statistics of the observed image, as done by
some recent denoising algorithms [3, 10, 8]. In fact, such
algorithms can be thought of as instances of a generic prior
whose support size is the entire image, since the support
size essentially means that an algorithm can see and use in
the estimation all pixels within ak × k window around a
noisy pixel. Unfortunately, we cannot evaluate tight bounds
at very large window sizes.
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4. Discussion

This paper derived a statistical measure for the best pos-
sible denoising results utilizing a generic natural image
prior. Our findings suggest that for small windows, state of
the art denoising algorithms cannot be further improved be-
yond fractional dB values. Considering a wider support car-
ries some potential for improved results. However, increas-
ing the support size of non-parametric algorithms might
lead to a dead-end, and parametric approaches are required.
Unfortunately, at the moment parametric algorithms per-
form well behind non-parametric ones. Developing para-
metric algorithms which can achieve state of the art results
is also important because they can generalize for other low-
level vision tasks.

The evaluation methodology used here can be easily
applied to other low-level vision problems such as super-
resolution, deconvolution, or inpainting. However, some of
these problems, such as the deconvolution of a wide support
kernel, rely on a large support of pixels. Hence we may not
be able to find a sufficient number of nearest neighbors for a
tight lower bound estimation. Yet, understanding the limits
of image denoising is important as a step toward other low-
level vision problems, and moreover, as a step toward an
understanding of the inherent limits of natural image statis-
tics.
Acknowledgments: The authors thank the ISF, BSF and
ERC for providing financial support.

5. Appendix

Proof of Claim 1: For future use we denote byA(σ, k) =

(4πσ2)−k2/2 and recall thatσ∗ = σ/
√

2. The first step in
the proof is to insert Eq. (8) into Eq. (12), which yields the
following more convenient expression forV̂(y),

V̂(y) =
1
N

∑

p(y|xi)x
2
i,c

1
N

∑

p(y|xi)
− ( 1

N

∑

p(y|xi)xi,c)
2

( 1
N

∑

p(y|xi))2

= A1 − A2. (18)

The main idea is to analyze the bias of each of these terms
separately, whereby for each term we further consider the
mean and fluctuations of their numerator and denominator.

For the termA1 we shall use the following equalities

E[p(y|x)] =
R

p(x)p(y|x)dx = pσ(y)
E[p(y|x)x2

c] = pσ(y)Eσ[x2
c |y]

(19)

wherepσ(y) is the density ofy-patches at noise levelσ, and
Eσ[·|y] denotes expectation with respect topσ(y).

The two expressions in Eq.(19) are nothing but the mean
of the denominator and numerator ofA1, respectively. We
thus rewrite the termA1 as

A1 =
pσ(y)E[x2

c |y]
(

1 + 1
N

∑ p(y|xi)x
2

i,c−pσ(y)E[x2

c|y]

pσ(y)E[x2
c|y]

)

pσ(y)
(

1 + 1
N

∑ p(y|xi)−pσ(y)
pσ(y)

) (20)

Next, we assumeN ≫ 1 and that the patchy is not too rare,
such that

1

N

∑ p(y|xi) − pσ(y)

pσ(y)
≪ 1

Then, using a Taylor expansion for smallǫ,

1

1 + ǫ
= 1 − ǫ + ǫ2 + O(ǫ3)

we obtain the following asymptotic expansion for the first
term, (where for ease of notation we writep(y) for pσ(y))

A1 ≈ E[x2
c |y]

 

1 +
1

N

X

i

p(y|xi)x
2
i,c − p(y)E[x2

c|y]

p(y)E[x2
c|y]

!

·
 

1 − 1

N

X

i

p(y|xi) − p(y)

p(y)
+

 

1

N

X

i

p(y|xi) − p(y)

p(y)

!2!

(21)

We now take the expectation of Eq. (21) overx samples.
We use the fact thatE[p(y|x) − p(y)] = 0, E[p(y|x)x2

c −
p(y)E[x2

c |y]] = 0. We also neglect allO(1/N2) terms.

EN [A1] = E[x2
c|y]

„

1 +
1

N

E[p(y|x)2]

p(y)2

− 1

N

E[p(y|x)2x2
c]

p(y)2E[x2
c |y]

+ o(1/N)

«
(22)

Similarly, for the second termA2 we use the fact that

E[p(y|x)2] =
R

p(x) e−‖x−y‖2/σ2

(2πσ2)k2 dx = A(σ, k)pσ∗(y)

E[p(y|x)2xc] = A(σ, k)pσ∗(y)Eσ∗ [xc|y]
E[p(y|x)2x2

c] = A(σ, k)pσ∗(y)Eσ∗ [x2
c |y]

(23)
and hence rewrite the second termA2 as

A2 = µ̂(y)2 = E[xc|y]2

“

1 + 1
N

P p(y|xi)xi,c−p(y)E[xc|y]

p(y)E[xc|y]

”2

“

1 + 1
N

P p(y|xi)−pσ(y)
pσ(y)

”2

= E[xc|y]2

·

„

1+ 2
N

P p(y|xi)xi,c−p(y)E[xc|y]

p(y)E[xc|y]
+
“

1
N

P p(y|xi)xi,c−p(y)E[xc|y]

p(y)E[xc|y]

”2
«

„

1 + 2
N

P p(y|xi)−pσ(y)
pσ(y)

+
“

1
N

P p(y|xi)−pσ(y)
pσ(y)

”2
«

≈ E[xc|y]2

·
„

1+ 2
N

P p(y|xi)xi,c−p(y)E[xc|y]

p(y)E[xc|y]
+
“

1
N

P p(y|xi)xi,c−p(y)E[xc|y]

p(y)E[xc|y]

”2
«

·
„

1 − 2
N

P p(y|xi)−pσ(y)
pσ(y)

+ 3
N

“

P p(y|xi)−pσ(y)
pσ(y)

”2
«

(24)

Taking expectations and omittingO(1/N2) terms, we get:

EN [A2] = E[xc|y]2
„

1 − 4

N

E[p(y|x)2xc]

p(y)2E[xc|y]
+

1

N

E[p(y|x)2x2
c]

p(y)2E[xc|y]2

+
3

N

E[p(y|x)2]

p(y)2
+ o(1/N)

«

(25)
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Substituting the terms from Eq. (23) in Eqs. (22) and (25)
yields the desired Eq. (14).

Proof of Claim 2:We note thatB(y) (Eq. (15)) can be writ-
ten as:

B(y) = Vσ[xc|y] − 2Vσ∗ [xc|y] − 2 (Eσ∗ [xc|y] − Eσ[xc|y])2

(26)
where V[xc|y] = E[x2

c |y] − E[xc|y]2 denotes variance.
Thus, it is sufficient to show thatVσ[x|y]− 2Vσ∗ [x|y] ≤ 0.
We denote byΦ the covariance matrix ofp(x) and by
Ψσ, Ψσ∗ the covariance matrices ofpσ(x|y), pσ∗(x|y):

Ψσ =

„

1

σ2
Id + Φ−1

«−1

Ψσ∗ =

„

1

σ∗2
Id + Φ−1

«−1

,

(27)
whereId is thed dimensional identity matrix. The vari-
ance atxc is the(c, c) entry of these matrices:Vσ[x|y] =
Ψσ(c, c), Vσ∗ [x|y] = Ψσ∗(c, c).

We denote by{λℓ}, {γℓ}, {γ∗
ℓ } the eigenvalues of the

matricesΦ, Ψσ, Ψσ∗ respectively. We note that all these
matrices are diagonal in the same basis and we can write

Ψσ(c, c) =
X

ℓ

u2
ℓγℓ, Ψσ∗(c, c) =

X

ℓ

u2
ℓγ

∗
ℓ , (28)

(uℓ is thec entry of eigenvectorℓ). We can also relate the
eigenvalues ofΨσ, Ψσ∗ to the eigenvalues of the uncondi-
tional covarianceΦ:

γℓ = (λ−1
ℓ + σ−2)−1, γ∗

ℓ = (λℓ
−1 + (σ∗)

−2
)−1. (29)

A simple calculation shows that for everyℓ:

γℓ − 2γ∗
ℓ = λℓσ

2

„

1

λℓ + σ2
− 2

2λℓ + σ2

«

≤ 0 (30)

Using Eqs. (30) and (28) we conclude:

Ψσ(c, c) − 2Ψσ(c, c) =
X

ℓ

u2
ℓ(γℓ − 2γ∗

ℓ ) ≤ 0. (31)
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