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Abstract ever, it seems that the performance of denoising algorithms
is starting to converge. Recent techniques typically inapro
The goal of natural image denoising is to estimate a over previous ones by only fractional dB values. In some
clean version of a given noisy image, utilizing prior knowl- cases the difference between the results of competing algo-
edge on the statistics of natural images. The problem hasrithms is so small and inconclusive, that one actually has to
been studied intensively with considerable progress madesuccessively toggle betweenimages on a monitor to visually
in recent years. However, it seems that image denoisingcompare their denoising quality. This raises the question o
algorithms are starting to converge and recent algorithms whether the error rates of current denoising algorithms can
improve over previous ones by only fractional dB values. It be reduced much further, or whether there are inherent lim-
is thus important to understand how much more can we still itations imposed by the statistical structure of natural im
improve natural image denoising algorithms and what are ages? The goal of this paper is to derivieaer boundon
the inherent limits imposed by the actual statistics of the the best possible denoising error under a well defined sta-
data. The challenge in evaluating such limits is that con- tistical framework. Such a bound can help us understand
structing proper models of natural image statistics is agon if there is hope to significantly improve the current state-
standing and yet unsolved problem. of-the-art image denoising with even better algorithms, or
To overcome the absence of accurate image priors, thiswhether we have nearly approached the fundamental limits.
paper takes a non parametric approach and represents the Understanding the limits of natural image denoising is
distribution of natural images using a huge set i6f*° also important as an instance of a more fundamental com-
patches. We then derive a simple statistical measure whichputer and human vision challenge: modeling the statistics
provides a lower bound on the optimal Bayesian minimum of natural images and understanding the inherent limits of
mean square error (MMSE). This imposes a limit on the their statistical power. Several works attempted to egéma
best possible results of denoising algorithms which @tiliz ~ the entropy of natural images [15, 4]. However, there is
fixed support around a denoised pixel and a generic natural no direct relation between entropy and our ability to solve
image prior. Our findings suggest that for small windows, low level vision tasks. Furthermore, numerous research at-
state of the art denoising algorithms are approaching op- tempts have been devoted to the learning of natural image
timality and cannot be further improved beyornd(.1dB priors [27, 2, 21, 26, 18, 12]. However, it is not clear if
values. these models actually capture the full statistical stmectd
naturalimages. In principle, a perfectly accurate naional
age prior would allow us to compute optimal Bayesian es-
1. Introduction timator_s for low level vision tasks such as denoising, super
resolution, deconvolution and others. Therefore, under-
Natural image denoising is defined as the problem of es-standing how far from optimality do current denoising al-
timating a clean version of a noise corrupted image, given a-gorithms stand, will give us an indication of how far are we
priori knowledge that the original unknown signal is a natu- from understanding and modeling the statistical struabfire
ralimage. The main idea in this setting is that image denois-natural images.
ing can be performed using not only the noisy image itself ~ Several works studied the limits of image denoising.
but rather using a suitable prior on natural image stasistic Some methods focused mostly on SNR arguments [13, 24,
Image denoising algorithms have drastically advanced over23] without taking into account the strength of natural im-
the last few decades [17, 7, 20, 21, 3, 10, 8]. Various im- age priors. Similarly, limits on the related problem of supe
age priors have been learned [20, 21, 26], and particularlyresolution have been derived in the past [1, 16], but they
impressing results have been obtained with non parametricagain account for the numerical stability of the linear sys-
techniques such as non local means [3] or BM3D [8], and tem being inverted, and do not model the additional gain
sparse representation methods such as KSVD [10]. How-provided by natural image priors. In fact, in the same paper,
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Baker and Kanade [1] show that their super-resolution lim- approaches are inherently limited by the density of nearest
its can be broken using a face class prior. In the statisticalneighbors, which drastically decreases with window size.
literature, sharp bounds on image denoising and edge deDeveloping parametric models which can achieve state of
tection have been obtained. However, these bounds assumine art denoising results is also useful since they can be ap-
over-simplified image models, such as piecewise constantplied to other low-level vision tasks, and more importantly
regions separated by sharp edges with smooth boundariebecause their generalization power can improve our under-
[19, 14]. The non local means denoising algorithm [3] is standing of natural images.

proven to be asymptotically optimal given an infinitely larg

imagg. Howevgr,_ its_ expet_:ted error arjd deviation from op- o Bounding denoising performance

timality on realistic finite-size images is unclear. Rebgnt

Chatterjee and Milanfar [5, 6] derived denoising bounds 2.1. Problem formulation

that do account for natural image statistics. Their model as
sumes that the image patches can be factorized into a small
number of clusters, and each such cluster can be described
using second order statistics. This, however, is a strong as y=a+n (@)
sumption which can largely affect the conclusions. and the aim is to estimate a cleaner versjofiom y. In

The lack of a more detailed analysis which accounts for this paper, we consider random noise veciorghose en-
the statistics of natural images is due to the fact that mod-tries are distributed according to a zero mean i.i.d. Gaussi
eling the statistics of natural images is an extremely hardWith variances.* We restrict the discussion to denoising
problem, with no agreeably good model suggested up to@lgorithms which denoise each pixel separately using &
this day. Thus, any evaluation which would rely on one Pixels support around it. Equivalently, we assume that
of the existing image priors will be strongly biased by the a_rek: X k patches and chus on the estimation of the central
inaccuracy of the prior. In order to overcome this challenge Pixelin each patch, which we denote by:..
our aim in this paper is to estimate a lower bound onimage The success of image denoising algorithms is usually
denoisingwithout using any particular parametric model. ~ evaluated by PSNR values, which essentially measure the

Using the sum of square differences error metric, we de- mean squared error (MSE) in reconstruction, averaged over
rive a lower bound on the smallest possible reconstruction@ Set ofM test patche$(z;, y;) 132,
error of denoising algorithms which considek a & pix-
els support around a noisy pixel, and usgemericnatural PSNR= 10log,, (L) , MS\EL (i — 5.0)% (2)
image prior onk x k patches. Thus, the possible gain by MSE M=
image specific priors [3, 10, 8], rather than generic ones, is
beyond the scope of this analysis.

Our approach builds on the success of recent large imag
databases approaches in high level vision and graphics ap
plications [11, 22], and represents the distribution otirat
images in a non-parametric way using a huge set0of
patches. We use this patch set to approximate the optima
Bayesian minimum mean squared error (MMSE) estimator
and its expected error. While every finite set of samples "
provides only an approximation for the actual MMSE, we estlr!g future resgarch problem.
derive statistical formulas which, under certain condisip Since each noisy patehcould actually be generated by
allow us to compute both a lower bound and an upper boundMU!tiple latent patches, the problem is fundamentally am-
on the MMSE. We show that for small support skzer for biguous and one cannot hope for a zero reconstructlon er-
large noise variance, the number of patcheg () is large ror. Our _goal is to understan.d.what is _the lowest possible
enough. Hence, the lower and upper bounds coincide and"'SE achievable by any denoising algorithm based or:
we can estimate the actual MMSE. At the more challenging Patches, given a-priori knowledge that the input image has
cases of very large patch sizes or very small noise levels, weP€€n randomly sampled from the set of natural images.
only get a lower bound on the best possible denoising error. 10 this end, we denote by(z) the density ofk x k

Our calculations suggest that for the tested support sizesPatches of natural images, and pfy) the resulting den-
the state of the art denoising results of BM3D [8] are already SIY Of k x k noisy patches. When context requires, we use
close to optimality, and cannot be further improved beyond the notatiorp, (y)_ to emphasize the epr|C|t dependence of
0.1 dB values. On the other hand, increasing the supportt€ density of noisy patches on the noise level
size does carry some potential for improved denoising per- 1The Gaussian i.i.d. noise assumption is not a hard one anthe
formance. However, this increase should probably requirenjque can be applied with many other noise models. The naanpetric
switching to parametric approaches, since non-parametricapproach mostly requires the ability to compypte|z).

In image denoising, one is given a noisy versipof a
lean imager

As discussed in [25], the MSE may not provide an ultimate
isual quality prediction. Nonetheless, we adopt the MSE
for two reasons: a) it is the classical measure being opti-
mized by most existing denoising algorithms, and b) it is
correlated, though not perfectly, with visual quality. Té&e
rore, a limit on MSE denoising is a reasonable proxy on how
much we can improve visual quality. The study of lower
limits corresponding to other quality measures is an inter-
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2.2. Bayesian Minimum Mean Square Error sincep(x) is unknown. Our goal, in contrast, is to esti-
mate the MMSE without committing to any specific approx-
imate parametric model, or essentially, without even expli
itly knowing p(z). The key idea is that even thougfx) is
unknown, we are still able to sample from it. Therefore we
consider a non-parametric representation of the distabut
using a large set of abo = 10'° natural image patches.
This allows us to approximate the integral of Eq. (5) by av-
eraging over samples:

There are two equivalent interpretations for the MSE —
the error interpretation and the variance interpretation.
the error view, we randomly sample clean patchgffom
p(z), add noise to generatg, denoisey; and measure the
reconstruction errofz; . — 9;..)>. The average of this re-
construction error is

MSE = / p(x) / p(ylz) (e — 5 dyde (3) R
Aly) = N2 PUIZ)Tic

. . . . . 8
An equivalent interpretation of the MSE, which will serve =3 plylw:) ®
us below, is the variance interpretation-— start frc_;m A NOISY |\ 1o e for Gaussian noise
patchy, and measure the variancedf:|y) around it. That )
is, compute the sum of weighted distances betwgend plylz) = %e*% )
all possibler explanations: (2mo2)4/2

andd = k?. As N — oo, fi(y) indeed converges to the
MSE = /p(y)/p(:c|y)(:cc — ) dzdy (4) true MMSE estimator. However, for any finite set, Eq. (8)

is only an approximation, and thus, like any other denoising
Eq. (4) is obtained from Eg. (3) by switching the order algorithm, its average error provides an upper bound on the
of integration and applying Bayes rule. The advantage MMSE. However, our goal is to bound the MMSE from
of the variance view is that from it, one can easily de- below, still, without knowingp(z) explicitly, but having at
rive the optimal estimator, namely the Bayesian minimum our disposalV > 1 samples from it. The main idea in
mean squared error (MMSE) estimator [13], which is sim- deriving both an upper and a lower bound on the MMSE, is

ply given by the conditional mean to use the two MSE formulations in Egs. (3) and (4). Given
a set ofM clean and noisy pair§(z;,y;)};~, and another
w(y) = Elz.ly] = /p(x|y)xcdar (5) independent set df clean patcheéz; }Y ,, both randomly
sampled from natural images, we compute
¢ U _ . = 2
P(y) wsE’ = S (i) £ (10
The MMSE at any fixed is then the conditional variance, 1 ’
MMSE" = -3 V(y) (11)
V() = Bl - ) ls] = [ plely) (e — w(w)* o © 7
whereas the overall MMSE is Wheref/(yj) is the approximated variance:
1 ~ 2
S ~ 2 Pislwa) (Aly;) — @ic)
MMSE = E[V(y)] = V(y)dy. 7 V(y;) = =2 12
Yl = [poVwd. @ () e, 12

In the framework of natural image denoising, the MMSE MMSE” and MMSE" are both random variables which de-

in (7) is the lowest achievable denoising error by any de- Pend on the particular set ofy samples. When the sample
noising algorithm. To compute this MMSE and the cor- Siz€ approaches infinity, they converge to the exact MMSE.
responding Op“mal estimatw(y), we need access to the HOWeVer, we show that fO_I‘ a finite Sample, n eXpeCtatIOI’l,
true natural image density(z). However, as discussed MMSE" and MMSE" provideupperandlower boundsn

in the introduction, an accurate model for this density is the best possible MMSE. Note the key difference between
a |0ng Standing research prob'em [20’ 21’ 26, 9] One Op_these tWO quantltleS: MM§E useS.eXphCIt krgoWledge of
tion would be to fit some parametric modglz), for ex-  the original noise-free patch;, while MMSE™ does not
ample, a field of experts model [21] or a Gaussian mix- involve it. Since MMSE basically measures the error of
ture model. We can then compute an approximated mearthe estimatoyi(y;), it provides, like every denoising algo-
i(y) = 1/q(y) [ p(y|z)g(z)z.dz. However, sincey(z) rithm, an upper bound on the MMSE. The term MMSEE

is only an approximation to the true natural image density analyzed in Sec. 2.3.

p(z), the error of the estimatqi(y), like the error of any When N is sufficiently large, the two computed values
denoising algorithm, is only an upper bound on the MMSE. MMSEY and MMSE" are similar, and we get an accurate
The difference in MSE depends on the quality of the ap- estimate for the actual optimal MMSE. As we show in sec-
proximation, which is not easy to evaluate, in particular tion 3 this happens when the patch sizis small, or when
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the noise variance? is high, since in such cases there is a X107 1 3 x10°
large number of valid nearest neighbors around each patch. : : 2
In the harder cases, we cannot compute the MMSE exactly, 15/ \ 0
but MMSE" still provides a lower bound on the best de- 3 . 3 - 3 = /(
noising results we can expect. o Varianee

— Approx. Variance, N=5
— Approx. Variance, N=20

5
0
-5

2.3. The sample variance as a lower bound on the e T T 70
MMSE y i
@) (b)

Our goal is to show that the approximated variance es-
timated from a finite set of samples (Eq. (12)), provides a
lower bound on the correct variance (Eq. (6)). To see this at
an intuitive Ieve_l, consider the numNerath of_ E_q._(12). 8inc tion. As predicted theoreticalln [V(y)] < V(y), with the
fi(y) is the weighted mean ofx;};Z,, it minimizes the s jecreasing with increasing number of samples or atdeégh

mean squared distance from these patches, and in particsjty regions. (b) Plug-in bias estimatBgy) of real natural image
ular, it achieves a smaller squared distance compared to th@atches, sorted in ascending order. Note that up to smakricah

exact unknown meap(y): errors, the bias estimates of all patches are negative.

Zp(yﬂxi)(wi,c — i(y;))* < Zp(yj|$i)($i,c — u(y;))?

Figure 1. Evaluating the bias df(y). (a) For a 1D Gaussian den-
sity p(x), we compare the expected sample variaBgd)(y)] to
its exact value/(y), which is constant iry for a Gaussian distri-

order terms. It is hence valid for sufficiently largé and
sufficiently commory.
Thus, in expectation Next, we consider a local Gaussian approximation for
p(z) aroundz = y, e.g., a Laplace approximation consist-

< ing of a second order Taylor expansionlafp(z). For a
B (13) Gaussian distribution we can analytically compute thedead
1 ) ing order bias tern@’(y)B(y) from Egs. (15) and (16). The
En [N > oy lea) (@ie — u(y;)) } =p(y;)V(¥5), following claim, proven in the appendix, shows ti#t) is

i negative for ally values. Since’(y) > 0, it follows that
whereE y[-] denotes expectation with respect to all possi- Ex[V(y)] < V(y). Thus, in expectation, MMSEprovides
ble sets ofN i.i.d. patches fronp(x). The denominator  a lower bound on the MMSE, as we aim to show.
of Eq. (12) is also a random variable whose expectationis _ . , o
p(y;), thus, roughlyEx[V(y)] < V(y). However, since Claim 2 For a Gaussian distribution3(y) < 0 for all y.
both numerator and denominator are random variables, a Figure 1(a) considers a simple case of a 1D Gaussian

more careful analysis af(y) is needed. distribution and compares the exact varianég)) with

The following claim derives a second order approxima- ]EN[V(y)], averaged oveil0,000 realizations of sets of

tion toE [V(y)] for afixed patcty. N = 5,10 or 15 samples. The bias is always negative and

Claim 1 Asymptotically, as the training set si2é — oo,  Enx[V(y)] < V(y). As evident from Eq. (16)¢(y) is large
the expected value of the approximated variance defined invhenp(y) is small, and so for a Gaussian distribution, the
Eq. (12)is bias increases exponentially with .
The density of natural image patches is not Gaussian, so
Ex[V(y)] = V(y) + C(y)B(y) + o (l) , (14) a Laplace approximation might be inaccurate and Claim 2
N may not directly apply. To evaluate this on real data, we
with used a plug-in estimatds(y) for the term5(y). That is,
we considered/ = 2,000 noisy3 x 3 patches{y;} with
Bly) = Eolzlly] — 3Eo[zc|y]* — 2Eo[272]y] noise variancer = 18. For eachy; the expectations in
+4E, [z |y Eo+ [2c]y] (15) Eqg. (15) were estimated by averaging over an independent
1 P (1) large set of clean patchds;}. Figure 1(b) shows the re-
Cly) = Nm (16) sulting B(y,) values, sorted in ascending order for visual-
Paory ization purposes. As seen in the plot, the estimated values
wherep,, E,[-], po~, E-[-] denote probability and expec- 5(y,) are all negative up to small numerical errors.
tation of random variables with noise standard derivation _
ando* respectivelys is the actual standard deviation and 3. EXperiments

ot =o/V2 To evaluate the MMSE we use a set28f, 000 images
The proof of Claim 1 is provided in the appendix. It uses from the LabelMe dataset [22]. We thus implicitly con-
an asymptotic expansion 0f(y) in NV, and neglects high  sider this dataset an unbiased representative of noise-fre

En [% Zp(yjlici)(ivz‘.,c — f(y;))?
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Figure 2. PSNR values of several recent denoising algosithlong with our MMSE lower and upper bounds. As predictechiaytieory,
the performance of all algorithms are bounded by our MM®8&timate, although BM3D approaches the bound by fractidBatalues.

(Note that since PSNR- —101og 10(MSE), the MMSE lower bound turns into an upper bound on the beseeable PSNR).

natural image statistics.To avoid quantization and JPEG Tightness of bounds: For small window sizes or high

artifacts we first low-passed all images and down-samplednoise, the upper and lower bounds coincide and hence we
them by a factor of two. These images provide a set of abouthave obtained an accurate estimate of the exact optimal
N = 10'° patural image patchefr;}. We use another MMSE value. For harder cases, there is a gap between the

M = 2,000 clean and noisy pairs of patch¢&;,y,)}, upper and lower bounds. While we are unable to estimate
denoise them by computing the weighted mean of Eq. (8), the exact MMSE, we still get a valid lower bound on it. This
and measure the mean squared error MMSEq. (10)), happens when there are too few samples at a normalized

and the lower bound MMSE(Eg. (11)). This is an inten-  distance ofz? from the noisy patch. To demonstrate that,
sive computation, which took about a week of computation we measured the number of nearest neighbors within nor-
on al00 CPUs cluster. malized distance of one standard deviation from each noisy
In Figure 2 we compare the PSNR values of various patch. Under the assumptiqn c_>f G_aussi_an noise the differ-
denoising algorithms to MMSE and MMSE" with three  €ncelly — ||* follows ax? distribution withk degrees of
noise levelss = 18,55, 170, for image intensities in the freedom. Therefore, for each noisy paighwe consider all
[0,255] range. We plot our bounds as a function of the patches at a squared distancerdfl + v/2/k?):
window sizek. We tried to match the support size of the
tested algorithms as well. We used the BM3D [8] algo- iHI‘ oyl <07 <1 n Q)} 17)
rithm with patch sizes of, 8 and 12 pixels (for8, 12 pix- g2 k
els we used the authors’ parameters, anddfpixels, our ) ) o
adaptation). We associate the KSVD [10] and Portita In F|gure_3 we pIQt the cumulative d|str|but|ormj values,
al. GSM[20] algorithms with the largest support sizeon-  for two window sizes: = 3 andk = 9, both witho = 18.
sidered, since these are global denoising algorisms that do/Ve see that for small, most patches have a large number of
not consider finite support patches. As a baseline compar€arest neighbors, whereas for= 9, 13% of the patches
ison we also present a linear minimum mean square errof@ve zero neighbors. Accordingly, fat= 9, o = 18, there
(LMMSE) estimator [13]. This estimator, also known as IS & gap between MMSEand MMSE" in Fig 2(a).
the Wiener filter, uses only the second order statistics of
the data, by fitting a single? dimensional Gaussian to the
set of N image patches. When computing our MMSENd
MMSE” scores we used the bootstrapping method to evalu-
ate the variance, by drawing multip)é patch subsets. The
standard deviation of the estimation is rather small, naggi
from 0.05dB for smallk values t0).2dB at the large ones.

n; = #{CCZ

Near optimality of state of the art denoising results: As
predicted by the theory, the empirical errors of all demgjsi
algorithms are larger than our lower bound. Nonetheless,
for most cases the PSNR values of BM3D are withitdB

of the optimal ones, suggesting that the BM3D results are
o _quite close to optimality, for small patch sizes. Thus, fatu
The results in Figure 2 suggest several observationsgengising algorithms that use small patches have vers littl

which we discuss below. room for improvement over BM3® However, whiled.1dB
seems like a very small improvement, it may still be visually
2Even if these input images do contain a small amount of ndtise, noticeable.
negligible w.r.t. the noise level added in our experimetitsionetheless,
these patches do contain a small amount of noise, then thésgoamu- 3This does not directly imply that BM3D cannot be further irmoyed,
lated as the reconstruction of signals with this slightlytydoed distribu- since while BM3D is a patch based algorithm, it utilizes aevidupport
tion, which is still a statistically well defined problem. by looking for neighbors in the entire image.
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Figure 3. Cumulative distribution function of the numbenefgh- (a) Original image (b) Noisy input

bors within distancer®(1 + v/2/k), computed ar = 18. For
3 x 3 patches99% of the examples had more than000 neigh-
bors. In contrast, for & x 9 patch size]13% of the examples had
no neighbors within this distance.

Support size: It seems that increasing the support size
carries some potential for increasing the PSNR. Due to the
curse of dimensionality, nhon-parametric techniques suffe
from an unavoidable tradeoff between patch size and the
number of valid nearest neighbors, and hence are unlikely (c) opt. MMSE, PSNR23.93dB (d) BM3D, PSNR23.86dB
to be applicable for large window sizes. Developing algo-
rithms which utilize a larger support size thus probably re-
quires switching from non-parametric approaches to para-
metric ones. Unfortunately, at the moment parametric de-
noising algorithms are far behind the non parametric ones.

Denoising at extreme noise levels: In Fig 2(c), the noise
level isc = 170. At this high noise level, the image prior
results are very similar to the results of a simple linearimin r
mum mean square error (LMMSE) estimator which utilizes (d) KSVD, PSNR22.41dB (€) GSM, PSNR23.28dB

only the second order statistics of the data. This happens

since at high noise levels the signal content is lost and all Figure 4. Visual comparison of our optimal MMSE and other al-
the prior can do is to estimate a flat image. The square errorgorithms, fors = 75. The optimal MMSE and BM3D usk2 x 12

of such an estimator is proportional to the variance of the windows. Our approach achieves slightly higher PSNR comgar
data, therefore natural image priors or Gaussian priors uti 0 BM3D, and a somewhat better visual quality.

lizing second order statistics give similar results. THeeot

extreme that we did not evaluate here is very low noise. For

low noise the effect of the prior is small and the error is gearch with approximated nearest neighbor techniques and

proportional to the noise variance. Therefore, natural im- 5 smarter encoding of the large sett6t” image patches.
age priors have an interesting effect only at medium noise

levels.

Visual results:  In Figure 4 we used thBepperdmage at Image specific bounds: Our analysis is based on the
half resolution to visualize the denoising results of salver knowledge of a generic image prior. An interesting ques-
recent denoising algorithms compared with our approach,tion for future research, as recently considered by [5,%6], i
which is the best possible denoising with a generic naturalwhether there is a significant advantage in adapting the prio
images prior. We used = 75 and12 x 12 windows for to the specific statistics of the observed image, as done by
our approach and for BM3D. Numerically, our result out- some recent denoising algorithms [3, 10, 8]. In fact, such
performs BM3D by0.07dB, and this difference leads to a algorithms can be thought of as instances of a generic prior
slightly better visual quality. The visualization of optin ~ whose support size is the entire image, since the support
denoising in Fig 4(c) is only a proof-of-concept, but not size essentially means that an algorithm can see and use in
a practical denoising algorithm- denoising thig0 x 100 the estimation all pixels within & x k£ window around a
image required two weeks of computation b0 CPUSs. noisy pixel. Unfortunately, we cannot evaluate tight basind
However, one can think of several ways to accelerate theat very large window sizes.
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4. Discussion Next, we assum&’ >> 1 and that the patchis not too rare,

. . - such that
This paper derived a statistical measure for the best pos- 1 p(ylzi) — po(y)

sible denoising results utilizing a generic natural image N Z —pg(y) <1
prior. Our findings suggest that for small windows, state of i )

the art denoising algorithms cannot be further improved be- 1hen, using a Taylor expansion for small
yond fractional dB values. Considering a wider support car-

: : . : 1 ) 5

ries some potential for improved results. However, increas T3 l1—e+e"+0(€)

ing the support size of non-parametric algorithms might
lead to a dead-end, and parametric approaches are requiredve obtain the following asymptotic expansion for the first
Unfortunately, at the moment parametric algorithms per- term, (where for ease of notation we wriigy) for p, (v))
form well behind non-parametric ones. Developing para- ) )

metric algorithms which can achieve state of the art results 4, ~. g[,2|y] (1 n % > p(ylzi)zi,c — p(y)E[:ccly]>

is also important because they can generalize for other low- p(y) E22]y]
level vision tasks. 2
The evaluation methodology used here can be easily - (1 1L Z’M + (i Zw> )
applied to other low-level vision problems such as super- N5 () N 4 P(y)
resolution, deconvolution, or inpainting. However, sorfie o (1)
these problems, such as the deconvolution of a wide support  We now take the expectation of Eq. (21) ovesamples.
kernel, rely on a large support of pixels. Hence we may not We use the fact that[p(y|z) — p(y)] = 0, E[p(y|z)z? —
be able to find a sufficient number of nearest neighbors for ap(y)E[z2|y]] = 0. We also neglect atD(1/N?) terms.
tight lower bound estimation. Yet, understanding the kmit 5
of image denoising is important as a step toward other low-  Ex[A1] = E[z?|y] (1 + 1 Elp(ylz)T]

T . 2
level vision problems, and moreover, as a step toward an N p(y)2 , (22)
understanding of the inherent limits of natural image stati 1 Elp(ylz) z]
; sera g T o(1/N)
tics. N p(y)?E[22[y]

Acknowledgments: The authors thank the ISF, BSF and Similarly, for the second term, we use the fact that
ERC for providing financial support. Cle_yl2/0?
. E[p(y|z)?] = fp(m)de = A(0,k)pox«(y)
5. Appendix Elp(y|z)*x.] A0, K)pon(y)Eor [tcly]

E 222 A0, k) pos(y) B[22
Proof of Claim 1: For future use we denote b¥(c, k) = plyle)“ac] (©:F)po-(W)Eo- [rcly] (23)

(4762)~**/2 and recall that* = o//2. The first stepin  and hence rewrite the second tedn as
the proof is to insert Eq. (8) into Eq. (12), which yields the L plen)es.—p@ERelu]\ 2
following more convenient expression f(y ), (1 ty 2 P(W)E[zcly] )

2
1+ 1 p(ylzi)—po(y)
LS p(ule)e?, (&Y plyles)rie)? (1+ 4 3o pldzore)

V() = = - ,
~ 2 p(ylei) (L 2 plyle:))? = Elzcly]
= A1 — A (18) <1+%Z Ple)zi,c—p(WEleely] | (%Z p(y\m)aci,cfp(ym[wc\y]) 2)

p(Y)E[zc|y] p(Y)E[zc|y]

Az = j(y)® = Elzcly)?

The main idea is to analyze the bias of each of these terms 142y pwldpe) | (i > p@‘wi),%(w)g
separately, whereby for each term we further consider the N Po (y) N Po (v)
mean and fluctuations of their numerator and denominator. 2
. o ~ Elzely]
For the termA; we shall use the following equalities 5
. 1_,'_12 p(ylz)zi c—p(y)E[zc|y] + (LZ p(y\wi)wi,c*p(y)ﬁ[wc\y])
Elp(y|x)] [ p(@)p(ylz)dz = ps(y) N P(W)E[zc[y] N p(W)E[zc[y]
2 2 (19)
E[p(y|z)zc] Po (Y)Eo[zz]y] 2
. . i (1= gz rylzi) —po (y) + 3 (Z p(y\wi)*pa(y))
wherep, (y) is the density ofj-patches at noise level and N Po () N Po ()
E, [-|y] denotes expectation with respecipia(y). (24)
The two expressions in Eq.(19) are nothing but the mean
of the denominator and numerator 4f, respectively. We
thus rewrite the termt; as 2 < 4 Ep(ylz)®z.] 1 Elp(y|lz)®z?]
En[A2] = E[z.  [— Bl
vlda] = Elrely] N p(y)*Elzely] = N p(y)*Elze|y]?

Taking expectations and omittin@(1/N?) terms, we get:

p(ylei)e? . —po (y)E[z]|y]
po(y)E[22]y] (1 +y 2 Po (V)EZ2]Y] ) 43 E[p(y|)’] N o(l/N))
A Y1+ > p(ylzi)—po (v) (20) N p(y)?
Po (y N Do () (25)
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Substituting the terms from Eq. (23) in Egs. (22) and (25) [7] R. Coifman and D. Donoho.

yields the desired Eq. (14).

Proof of Claim 2:We note tha3(y) (Eg. (15)) can be writ-
ten as:

B(y) = Vo[zc|y] — 2Vor[zc]y] — 2 (Eor [zc|y] — Eo [mcly]);G

where V[z.|y] E[22]y] — E[z.|y]* denotes variance.
Thus, itis sufficient to show that, [z|y] — 2V, [x|y] < 0.
We denote by® the covariance matrix op(xz) and by
¥,, ¥, the covariance matrices of, (z|y), po~ (z]y):

1 -1 1 -1

v, = <—2Id+<1>*1> Uor = <71d +<1>*1> ,

g g
(27)

wherel, is the d dimensional identity matrix. The vari-
ance atz. is the(c, ¢) entry of these matricesV, [z]y] =
U, (c,c), Vou[z]y] = Von (c, 0).

We denote by{\}, {~}, {7/} the eigenvalues of the
matrices®, ¥, ¥, respectively. We note that all these
matrices are diagonal in the same basis and we can write

Uo(e,e) =D uive, Torlcc)= upvi, (28)
I 1

(u¢ is thec entry of eigenvectof). We can also relate the
eigenvalues ofV,, ¥, to the eigenvalues of the uncondi-
tional covariance:

=+ =T (0T (29)
A simple calculation shows that for evefy
1 2
— 297 = Ao - < 30
Ye Ve 0 (M-FUQ 2)\[+U2)—0 (30)

Using Egs. (30) and (28) we conclude:

\1’0(07 C) -2V, (07 C) = Z u% (’W - 2’75) <0. (31)
£

[
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