
On the Optimality of Averaging in
Distributed Statistical Learning

Jonathan Rosenblatt∗,
∗jonathan.rosenblatt@weizmann.ac.il

Boaz Nadler
boaz.nadler@weizmann.ac.il

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science,

Rehovot, Israel

June 11, 2015

A common approach to statistical learning with big-data is to randomly
split it among m machines and learn the parameter of interest by averag-
ing the m individual estimates. In this paper, focusing on empirical risk
minimization, or equivalently M-estimation, we study the statistical error
incurred by this strategy. We consider two large-sample settings: First, a
classical setting where the number of parameters p is fixed, and the num-
ber of samples per machine n → ∞. Second, a high-dimensional regime
where both p, n → ∞ with p/n → κ ∈ (0, 1). For both regimes and under
suitable assumptions, we present asymptotically exact expressions for this es-
timation error. In the fixed-p setting, under suitable assumptions, we prove
that to leading order averaging is as accurate as the centralized solution.
We also derive the second order error terms, and show that these can be
non-negligible, notably for non-linear models. The high-dimensional setting,
in contrast, exhibits a qualitatively different behavior: data splitting incurs
a first-order accuracy loss, which to leading order increases linearly with the
number of machines. The dependence of our error approximations on the
number of machines traces an interesting accuracy-complexity tradeoff, al-
lowing the practitioner an informed choice on the number of machines to
deploy. Finally, we confirm our theoretical analysis with several simulations.
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1. Introduction

The Big-data era, characterized by huge datasets and an appetite for new scientific and
business insights, often involves learning statistical models of great complexity. Typi-
cally, the storage and analysis of such data cannot be performed on a single machine.
Several platforms such as Map-Reduce [Dean and Ghemawat, 2008], Hadoop [Shvachko
et al., 2010], and Spark [Zaharia et al., 2010] have thus become standards for distributed
learning with big-data.

These platforms allow learning in an “embarrassingly parallel” scheme, whereby a large
dataset with N observations is split to m machines, each having access to only a subset
of n = N/m samples. Approaches to “embarrassingly-parallel” learning can roughly be
categorized along the output of each machine: predictions, parameters or gradients. In
this paper we consider the second, whereby each of the m individual machines fits a
model with p parameters and transmits them to a central node for merging. This split-
and-merge strategy, advocated by Mcdonald et al. [2009] for striking the best balance
between accuracy and communication, is both simple to program and communication
efficient: only a single round of communication is performed and only to a central node.
It is restrictive in that machines do not communicate between themselves, and splitting
is done only along observations and not along variables. For an overview of more general
distributed learning strategies see for example Bekkerman et al. [2011].

Our focus is on the statistical properties of this split-and-merge approach, under the
assumption that the data are split uniformly at random among the m machines. In
particular, we study the simplest merging strategy, of averaging the m individual ma-
chine estimates, denoted as the Mixture Weight Method in Mcdonald et al. [2009]. In
this context we ask the following questions: (i) what is the estimation error of simple
averaging as compared to a centralized solution? (ii) what is its distribution? (iii) under
which criteria, if any, is averaging optimal? and (iv) how many machines to deploy?

Mcdonald et al. were among the first to study some of these issues for multinomial
regression (a.k.a. Conditional Maximum Entropy), deriving finite sample bounds on
the expected error of the averaged estimator [Mcdonald et al., 2009, Theorem 3]. In
a follow-up work, Zinkevich et al. [2010] compared the statistical properties of the av-
eraged estimator to the centralized one for more general learning tasks, assuming each
machine estimates the model parameters by stochastic gradient descent. More recently,
under appropriate conditions and for a large class of loss functions, Zhang et al. [2013b,
Theorem 1] derived bounds for the leading order term in the mean squared error (MSE)
of the averaged estimator and provided the rates of higher order terms. They further
proposed several improvements to the simple averaging strategy that reduce the second
order term in the MSE, and reduce the machine-wise run time via modified optimization
algorithms.

In this paper we extend and generalize these previous works in several aspects. First,
in Section 3 we study the statistical properties of the averaged estimator, when the
number of parameters p is fixed, under conditions similar to those of Zhang et al. [2013b].
Using the classical statistical theory of M-estimators [Vaart, 1998, Rieder, 2012], we
provide not only asymptotic bounds on the MSE, but rather an asymptotic expansion
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of the error itself. This allows us to derive the exact constants in the MSE expansion,
and prove that as n → ∞, the MSE of the averaging strategy in fact equals that of
the centralized solution. Put differently, for various learning tasks, when the number
of machines m and their available memory are such that in each machine there are
many observations per parameter (n ≫ p), then averaging machine-wise estimates is as
accurate as the centralized solution. Furthermore, if the centralized solution enjoys first-
order statistical properties such as efficiency or robustness, then so will the parallelized
solution. We remark that for maximum likelihood problems, independently of our work,
the asymptotic agreement between centralized and averaged estimators was also noted
by Liu and Ihler [2014]. The asymptotic representation of the averaged estimator also
readily yields its limiting distribution. This allows to construct confidence intervals,
perform hypothesis tests on the unknown parameters and feature selection without the
need for computationally intensive procedures such as Bootstrapping.

The first-order equivalence between the averaged and centralized estimators may seem
as a free lunch: run-time speedups with no accuracy loss. Distributed estimation via
split-and-average, however, does incur an accuracy loss captured in the higher order
error terms. The classical theory of M-estimators permits the derivation of these terms,
in principle up to an arbitrary order. We do so explicitly up to second order, revealing
the accuracy loss of split-and-average schemes.

In Section 4 we consider the statistical effects of data-splitting in a high-dimensional
regime, where the model dimension p, grows with the number of observations n: p, n →
∞ with p/n → κ ∈ (0, 1). Our motivation comes from modern day data analysis
practices, where increasingly complicated models are considered as more data is made
available. This is a challenging regime in that typically machine-wise estimates are not
only inconsistent, but in fact do not even converge to deterministic quantities. Here, in
the absence of a general theory of M-estimators, we restrict our analysis to generative
linear models. In contrast to the fixed-p setting, in this high-dimensional regime there is
a first order accuracy loss due to the split data, which increases (approximately) linearly
with the number of machines. Luckily, in several practical situations, this accuracy loss
is moderate. Our analysis builds upon the recent results of El Karoui et al. [2013] and
Donoho and Montanari [2013], and to the best of our knowledge, is the first to study
the error loss of parallelization in this high-dimensional regime.

In Section 5 we present several simulations both in the fixed-p and in the high-
dimensional regime that illustrate the utility but also the limitations of our results.
These confirm that when learning linear models with abundant data, random splitting
and averaging is attractive both computationally and statistically. In contrast, for non-
linear models, the accuracy loss due to data splitting can be considerable.

In Section 6 we attend to practical considerations, such as parallelization vs. sub-
sampling and the choice of number of machines,m. For the latter, we distinguish between
parallelization due to memory constraints, and that motivated by run-time speedups. For
these two scenarios we formulate the choice of m as optimization problems constrained
on the desired error level. Interestingly, when motivated by run-time speedups, using our
approximations for the estimation error, and varying m traces the accuracy-complexity
tradeoff facing the practitioner.
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We conclude with a discussion and several further insights in Section 7. All proofs
appear in the appendices.

2. Problem Setup

We consider the following general statistical learning setup: Let Z be a random variable
defined on an instance space Z and having an unknown density pZ . Also, let the param-
eter space Θ ⊂ Rp be an open convex subset of Euclidean space, and let f : Z×Θ → R+

denote a loss function. Our interest is to estimate the p-dimensional parameter θ∗ ∈ Θ
that minimizes the population risk

R(θ) = EZ [f(Z, θ)] =

∫
f(z, θ) pZ(z) dz. (1)

In the following, we assume that θ∗ exists in Θ and is unique. Given N i.i.d. samples
{zi}Ni=1 of the r.v. Z, a standard approach, known as M-estimation or empirical risk
minimization (ERM), is to calculate the estimator θ̂N ∈ Θ that minimizes the empirical
risk

R̂N (θ) =
1

N

N∑
i=1

f(zi, θ). (2)

This framework covers many common unsupervised and supervised learning tasks. In
the latter, Z = (X,Y ) consists of both features X and labels Y . There is by now an
established theory providing conditions for θ̂N to be a consistent estimator of θ∗, and
non asymptotic bounds on its finite sample deviation from θ∗ (see Devroye et al. [1997],
Shalev-Shwartz and Ben-David [2014] and references therein).

In this paper we consider a big-data setting, whereby the number of samples N is
so large that instead of minimizing Eq.(2) on a single machine, the data is randomly
allocated among m machines, each having access to only a subset of size n := N/m. In
line with the Map-Reduce workflow, a typical approach in this distributed scenario is
that each machine computes its own M-estimator and transmits it to a central node for
further processing. In this work we focus on the most common aggregation procedure,
namely simple averaging

θ̄ :=
1

m

m∑
j=1

θ̂(j)n (3)

where θ̂
(j)
n denotes the j-th machine minimizer of Eq. (2) over its own observed data.

Our questions of interest are: (i) what is the accuracy of θ̄ vs. that of θ̂N ? (ii) what
are the statistical properties of θ̄? (iii) under which criteria, if any, is θ̄ optimal? and
(iv) how many machines to deploy?

3. Fixed-p Setting

First, we consider the error of the split-and-average estimator θ̄ of Eq.(3), when data
is abundant and the model dimension p and number of machines m are both fixed. In
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this setting, bounds on the MSE[θ̄, θ∗] := E[∥θ̄ − θ∗∥2] were derived by both Zhang
et al. [2013b] and Mcdonald et al. [2009]. For the particular case of maximum likelihood
estimation, Liu and Ihler [2014, Theorem 4.6] derived the exact asymptotic expression
of the first two leading error terms in the MSE, as n → ∞. We take a similar approach
but for the more general M-estimators. Instead of focusing on the MSE, we derive an
exact asymptotic representation of the first two terms in the error θ̄ − θ∗ itself.

3.1. First Order Statistical Properties of Averaging

We start by analyzing the exact asymptotic expression for the dominant error term. We
make the following standard assumptions [Vaart, 1998, Theorem 5.23], similar to those
made in Zhang et al. [2013b]:

Assumption Set 1.

A1 θ̂n is consistent: θ̂n = θ∗ + oP (1).

A2 R(θ) admits a second order Taylor expansion at θ∗ with non singular Hessian
Vθ∗.

A3 f(Z, θ) is differentiable at θ∗ almost surely (a.s.) or in probability.

A4 f(Z, θ) is Lipschitz near θ∗: |f(Z, θ1) − f(Z, θ2)| ≤ M(Z)∥θ1 − θ2∥ with
Lipschitz coefficient M(Z) bounded in squared expectation, E[M(Z)2] < ∞.

Our first result, formally stated in the following theorem, is that under Assumption
Set 1 averaging machine-wise estimates enjoys the same first-order statistical properties
as the centralized solution.

Theorem 1. Under Assumption Set 1, as n → ∞ with p fixed, and any norm

∥θ̄ − θ∗∥
∥θ̂N − θ∗∥

= 1 + oP (1). (4)

We say that two estimators are first-order equivalent if their leading error terms con-
verge to the same limit at the same rate, with the same limiting distribution. Assump-
tion Set 1 implies that θ̂n converges to θ∗ at rate O(n−1/2) [Vaart, 1998, Corollary 5.53].
Theorem 1 thus directly implies the following:

Corollary 1. The averaged estimator θ̄ is first-order equivalent to the centralized solu-
tion θ̂N .

Remark 1. In practice, Eq.(2) is minimized only approximately, typically by some it-
erative scheme such as gradient descent (GD), stochastic gradient descent (SGD), etc.
An important point is that Theorem 1 holds not only for the exact empirical mini-
mizer θ̂n of Eq.(2), but also for any approximate minimizer θ̃n as long as it satisfies
R̂n(θ̃n) ≤ R̂n(θ̂n) + op(n

−1) [Vaart, 1998, Theorem 5.23]. In other words, for Corollary
1 to hold, it suffices to minimize the empirical risk up to op(n

−1) precision.
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Theorem 1 has important implications on the statistical properties of θ̄, its optimality
and robustness . We discuss these in detail below, but before, let us describe the scope
which this theorem covers.

Scope As detailed further in Appendix H, the learning tasks covered by Theorem 1
are quite broad, and include: linear or non-linear regression with l2, Huber, or log
likelihood loss; linear or non-linear quantile regression with continuous predictors; bi-
nary regression where P (Y = 1|X) = Ψθ(X) for any smooth Ψθ and l2, log like-
lihood or Huberized hinge loss1; binary hinge loss regression (i.e. SVM regression)
with continuous predictors; unsupervised learning of location and scale. Furthermore,
Theorem 1 also covers regularized risk minimization with a fixed regularization term
J(θ), of the form θ∗ := argmin θ {R(θ) + J(θ)}, provided that the modified loss function
f̃(Z, θ) = f(Z, θ) + J(θ) satisfies the required assumptions.

Some learning problems, however, are not covered by Theorem 1. Examples include:
non-uniform allocation of samples to machines; non-convex parameter spaces; a data
driven regularization term; non differentiable loss with discrete predictors. Also not
covered is the n < p regime, in which Shamir et al. [2013] showed that averaging (denoted
there as One Shot Averaging) can, in general, be unboundedly worse than the centralized
solution.

On the optimality of averaging. Recall that common notions of asymptotic optimality,
such as Best Regular and Local Minimax depend only on the leading order error term
[Vaart, 1998, Chapter 8]. Hence, if the centralized estimator θ̂N is optimal w.r.t. any
of these criteria, Eq.(4) readily implies that so is the averaged estimate θ̄. A notable
example, discussed in [Zhang et al., 2013b, Corollary 3] and in Liu and Ihler [2014],
is when the loss function is the negative log likelihood of the generative model. The
centralized solution, being the maximum-likelihood estimate of θ∗, is optimal in several
distinct senses. Theorem 1 thus implies that θ̄ is optimal as well and the factor 1 in
Eq.(4) cannot be improved.

Robustness. An important question in distributed learning is how to handle potential
outliers: should these be dealt with at the machine-level, the aggregation level, or both?
Recall that the robustness literature mostly considered the construction of estimators
having minimal asymptotic variance, under the constraint of bounded influence of indi-
vidual observations. For estimating the mean of a Gaussian distribution under possible
contamination, Huber derived his famous loss function, and proved it to be optimal. As
the Huber-loss yields an M-estimator that satisfies the assumptions of Theorem 1, it
thus follows that averaging machine-wise robust estimators is optimal in the same sense.

Hence, if the probability of a high proportion of outliers in any machine is negligible,
and machine-failure is not a concern, it suffices to deal with outliers at the machine
level alone. In other cases robust aggregation functions should be considered [Hsu and
Sabato, 2013, Feng et al., 2014].

1A smooth version of the Huber loss [Rosset and Zhu, 2007].
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Asymptotic Linearity. The proof of Theorem 1 relies on the asymptotic linearity of the
estimator in some non-linear transformation of the samples. This is known as the asymp-
totic linearity property and the corresponding transformation is the Influence Function.
Asymptotic linearity holds for several other estimators, including L, R and Minimum
Distance. Hence, first-order equivalence of averaging to the centralized solution is rather
general. It typically holds for asymptotically Gaussian estimators [Rieder, 2012, Chap-
ter 1,6] and has also been observed in other contexts, such as that of particle filters
[Achutegui et al., 2014].

Limiting Distribution The asymptotic linearity of θ̄ in the influence function immedi-
ately offers the following limiting Gaussian distribution:

Corollary 2 (Asymptotic Normality). Under the assumptions of Theorem 1, when n →
∞ with p fixed, then

√
N(θ̄ − θ∗) converges in distribution to

N
(
0, V −1

θ∗ E
[
∇f(θ∗)∇f(θ∗)′

]
V −1
θ∗

)
.

Corollary 2 allows to construct confidence intervals and test hypotheses on the un-
known θ∗. To this end, the asymptotic covariance matrix also needs to be estimated.
Plugging any O(N−1/2) consistent estimator for the covariance matrix will conserve the
asymptotic normality via Slutsky’s Theorem.

3.2. Second Order Terms

As we show empirically in Section 5, relatively little accuracy is lost when parallelizing
a linear model but much can be lost when the model is non-linear. One reason is that
the second order error term may be non-negligible. As discussed in Section 6, this
term is also imperative when deciding how many machines to deploy, as the first-order
approximation of the error does not depend on m for fixed N .

Before studying this second order term, let us provide a high level view. Intuitively,
the first-order term captures estimation variance, which is reduced by averaging. The
second order term captures also bias, which is not reduced by averaging. We would thus
expect some second order suboptimality when parallelizing. Indeed, Theorem 2 below
shows that the (second order) bias in a parallelized estimator is m times larger than
that of the centralized one. The comparison between the second order MSE matrix of
the parallelized and centralized estimators is more complicated. Theorem 3 provides an
explicit expression, whose terms ultimately depend on the curvature of the risk R(θ) at
θ∗.

3.2.1. Notation and Assumptions

To study the second order error of θ̄, we make suitable assumptions that ensure that the
machine-wise M-estimator admits the following higher-order expansion,

θ̂n = θ∗ + ξ−1/2(θ̂n) + ξ−1(θ̂n) + ξ−3/2(θ̂n) +OP (n
−2), (5)
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where ξ−α(θ̂n) denotes the OP (n
−α) error term in θ̂n and α = {1/2, 1, 3/2, . . . }. The

following set of assumptions with s = 4 is sufficient for Eq.(5) to hold, see Rilstone et al.
[1996].

Assumption Set 2. There exist a neighborhood of θ∗ in which all of the following
conditions hold:

B1 Local differentiability: ∇sf(θ, Z) up to order s, exist a.s. and E [∥∇sf(θ∗, Z)∥] <
∞.

B2 Bounded empirical Hessian: (∇2R̂n(θ))
−1 = OP (1).

B3 Lipschitz gradients: ∥∇sf(θ, Z)−∇sf(θ∗, Z)∥ ≤ M∥θ−θ∗∥, where E [|M |] ≤
C < ∞.

For future use, and following the notation in Rilstone et al. [1996], we define the
following p× 1 column vector δ, and p× p matrices γ0, . . . , γ4,

E
[
ξ−1(θ̂n)

]
= n−1δ; E

[
ξ−1(θ̂n)

]
E
[
ξ′−1(θ̂n)

]
= n−2γ0 = n−2δδ′;

E
[
ξ−1/2(θ̂n) ξ

′
−1/2(θ̂n)

]
= n−1γ1; E

[
ξ−1(θ̂n) ξ

′
−1/2(θ̂n)

]
= n−2γ2; (6)

E
[
ξ−1(θ̂n) ξ

′
−1(θ̂n)

]
= n−2γ3 + o(n−2); E

[
ξ−3/2(θ̂n) ξ

′
−1/2(θ̂n)

]
= n−2γ4 + o(n−2).

3.2.2. Second Order Bias

Let B2(θ̂n) denote the second order bias of θ̂n w.r.t. θ∗:

B2(θ̂n) := E[ξ−1/2(θ̂n) + ξ−1(θ̂n)]. (7)

The following theorem, proven in Appendix B, shows that under our assumptions aver-
aging over m machines is (up to second order) m times more biased than the centralized
solution.

Theorem 2 (Second Order Bias). Under Assumption Set 2 with s = 3, B2(θ̂N ) = δ/N
and B2(θ̄) = δ/n, so that

B2(θ̄) = mB2(θ̂N ). (8)

Remark 2. The second order bias B2(θ̄) can be reduced at the cost of a larger first-order
error, i.e., trading bias for variance. In general, this should be done with caution, since
in extreme cases debiasing may inflate variance infinitely [Doss and Sethuraman, 1989].
Approaches to reduce the second order bias include that of Kim [2006] who modifies the
machine-wise loss function, Liu and Ihler [2014] who propose a different aggregation
of the m machine-wise estimates, and Zhang et al. [2013b], whose SAVGM algorithm
estimates the machine-wise bias via bootstrap. A different approach is to trade bias for
communication. Recent works that reduce the bias by allowing communication between
the m machines include the DDPCA algorithm [Meng et al., 2012], which transfers
parts of the inverse Hessian between machines and DANE [Shamir et al., 2013], which
transfers gradients.
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3.2.3. Second Order MSE

Following Rilstone et al. [1996], for any estimator θ̃n based on n samples, we denote by
M2(θ̃n) its second order MSE matrix,

E
[
(θ̃n − θ∗)(θ̃n − θ∗)′

]
= M2(θ̃n) + o(n−2). (9)

It follows from Rilstone et al. [1996, Proposition 3.4] that under Assumption Set 2 with
s = 4

M2(θ̂n) =
1

n
γ1 +

1

n2

(
γ2 + γ′2 + γ3 + γ4 + γ′4

)
. (10)

The following theorem compares between M2(θ̂N ) and M2(θ̄).

Theorem 3 (Second Order MSE). Under Assumption Set 2 with s = 4, the matrix
M2(θ̄) is given by

M2(θ̄) =
m− 1

m

1

n2
γ0 +

1

mn
γ1 +

1

mn2

(
γ2 + γ′2 + γ3 + γ4 + γ′4

)
. (11)

Furthermore, the excess second order error due to parallelization is given by

M2(θ̄)−M2(θ̂N ) =
m− 1

m

1

n2
γ0 +

m− 1

m2

1

n2

(
γ2 + γ′2 + γ3 + γ4 + γ′4

)
. (12)

In general, the second order MSE matrix M2(θ̂n) of Eq.(10) need not be positive
definite (PD) [Rilstone et al., 1996]. Note that since both matrices γ0 and γ1 are PD by
definition, a simple condition to ensure that both M2(θ̂n) and M2(θ̄)−M2(θ̂N ) are PD is
that (γ2 + γ′2 + γ3 + γ4 + γ′4) is PD. If this holds, then parallelization indeed deteriorates
accuracy, at least up to second order.

Remark 3. Even if the second order MSE matrix is PD, due to higher order terms,
parallelization may actually be more accurate than the centralized solution. An example is
ridge regression with a fixed penalty and null coefficients (i.e., θ∗ = 0). The regularization
term, being fixed, acts more aggressively with n observations than with N . The machine-
wise estimates are thus more biased towards 0 than the centralized one. As the bias acts
in the correct direction, θ̄ is more accurate than θ̂N . Two remarks are, however, in
order: (a) This phenomenon is restricted to particular parameter values and shrinkage
estimators. It does not occur uniformly over the parameter space. (b) In practice, the
precise regularization penalty may be adapted to account for the parallelization, see for
example Zhang et al. [2013a].

3.3. Examples

We now apply our results to two popular learning tasks: ordinary least squares (OLS)
and ridge regression, both assuming a generative linear model. We study these two cases
not only due to their popularity, but also as they are analytically tractable. As we show
below, parallelizing the OLS task incurs no excess bias, but does exhibit excess (second
order) MSE. The ridge problem, in contrast, has both excess bias and excess (second
order) MSE.
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3.3.1. OLS

Consider the standard generative linear model Y = X ′θ0 + ε, where the explanatory
variable X satisfies E [X] = 0; V ar[X] = Σ, and the noise ε is independent of X with
mean zero and V ar[ε] = σ2. The loss is f(Y,X; θ) = 1

2(Y −X ′θ)2, whose risk minimizer
is the generative parameter, θ∗ = θ0. The following proposition, proved in Appendix D,
provides explicit expressions for the second order MSE matrix.

Proposition 1 (OLS Error Moments). For the OLS problem, under the above generative
linear model,

γ0 = 0, γ1 = σ2Σ−1, γ2 = −(1 + p)σ2Σ−1,

γ3 = (1 + p)σ2Σ−1, γ4 = (1 + p)σ2Σ−1.

Inserting these expressions into Theorem 2 yields that the second order bias vanishes
both for the individual machine-wise estimators and for their average, i.e., B2(θ̂n) =
B2(θ̂N ) = B2(θ̄) = 0. Combining Proposition 1 with Theorem 3 yields the following
expressions for the parallelized second order MSE and the excess error,

M2(θ̄) =
1

mn
σ2Σ−1 +

1

mn2
(1 + p)σ2Σ−1; M2(θ̄)−M2(θ̂N ) =

m− 1

mn2
(1 + p)σ2Σ−1.

(13)

In OLS, parallelization thus incurs a second order accuracy loss, since M2(θ̄)−M2(θ̂N )
is PD.

3.3.2. Ridge Regression

Next, we analyze ridge regression under the same generative model Y = X ′θ0+ε; E [X] =
0; V ar[X] = Σ, but now with the ridge penalty f(Y,X; θ) = 1

2(Y −X ′θ)2 + λ
2∥θ∥

2. The
risk minimizer θ∗ now equals (Σ + λI)−1Σθ0.

Adding the simplifying assumption that Σ = I, and denoting λk,l :=
λk

(1+λ)l
, B := θ0θ

′
0,

and A := Tr(B)I = ∥θ0∥2I, we obtain the following result.

Proposition 2 (Ridge Error Moments). For the ridge regression problem, under the
above conditions, the matrices γ0, . . . , γ4 that control the second order bias and MSE of
Eq.(6) are given by

γ0 = λ2,6(1 + p)2B, γ1 = λ2,4(B +A) + λ0,2σ
2I,

γ2 = −λ2,5((4 + p)B + (2 + p)A)− λ0,3σ
2(1 + p)I, γ3 = λ2,6

(
(5 + p+ p2)B + (2 + p)A

)
+ λ0,4σ

2(1 + p)I,

γ4 = λ2,5 ((5 + 2p)B + (3 + 2p)A) + λ0,3σ
2(1 + p)I.

Corollary 3 (Ridge Second Order Bias). Combining Proposition 2 with Theorem 2,
under a linear generative model, the second order bias of the parallelized ridge regression
estimate is B2(θ̄) = − 1

nλ1,3(1 + p)θ0.
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Corollary 4 (Ridge Second Order MSE). Combining Proposition 2 with Theorem 3,
under a linear generative model, the parallelized second order MSE matrix and excess
MSE are given by

M2(θ̄) =
1

mn

(
λ2,4(B +A) + λ0,2σ

2I
)
+

m− 1

m

1

n2
λ2,6(1 + p)2B+

1

mn2

[
λ2,52(p+ 1)(B +A) + λ2,6((5 + p+ p2)B + (2 + p)A) + λ0,4(1 + p)σ2I

]
,

(14)

and

M2(θ̄)−M2(θ̂N ) =
m− 1

m

1

n2
λ2,6(1 + p)2B+

m− 1

m2

1

n2

[
λ2,52(p+ 1)(B +A) + λ2,6((5 + p+ p2)B + (2 + p)A) + λ0,4(1 + p)σ2I

]
.

As in the OLS case, since B is an outer product, and A is a scaled identity matrix, it
follows that bothM2(θ̄) andM2(θ̄)−M2(θ̂N ) are PD matrices. Despite this result, as dis-

cussed in Remark 3, it is still possible that E
[
(θ̄ − θ∗)(θ̄ − θ∗)′

]
−E

[
(θ̂N − θ∗)(θ̂N − θ∗)′

]
is a negative definite matrix due to higher order error terms, implying that parallelized
ridge regression can be more exact than the centralized estimator. This has been con-
firmed in simulations (not included).

4. High-Dimensional Approximation

As reviewed in Section 1, most existing theory on parallelization assumes a fixed-p, in-
dependent of n. This is implied by the assumption that the empirical risk gradients have
uniformly bounded moments, independent of n [e.g. Zhang et al., 2013b, Assumption 3].
However, it is common practice to enrich a model as more data is made available, to the
extent that the number of unknown parameters is comparable to the number of samples.
If p is comparable to n, and both are large, then the approximations of Section 3 may
underestimate the parallelization’s excess error. To address this setting, we now perform
a high-dimensional analysis where n, p(n) → ∞ and p(n)/n → κ ∈ (0, 1).

To the best of our knowledge there is no general theory for the behavior of M-
estimators is this regime. To gain insight into the statistical properties of parallelization
in this high-dimensional setting, we restrict our focus to generative linear models for
which the appropriate theory has been developed only recently. Building on the works
of Donoho and Montanari [2013] and El Karoui et al. [2013], we thus consider a random
variable Z = (X,Y ) consisting of a vector of predictor variables (X ∈ Rp) and a scalar
response variable (Y ∈ R), which satisfy the following assumptions:

Assumption Set 3.

C1 The observed data xi are i.i.d. from the random variable X ∼ N (0,Σ), with
invertible Σ.
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C2 Linear generative model: Y = X ′θ0 + ϵ, where θ0 ∈ Rp.

C3 The noise random variable ϵ has zero mean, finite second moment, and is inde-
pendent of X.

C4 The loss f(Z, θ) = f(Y −X ′θ) is smooth and strongly convex.

Unlike the fixed-p case, in the high-dimensional regime where p, n → ∞ together,
each machine-wise estimate is inconsistent. As shown by El Karoui et al. [2013], and
Donoho and Montanari [2013], when Assumption Set 3 holds, then as n, p(n) → ∞ with
p(n)/n → κ ∈ (0, 1),

θ̂n = θ∗ + r(κ)Σ−1/2 ξ (1 + oP (1)) (15)

where ξ ∼ N (0, 1/p× Ip) and r(κ) is a deterministic quantity that depends on κ, on the
loss function f and on the distribution of the noise ϵ.

Using the above result, we now show that in contrast to the fixed-p setting, averaging is
not even first-order equivalent to the centralized solution. The following lemma, proven
in Appendix G.1, quantifies this accuracy loss showing that, typically, it is moderate.

Lemma 1. Under Assumption Set 3, as κ → 0

E
[
∥θ̄ − θ∗∥2

]
E
[
∥θ̂N − θ∗∥2

] = 1 + κ
r2
r1

(
1− 1

m

)
+O(κ2), (16)

where

r1 =
B1

A2
2

, r2 =
3B1T1

A4
2

− 2B2
1A4

A5
2

+
2B2

A3
2

, (17)

and

A2 = E[f[2](ϵ)], A4 = E[1/2 f[4](ϵ)], T1 = E[f2
[2](ϵ) + f[1](ϵ)f[3](ϵ)], (18)

B1 = E[f2
[1](ϵ)], B2 = E[f2

[1](ϵ)f[2](ϵ)].

where f[i] :=
∂i

∂ti
f(t).

Remark 4. For simplicity of exposition, we followed the assumptions of Bean et al.
[2013, Result 1]. However, many of these can be relaxed, as discussed by El Karoui
[2013]. In particular, X need not be Gaussian provided that it is asymptotically or-
thogonal and exponentially concentrating; f need not be strongly convex nor infinitely
differentiable and an interplay is possible between assumptions on the tail mass of ϵ and
f[1]. Note however, that for our perturbation analysis on the behavior of r(κ) as κ → 0 to
hold, we assume the loss is at-least six times differentiable with bounded sixth derivative.

12



Remark 5. There are cases where r(κ) can be evaluated exactly, without recurring to
approximations. One such case is least squares loss with arbitrary noise ϵ, satisfying
C3, in which Wishart theory gives r2(κ) = κ

1−κσ
2 [El Karoui et al., 2013]. A second

order Taylor approximation of this exact result yields r1 = r2 = σ2 in accord with our
Eqs.(16) and (17). A second case where an exact formula is available is l1 loss with
Gaussian errors: A second order Taylor expansion of the closed form solution derived in
[El Karoui et al., 2013, Page 3] gives r2/r1 = 0.904, again consistent with Eq.(16).

Typical Accuracy Losses In classical asymptotics where κ → 0, Eq.(16) is consistent
with the results of Section 3 in that splitting the data has no (first-order) cost. In
practical high-dimensional scenarios, where the practitioner applies the “no less than
five observations per parameter” rule of thumb [Huber, 1973], the resulting value of κ is
at most 0.2. The accuracy loss of splitting the data is thus small provided that the ratio
r2/r1 is small. As shown in Table 1, for several loss functions with either Gaussian or
Laplace errors, this ratio is approximately one.

Loss f(t) Gaussian Laplace

Squared t2/2 1 1

Pseudo Huber δ2(
√

1 + (t/δ)2 − 1) ; δ =
3

0.92 1.3

Absolute Loss |t| 0.9 1.83

Table 1: The ratio r2
r1

for different loss functions and noise, ϵ, distributions (Gaussian
and Laplace). From Eq.(16), small values of r2

r1
imply a small accuracy loss

when parallelizing.

Limiting Distribution Similar to the fixed p regime, using Eq.(15) we can derive the
following limiting distribution of θ̄ in the high-dimensional regime which is immediate
from the results of Bean et al. [2013, p.1 in SI], and the fact that θ̄ has m times less
variance than θ̂n.

Corollary 5 (Asymptotic Normality). Under the assumptions of Lemma 1, for a fixed
contrast v, as p, n → ∞ with p/n → κ ∈ (0, 1), then

v′θ̄ − v′θ∗

r(κ)
√

v′Σ−1v
pm

D→ N (0, 1) .

5. Simulations

We perform several simulations to validate our results and assess their stability in finite
samples. For reproducibility, the R simulation code is available at https://github.com/johnros/ParalSimulate.
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Figure 1: The error ratio ∥θ̄ − θ∗∥2/∥θ̂N − θ∗∥2 as a function of sample size n in the
fixed-p regime. The center point is the median over 500 replications and the
bars represent the median absolute deviation. In all four panels p = 50. Color
encodes the number of machines m = 10, 20, 40, 100. The learning tasks in
the four panels are: (a) ordinary least squares; (b) ridge regression; (c) non-
linear least squares; (d) logistic regression. Data was generated as follows:
X ∼ N (0p, Ip×p); θ0 = θ̃/∥θ̃∥, and θ̃j = j for j = 1, . . . , p; ε ∼ N (0, 10); In
(a)-(b), the response was drawn from Y = X ′θ0 + ε; In (b) λ = 0.1; In (c)
Y = exp(X ′θ0) + ε, whereas in panel (d), P (Y = 1|X) = 1

1+exp(−X′θ0)
.

We start with the fixed-p, large-n regime. Figure 1 shows the empirical median and
median absolute deviation of the individual ratios ∥θ̄ − θ∗∥2/∥θ̂N − θ∗∥2 as a function
of sample size n, with N = nm growing as well. As seen from this figure, and in accord
with Theorem 1, for large n θ̄ is asymptotically equivalent to θ̂N and the error ratio
tends to one. We also see that for small to moderate n, parallelization may incur a
non-negligible excess error, in particular for non-linear models.

Figure 2 presents the empirical bias and MSE of θ̄ in OLS, as a function of number of
machines m with N fixed, and compares these to their theoretical approximations from
Section 3.3.1. In accord with Proposition 1, the parallelized OLS estimate shows no
excess bias. In this OLS case, a high-dimensional approximation of the MSE is identical
to the fixed-p in panel (b) so the plot is omitted. We thus conclude that both the fixed-
p and the high-dim approximations of the MSE are quite accurate for small m (i.e.,
large-n), but underestimate the error as p/n departs from 0.

Figure 3 is similar to Figure 2, but for ridge regression. We see that, unlike the OLS
problem, the ridge problem does have parallelization bias, as predicted by our analysis in
Section 3.3.2. While our fixed-p MSE approximation is accurate for small m (i.e., large-
n), for larger m the empirical error is smaller than that predicted by our second order
analysis. This suggests that higher order error terms in the MSE matrix are negative
definite (see also Remark 3).

Next, we consider the high-dimensional regime. Figure 4 shows E
[
∥θ̄ − θ∗∥2

]
/E

[
∥θ̂N − θ∗∥2

]
as a function of machine-wise sample size n, while holding κ and m fixed. In contrast
to the fixed-p regime, here there is a first-order accuracy loss, and even for large n the
MSE ratio does not converge to one. In the OLS case, where our high-dimensional ap-
proximations are applicable, they are indeed accurate over a wide range of values of n
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Figure 2: Bias and MSE in OLS as a function of number of machines m, with a fixed to-
tal number of samples N = 50, 000, for different dimensions p = 50, 70, 80, 100,
averaged over 1, 000 replications. Panel (a) shows, in dotted lines, the mean
of the empirical bias of an arbitrary coordinate j in the parallelized estimator

E
[
θ̄j − θ∗j

]
. The solid line is the theoretical expression for the second order

bias, which, as discussed in Section 3.3.1, is precisely zero. Panel (b) shows,
in dotted lines, the empirical mean squared error of the parallelized estimator,
E
[
∥θ̄ − θ∗∥22

]
as a function of m. The solid lines are the theoretical approxi-

mation using the second order fixed-p expansion Tr(M2(θ̄)), with M2(θ̄) from
Eq.(13). In (b) the y-axis is log10 scaled. Data was generated as follows:
X ∼ N (0p, Ip×p); θ0 = θ̃/(∥θ̃∥/10) where θ̃j = j for j = 1, . . . , p. Y = X ′θ0+ ε
where ε ∼ N (0, 2).

and m. As already observed in the fixed-p regime, non-linear models (panels c and d)
incur a considerable parallelization excess error.

6. Practical Considerations

Parallelization is not necessarily the preferred approach to deal with massive datasets.
In principle, when N ≫ p an easy, though potentially not sufficiently accurate solution,
is to discard observations by randomly subsampling the data. Parallelization should thus
be considered when the accuracy attainable by subsampling is not satisfactory. An im-
portant question is then over how many machines should the practitioner distribute the
data? When tackling this question, we distinguish between two scaling regimes: N fixed
or n fixed. Fixed n captures the single-machine storage constraint: the total available
data is virtually infinite and using more machines allows processing of more data, and
hence better accuracy, at an obvious financial cost. Fixed N captures either sampling
or computational constraints: here, the total sample size N is fixed and processing it on
a single machine might be too slow. Thus, splitting the data reduces run-time but also
decreases the accuracy. In other words, by parallelizing, we trade accuracy for speed.
Interestingly, when the number of samples N is fixed, by using our approximations and
varying m, we are able to trace the accuracy-complexity tradeoff facing the practitioner.
An informed choice of m is thus choosing either a desirable run-time, or a desired error
level, on this curve.

We now formulate the target functions for choosing the number of machines in these
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Figure 3: Bias and MSE in ridge regression as a function of number of machines m,
with a fixed total number of samples N = 50, 000, for different dimensions
p = 50, 70, 80, 100, averaged over 1, 000 replications. Panel (a) shows, in dot-
ted lines, the mean of the empirical bias of an arbitrary coordinate j in the

parallelized estimator, E
[
θ̄j − θ∗j

]
. The solid line is the theoretical expression

for the second order bias from Section 3.3.2. Panel (b) shows, in dotted lines,
the empirical MSE of the parallelized estimator, E

[
∥θ̄ − θ∗∥22

]
as a function

of m. The solid lines are the theoretical approximation using a second order
fixed-p expansion of the error: Tr(M2(θ̄)) where M2(θ̄) is given in Eq.(14). In
(b) the y-axis is log10 scaled. Data was generated as follows: λ is fixed at 1.
X ∼ N (0p, Ip×p); θ0 = θ̃/(∥θ̃∥/10) where θ̃j = j for j = 1, . . . , p. Y = X ′θ0+ ε
where ε ∼ N (0, 2).

two regimes. For fixed n, wishing to minimize costs, we analyze what is the minimal
number of machines that attains a desired accuracy, E(m):

min{m s.t. E(m) ≤ ϵ, n samples per machine}. (19)

For fixed N , wishing to minimize runtime, and in the spirit of Shalev-Shwartz and Srebro
[2008], we ask what is the maximal number of machines so that runtime is minimized
while a desired level of accuracy is maintained. Choosing the number of machines in the
fixed n scenario reduces to solving

max{m s.t. E(m) ≤ ϵ,N/m samples per machine}. (20)

Next, let us study these two optimization problems, Eqs.(19) and (20), when the
accuracy measure is E(m) := E

[
∥θ̄ − θ∗∥2

]
. This is challenging or even infeasible, since

in general we do not have explicit expressions for this quantity. Moreover, in the fixed-p
regime, approximating the MSE by the asymptotic leading error term yields that this
quantity is independent of m! As we show below, meaningful and interesting solutions
to this optimization problems arise when we approximate E(m) by the second order
expression in the fixed-p regime. Specifically, using Eq.(11) we approximate E(m) :=
Tr(M2(θ̄)). In the high-dimensional regime, in contrast, the optimization problems (19)
and (20) are well posed already when we approximate the MSE by the first order term.
Relying on Eq.(G.2) gives E(m) := r2(κ)/m E[∥Σ−1/2ξ∥22].

We now present the optimization problems corresponding to the fixed-p approximation
in each scaling scenario:
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Figure 4: MSE ratio E
[
∥θ̄ − θ∗∥22

]
/E

[
∥θ̂N − θ∗∥22

]
in the high-dimensional regime (with

fixed κ = p/n = 0.2) as a function of sample size n, averaged over 500 repli-
cations. Color encodes different number of machines m = 10, 20, 40, 100. The
four panels depict different learning tasks as in Figure 1. Data was gener-
ated as follows: X ∼ N (0p, Ip×p); θ0 = θ̃/∥θ̃∥, and θ̃j = j for j = 1, . . . , p;
ε ∼ N (0, 1). In (a)-(b), Y = X ′θ0+ ε. In (b) λ = 1. In (c) Y = exp(X ′θ0)+ ε,
whereas in (d) P (Y = 1|X) = 1

1+exp(−X′θ0)
.

Fixed-n: min{m s.t. m−1
m

1
n2 Tr(γ0) +

1
mn Tr(γ1) +

1
mn2 Tr (γ2 + γ′2 + γ3 + γ4 + γ′4) ≤

ϵ}, which stems from Eq.(19) and Eq.(11).

Fixed-N: max{m s.t. (m−1)m
N2 Tr(γ0)+

1
N Tr(γ1)+

m
N2 Tr (γ2 + γ′2 + γ3 + γ4 + γ′4) ≤ ϵ},

which stems from Eq.(20) and Eq.(11) with n = N/m.

Let us illustrate these formulas in the OLS example from Section 3.3.1. The required
quantities for OLS are collected in Appendix D. For example, solving the fixed-N
problem, the maximal number of machines that will keep the per-coordinate MSE under
0.2, i.e., εp = 0.2, with N = 106, p = 100, and σ2 = 10 is m ≤ 9, 901. Alternatively,
assuming an abundance of data and a memory limit such that n ≤ 104, we solve the
fixed-n problem to find that m ≥ 51 will satisfy the derived error level.

Remark 6. In some cases, the practitioner may wish to control the parallelization er-
ror relative to the centralized solution, and not as an absolute value as analyzed above.
Namely, the restriction is now E(m) ≤ (1 + ε)E(1). The scenarios (fixed n/N) and ap-
proximations previously discussed apply here as well. For example, in our OLS example,
solving the Fixed-N problem with N = 106, p = 100, and σ2 = 10, yields that m ≤ 991
for θ̄ to err no more than 10% more than θ̂N (ε = 0.1). On the other hand, For the
Fixed-n problem, with n = 104, p = 100, and σ2 = 10, we can parallelize up to m ≤ 102
machines, and still maintain the same 10% excess error allowance.

7. Discussion

In this work we studied the error of parallelized M-estimators when N observations
are uniformly at random distributed over m machines. Each machine then learns a p
dimensional model with its n = N/m observations and the m machine-wise results are
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averaged to a global estimate θ̄. We derived several different approximations of the
estimation error in θ̄ with different quantitative and qualitative insights.

Insights When n ≫ p not much accuracy is lost by splitting the data. This stands
in contrast to other works that demonstrate how, under different assumptions, paral-
lelization combined with averaging may incur a large error [Liu and Ihler, 2014], or even
an unbounded one [Shamir et al., 2013]. Our analysis can thus be viewed as providing
sufficient conditions for parallelization to be a suitable approach to reduce the overall
run-time. A second insight is that if the model is highly non-linear, then the excess
paralellization error may be considerably large.

In contrast to the classical fixed-p regime, our high-dimensional analysis, currently
confined to generative linear models, showed that splitting the data when there are
only few observations per parameter always takes its accuracy toll. The degradation
in accuracy due to splitting can still be quantified even though estimates converge to
non-degenerate random limits.

Future Research At the basis of our work is an attempt to adhere to real-life software
and hardware constraints of parallelized learning. The assumption of uniform and ran-
dom distribution of samples to machines is realistic for some applications, and certainly
facilitates the mathematical analysis. It may also be overly restrictive for other appi-
cations. A venue for future research is thus the relaxation of this assumption, allowing
for some systematic difference between machines. We also aim at analyzing other aggre-
gation schemes. Particularly ones that employ more than the mere machine-wise point
estimate, and apply to non convex parameter spaces. An example of such is the Min-
imum Kullback-Leibler divergence aggregation, proposed by Liu and Ihler [2014]. This
may extend the applicability of our results, for example, to image, sound, and graph
data.
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A. Proof of Theorem 1

Under Assumption Set 1, classical statistical theory guarantees that upon optimiz-

ing the empirical risk (2), the resulting estimators, θ̂
(j)
n , converge in probability to θ∗

at rate n−1/2. Moreover, the leading error term is linear in the influence functions
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∇f(Zi, θ
∗) [Vaart, 1998, Theorem 5.23]:

θ̂(j)n = θ∗ − V −1
θ∗ ∇R̂j

n(θ
∗) + oP (n

−1/2) (A.1)

= θ∗ − V −1
θ∗

1

n

∑
i∈[j]

∇f(Zi, θ
∗) + oP (n

−1/2).

where [j] denotes the n indexes of the observations assigned to machine j. Taking the

average of the machine-wise estimators over a fixed number of machines θ̄ := 1
m

∑
j θ̂

(j)
n ,

and applying Eq.(A.1) yields

θ̄ = θ∗ − V −1
θ∗ ∇R̂N (θ∗) + oP (n

−1/2) (A.2)

= θ∗ − V −1
θ∗

1

N

N∑
i=1

∇f(Zi, θ
∗) + oP (n

−1/2).

Similarly, applying Eq.(A.1) to the centralized solution:

θ̂N = θ∗ − V −1
θ∗ ∇R̂N (θ∗) + oP (N

−1/2) .

Since m is fixed, oP (N
−1/2) = oP (n

−1/2). Eq.(4) now follows. �

B. Proof of Theorem 2

Under Assumption Set 2, with s = 3, by Proposition 3.2 in [Rilstone et al., 1996] θ̂n
admits the expansion θ∗ + ξ−1/2(θ̂n) + ξ−1(θ̂n) +OP (n

−3/2). We can thus decompose

B2(θ̄) = E

 1

m

∑
j

ξ−1/2(θ̂
(j)
n ) +

1

m

∑
j

ξ−1(θ̂
(j)
n )

 .

By definition, ξ−1/2(θ̂n) = −V −1
θ∗ ∇R̂n(θ

∗). Hence, E
[
ξ−1/2(θ̂

(j)
n )

]
= 0, for all j and the

first term in the equation above vanishes. As for the second term, clearly E
[
ξ−1(θ̂

(j)
n )

]
is independent of j, thus, B2(θ̄) = E

[
ξ−1(θ̂n)

]
.

Again, according to [Rilstone et al., 1996, Proposition 3.2], E
[
ξ−1(θ̂n)

]
= δ/n, where

δ depends on the various problem parameters, but is independent of n. Since B2(θ̂N ) =

E
[
ξ−1(θ̂N )

]
= δ/N , Eq.(8) readily follows. �

C. Proof of Theorem 3

Under Assumption Set 2, with s = 4, we can expand θ̄ as in Eq.(5). Plugging this
asymptotic expansion of θ̄ into the definition of M2(θ̄) from Eq.(9), and collecting terms
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up to O(n−2) we have

M2(θ̄) =E
[
ξ−1/2(θ̄)ξ

′
−1/2(θ̄)

]
+ E

[
ξ−1(θ̄)ξ

′
−1/2(θ̄)

]
+ E

[
ξ−1/2(θ̄)ξ

′
−1(θ̄)

]
+

E
[
ξ−1(θ̄)ξ

′
−1(θ̄)

]
+ E

[
ξ−3/2(θ̄)ξ

′
−1/2(θ̄)

]
+ E

[
ξ−1/2(θ̄)ξ

′
−3/2(θ̄)

]
.

We now analyze each summand separately. E
[
ξ−1/2(θ̄)ξ

′
−1/2(θ̄)

]
= 1

m2

∑
k,l E

[
ξ−1/2(θ̂

(k)
n )ξ′−1/2(θ̂

(l)
n )

]
,

for k ̸= l then E
[
ξ−1/2(θ̂

(k)
n )ξ′−1/2(θ̂

(l)
n )

]
vanishes. For k = l we havem terms which equals

n−1γ1 by definition. The same analysis holds for E
[
ξ−1(θ̄)ξ

′
−1/2(θ̄)

]
and E

[
ξ−3/2(θ̄)ξ

′
−1/2(θ̄)

]
denoted n−2γ2 and n−2γ4 respectively. As for E

[
ξ−1(θ̄)ξ

′
−1(θ̄)

]
= 1

m2

∑
k,l E

[
ξ−1(θ̂

(k)
n )ξ′−1(θ̂

(l)
n )

]
:

for k ̸= l we havem(m−1) terms where E
[
ξ−1(θ̂

(k)
n )ξ′−1(θ̂

(l)
n )

]
= E

[
ξ−1(θ̂

(k)
n )

]
E
[
ξ′−1(θ̂

(l)
n )

]
which we defined as n−2γ0. For the remainingm terms where k = l, then E

[
ξ−1(θ̂

(k)
n )ξ′−1(θ̂

(l)
n )

]
=

n−2γ3 by definition. Collecting terms completes the proof.
�

D. Proof of Proposition 1

Denoting A−k := (A−1)k ;Si := XiX
′
i ; ḟi := ∇f(Xi, θ

∗) ; f̈i := ∇2f(Xi, θ
∗) ;Vi :=

(f̈i − Vθ∗) ; di := V −1
θ∗ ḟi ;Wθ = ∇3R(θ). We also denote by Wθ(x, y) the linear operator

in Rp returned by evaluating Wθ at (x, y) ∈ Rp × Rp.
In our OLS setup we have: ∇R(θ) = −Σ(θ0−θ); V −1

θ∗ = Σ−1;Wθ ≡ 0; ḟi = −Xiεi; f̈i =
Si; Vi = Si − Σ; di = −Σ−1Xiεi. From the proof of Proposition 3.2 in [Rilstone et al.,
1996] we have

E
[
ξ−1(θ̂n)

]
= n−1V −1

θ∗ (E [V1d1]−
1

2
E [Wθ∗(d1, d1)]). (D.1)

As Wθ ≡ 0 and E [ε1] = 0, independent of X1, then E
[
ξ−1(θ̂n)

]
= 0, so that from Eq.(6),

γ0 = 0.
Next, we turn to the matrix γ1. From [Rilstone et al., 1996, page 374] we have

γ1 = V −1
θ∗ E

[
ḟ1ḟ

′
1

]
V −1
θ∗ .

Since ḟ1 = −X1ε1, and X1 independent of ε1, then E
[
ḟ1ḟ

′
1

]
= σ2Σ. Now recalling that

Vθ∗ = Σ we obtain the form of γ1.
Next, we analyze the matrix γ2. From [Rilstone et al., 1996, Lemma 3.3] we have

γ2 = V −1
θ∗

(
−E

[
V1d1d

′
1

]
+

1

2
E
[
Wθ∗(d1, d1)d

′
1

])
.
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The second summand vanishes and

E
[
V1d1d

′
1

]
= E

[
(S1 − Σ)(Σ−1X1ε1)(Σ

−1X1ε1)
′]

= σ2E
[
S1Σ

−1S1Σ
−1 − ΣΣ−1S1Σ

−1
]
= σ2E

[
S1Σ

−1S1Σ
−1 − S1Σ

−1
]
.

As S1 ∼ Wishartp(1,Σ), we call upon Wishart theory. We collected the required
properties in Appendix F. Applying Theorem F.1 to each summand we have that
E
[
S1Σ

−1
]
= I, and E

[
S1Σ

−1S1Σ
−1

]
= (2ΣΣ−1Σ+ Tr(ΣΣ−1)Σ)Σ−1 = (2 + p)I.

As for the matrix γ3, Rilstone et al. [1996, Lemma 3.3] yields

γ3 = V −1
θ∗

(
E
[
V1d1d

′
2V

′
2

]
+ E

[
V1d2d

′
1V

′
2

]
+ E

[
V1d2d

′
2V

′
1

])
V −1
θ∗ .

Because E [ε1ε2] = 0 the first two terms cancel. We now compute E [V1d2d
′
2V

′
1 ]. Recalling

that S1 is independent of S2

E
[
V1d2d

′
2V

′
1

]
= E

[
(S1 − Σ)(Σ−1X2ε

2
2X

′
2Σ

−1)(S1 − Σ)
]

= σ2E
[
S1Σ

−1S2Σ
−1S1 − S1Σ

−1S2Σ
−1Σ− ΣΣ−1S2Σ

−1S1 +ΣΣ−1S2Σ
−1Σ

]
= σ2

(
E
[
S1Σ

−1S2Σ
−1S1

]
− Σ− Σ+ Σ

)
.

Applying the results in Theorem F.1, then E
[
S1Σ

−1S2Σ
−1S1

]
= (p+ 2)Σ.

Finally, we study the matrix γ4. Since Wθ and higher derivatives, all vanish, then
[Rilstone et al., 1996, Lemma 3.3] yields

γ4 = V −1
θ∗

(
E
[
V1V

−1
θ∗ V1d2d

′
2

]
+ E

[
V1V

−1
θ∗ V2d1d

′
2

]
+ E

[
V1V

−1
θ∗ V2d2d

′
1

])
.

Because E [ε1ε2] = 0 the last two terms cancel. We now compute E
[
−V1V

−1
θ∗ V1d2d

′
2

]
:

E
[
V1V

−1
θ∗ V1d2d

′
2

]
= E

[
(S1 − Σ)Σ−1(S1 − Σ)(Σ−1X2ε

2
2X

′
2Σ

−1)
]

= σ2E
[
S1Σ

−1S1Σ
−1S2Σ

−1 − ΣΣ−1S1Σ
−1S2Σ

−1 − S1Σ
−1ΣΣ−1S2Σ

−1 +ΣΣ−1ΣΣ−1S2Σ
−1

]
= σ2

(
E
[
S1Σ

−1S1Σ
−1S2Σ

−1
]
− I − I + I

)
.

Applying Theorem F.1 we get E
[
S1Σ

−1S1Σ
−1S2Σ

−1
]
= (2 + p)I.

�

E. Proof of Proposition 2

Using the notation from Appendix D we set up some quantities that will be reused
throughout the computation. We start with some general results assuming V ar[X] = Σ,
but eventually restrict the results to V ar[X] = I for simplicity.

When V ar[X] = Σ, then ∇R(θ) = −Σ(θ0− θ)+λθ; V −1
θ∗ = (Σ+λI)−1; Wθ ≡ 0; ḟi =

−Si(θ0 − θ∗)−Xiεi + λθ∗; f̈i = Si + λI. Adding the simplifying assumption that Σ = I
then θ∗ = λ0,1θ0; V

−1
θ∗ = λ0,1I; Wθ ≡ 0; ḟi = λ1,1(I − Si)θ0 −Xiεi; f̈i = Si + λI; Vi =

Si − Ip; di = λ1,2(I − Si)θ0 − λ0,1Xiεi.
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Starting with the γ0 matrix. SinceWθ ≡ 0, then like in the OLS case, δ = V −1
θ∗ (E [V1d1]).

In our ridge setup, with the Wishart properties in Theorem F.2:

E [V1d1] = E [(S1 − I)(λ1,2(I − S1)θ0 − λ0,1X1ε1)] = λ1,2E
[
2S1 − S2

1 − I
]
θ0 = −λ1,2(1 + p)θ0.

Plugging δ in the definition of γ0 in Eq.(6) we get γ0 = λ2,6(1 + p)2B.
Moving to the γ1 matrix. From [Rilstone et al., 1996, page 374] we have γ1 =

V −1
θ∗ E

[
ḟ1ḟ

′
1

]
V −1
θ∗ . In our ridge setup, with the Wishart properties in Theorem F.2:

E
[
ḟ1ḟ

′
1

]
= E

[
(λ1,1(I − S1)θ0 −X1ε1)(λ1,1(I − S1)θ0 −X1ε1)

′]
= E

[
λ2,2(I − S1)B(I − S1) + ε21S1

]
= λ2,2(B +A) + σ2I,

so that γ1 = λ2,4(B +A) + λ0,2σ
2I.

Moving to γ2, from [Rilstone et al., 1996, Lemma 3.3] we have γ2 = V −1
θ∗ (−E [V1d1d

′
1]),

and

E
[
V1d1d

′
1

]
= E

[
(S1 − I)(λ1,2(I − S1)θ0 − λ0,1X1ε1)(λ1,2(I − S1)θ0 − λ0,1X1ε1)

′]
= E

[
(S1 − I)(λ2,4(I − S1)B(I − S1) + λ0,2ε

2
1S1)

]
.

Opening parenthesis and calling upon the Wishart properties in Theorem F.2: E [S1B] =
B ;E

[
S2
1B

]
= (2 + p)B ;E [S1BS1] = 2B + A ;E

[
S2
1BS1

]
= (8 + 2p)B + (4 + p)A.

Collecting terms:

γ2 = −λ0,3σ
2(1 + p)I − λ2,5((4 + p)B + (3 + p)A).

Moving to γ3. Calling upon [Rilstone et al., 1996, Lemma 3.3]:

γ3 = V −1
θ∗

(
E
[
V1d1d

′
2V

′
2

]
+ E

[
V1d2d

′
1V

′
2

]
+ E

[
V1d2d

′
2V

′
1

])
V −1
θ∗ .

In this ridge setup, none of these terms cancel. The computations follow the same lines
as for the previous matrices. The same holds for γ4 for which Wθ ≡ 0 and higher
derivatives vanish, thus

γ4 = V −1
θ∗

(
E
[
V1V

−1
θ∗ V1d2d

′
2

]
+ E

[
V1V

−1
θ∗ V2d1d

′
2

]
+ E

[
V1V

−1
θ∗ V2d2d

′
1

])
.

�

F. Properties of Wishart Matrices

In this section we collect some properties of Wishart matrices used in this work. For
classical results we provide appropriate references. For results we did not find in the
literature, we present their proofs.

Theorem F.1. Let S1 and S2 be independent Wishartp(1,Σ) distributed, random ma-
trices, and let B be a fixed symmetric p× p matrix. It follows that: (i) E [S1] = Σ; (ii)
E [S1BS1] = 2ΣBΣ+ Tr(ΣB)Σ, and (iii) E [S1BS2BS1] = 2ΣBΣBΣ+ Tr(BΣBΣ)Σ.
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Proof. The first two statements are simply an application of [Fujikoshi et al., 2010,
Theorem 2.2.5]. To prove (iii) we write S1

ij = (S1)ij and recall the independence between
S1 and S2 to get

E [(S1BS2BS1)ij ] =
∑
stkl

E
[
S1
isBstS

2
tkBklS

1
lj

]
=

∑
stkl

BstBklE
[
S1
isS

1
lj

]
E
[
S2
tk

]
. (F.1)

Calling upon [Gupta and Nagar, 1999, Theorem 3.3.3] we can represent S as S = XX ′

where X ∼ Np(0,Σ), so that E [SisSlj ] = E [XiXsXlXj ] and E [Stk] = E [XtXk]. Now
calling upon Isserlis’ Theorem

E [XiXjXkXl] = E [XiXk]E [XjXl] + E [XiXl]E [XjXk] + E [XiXj ]E [XkXl] ,

which in our case equals

E [XiXjXkXl] = ΣikΣjl +ΣilΣjk +ΣijΣkl. (F.2)

Eq.(F.1) thus yields∑
stkl

BstBklE
[
S1
isS

1
lj

]
E
[
S2
tk

]
=

∑
stkl

BstBkl(ΣilΣsj +ΣijΣsl +ΣisΣlj)(Σtk).

The third statement in the theorem follows by rearranging into matrix notation.

Theorem F.2. Let S1 and S2 be independent Wishartp(1, Ip) distributed, random ma-
trices, and let B be a fixed symmetric p× p matrix. It follows that:

(1) E [S1S2BS1S2] = (p+ 6)B + 2Tr(B)I. (2) E [S1S2BS1] = 2B +Tr(B)I.
(3) E [S1S2BS2S1] = 4B + (4 + p) Tr(B)I. (4) E

[
S2
1BS1

]
= (8 + 2p)B + (4 + p)Tr(B)I.

(5) E [S1S2S1BS2] = (6 + p)B +Tr(B)I. (6) E
[
S1S

2
2BS1

]
= (4 + 2p)B + (2 + p)Tr(B)I.

Proof. We present only the proof of the first statement. The others are proved using
the same arguments. We also note that these arguments can be used for the more
generalWishartp(n,Σ) matrices. We now write S1

ij = (S1)ij and recall the independence
between S1 and S2 to get

E [(S1S2BS1S2)ij ] =
∑
stkl

E
[
S1
isS

2
stBtkS

1
klS

2
lj

]
=

∑
stkl

BtkE
[
S1
isS

1
kl

]
E
[
S2
stS

2
lj

]
. (F.3)

The mean E [SisSkl] = E [XiXsXkXl] is given in Eq.(F.2) which in the case where Σ = I
simplifies into

E [XiXjXkXl] = δikδjl + δilδjk + δijδkl.

Eq.(F.3) thus yields∑
stkl

Btk(δikδsl + δilδsk + δisδkl)(δslδtj + δsjδtl + δstδlj)

The first statement in the theorem is recovered by rearranging into matrix notation.
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G. High-Dimensional Regime

G.1. Proof of Lemma 1

Eq.(15) is simply taken from Bean et al. [2013, Result 1], stated here for completeness.
From this equation it follows that the mean squared error of the centralized solution is

MSE[θ̂N , θ∗] = E[∥θ̂N − θ∗∥22] = r2(κ/m) E[∥Σ−1/2ξ∥22] (1 + o(1)). (G.1)

In contrast, upon averaging the estimators of m machines, we obtain

MSE[θ̄, θ∗] = r2(κ)/m E[∥Σ−1/2ξ∥22] (1 + o(1)). (G.2)

By comparing Eq.(G.1) and Eq.(G.2), the accuracy loss of parallelization compared
to a centralized estimation is thus given by

MSE[θ̄, θ∗]

MSE[θ̂N , θ∗]
=

r2(κ)/m

r2(κ/m)
(1 + o(1)). (G.3)

Using perturbation analysis, and denoting by f[i] :=
∂i

∂ti
f(t) the i-th derivative of the

loss function, we now characterize the behaviour of Eq.(G.3) as κ and m vary. To this
end, and in line with El Karoui et al. [2013] and Donoho and Montanari [2013], we first
introduce some more definitions:

ξϵ := ϵ+ r(κ) η ; η ∼ N (0, 1), independent of ϵ. (G.4)

Furthermore f(Y −X ′θ) is treated as a univariate function of the residual alone, and

proxc(z) := argmin
x

{
f(x) +

1

2c
∥x− z∥2

}
.

Readers familiar with optimization theory will recognize the equation as the standard
proximal operator.

As shown by both El Karoui et al. [2013, Corollary 1] and Donoho and Montanari
[2013, Theorem 4.1], under the assumptions of Lemma 1 the quantity r(κ) together
with a second quantity c = c(f, κ) are the solution of the following set of two coupled
non-linear equations

E
[
d

dz
proxc(z)

∣∣∣
z=ξϵ

]
= 1− κ, (G.5)

E
[
(ξϵ − proxc(ξϵ))

2
]
= κr2(κ), (G.6)

where the averaging operator in Eqs.(G.5)-(G.6) is with respect to the random variable
ξϵ.

Since Eqs.(G.5) and (G.6) are solvable analytically only in very specific cases, we study
the limiting behaviour of the solution of this set of equations as κ → 0. To this end we
note that for κ = 0, r(0) = 0 and similarly c(f, 0) = 0 [El Karoui et al., 2012, Section
4.3]. We first study the behaviour of the proximal operator proxc(z) for small values of
c.
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Lemma 2. Assume the loss function f is three times differentiable, with a bounded third
derivative, |f3| ≤ K. Then, as c → 0,

proxc(z) = z +
√
cw∗ = z − cf1(z) + c2f1(z)f2(z) +O(c3). (G.7)

Proof. Upon the change of variables x = z +
√
cw, Eq.(G.7) becomes

proxc(z) = z +
√
c argmin

w

{
f(z +

√
cw) +

1

2
∥w∥2

}
.

Denote by w∗ = w∗(z, c) the minimizer in the equation above. Under the assumption
that f is differentiable, it is the solution of

√
cf1(z +

√
cw) + w = 0. (G.8)

Next, we make an exact 2-term Taylor expansion of f1 around the value z, with a
remainder term involving the third derivative of f . Then at w∗ we have

0 = w∗ +
√
c
[
f1(z) +

√
cw∗f2(z) +

1
2c (w

∗)2f3(w̃)
]
, (G.9)

where w̃ is some point in the interval [0, w∗]. Eq. (G.9) is a singular quadratic equation
in w∗, although implicit since w̃ depends on w∗ as well. It has two solutions, one that
explodes to ∞ as c → 0 and the other, relevant to us, that tends to zero as c → 0. Under
the assumption that |f3| ≤ K we have that

w∗(z) =−
√
cf1(z)

1 + cf2(z)
+O(c2

√
c) (G.10)

=−
√
cf1(z) + c

√
cf2(z)f1(z) +O(c2

√
c).

Inserting Eq. (G.10) into the definition of the prox function concludes the proof.

G.2. Approximating The Residual Noise Equations

Next, we study the form of Eqs.(G.5) and (G.6) as κ → 0. As r(κ) → 0 the distribution
of the random variable ξϵ := ϵ + r(κ)η converges to that of ϵ. The following lemma
quantifies how averaging with respect to ξϵ is related to averaging with respect to ϵ.

Lemma 3. Let g : R → R be a smooth differentiable function, with bounded fourth
derivative, |g4(x)| ≤ K. Let ξϵ := ϵ+ rη be defined as in Eq.(G.4). Then, as r → 0,

Eξϵ [g(ξϵ)] = Eϵ[g(ϵ)] +
1

2
r2 Eϵ[g2(ϵ)] +O(r4). (G.11)

Proof. By definition of the random variable ξϵ and of the expectation operator,

Eξϵ [g(ξϵ)] =

∫∫
g(ε+ rη)dFεdFη, (G.12)
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where dFε and dFη are the CDFs of the random variables ε, and η, respectively. Making
a Taylor expansion of g up to fourth order gives

g(ϵ+ rη) = g(ε) + r η g1(ϵ) +
1

2
r2 η2 g2(ϵ) +

1

6
r3 η3 g3(ϵ) +

1

24
r4 η4 g4(ξ̃ϵ), (G.13)

where ξ̃ϵ is an intermediate point in the interval [ϵ, ϵ + rη]. As η is symmetrically
distributed, upon inserting this expansion into Eq.(G.12), odd terms cancel. Also, given
that the fourth derivative is bounded, the remainder term is indeed O(r4), and Eq.
(G.11) follows.

We now arrive at our main result regarding the solution of the system of equations
(G.5) and (G.6).

Theorem G.1. As κ → 0, the solution of the system of Equations (G.5)-(G.6) admits
the following asymptotic form

c(κ) = κ c1 + κ2 c2 +O(κ3) ,

r2(κ) = κ r1 + κ2 r2 +O(κ3) .
(G.14)

The coefficients c1, c2, r1, r2 are given by

c1 =
1

A2
, c2 =

T1

A3
2

− B1A4

A4
2

, r1 =
B1

A2
2

, r2 =
3B1T1

A4
2

− 2B2
1A4

A5
2

+
2B2

A3
2

, (G.15)

where

A2 = Eε[f[2]], A4 = Eε[1/2 f[4]], T1 = Eε[f
2
[2] + f[1]f[3]], B1 = Eε[f

2
[1]], B2 = Eε[f

2
[1]f[2]],

(G.16)

and expectations are taken only with respect to the distribution of ϵ.

Proof. As common in applied mathematics, when analyzing the solutions of equations
with a small parameter, we assume the solution is of the form (G.14), show that this
expansion is consistent with the form of the equations, and extract explicit expressions
for the coefficients by comparing terms of equal order in κ [Bender and Orszag, 1999].

To this end, let us first simplify the original set of equations, in the limit as κ → 0.
Inserting (G.7) into (G.5) yields

κ = Eξϵ

[
cf2(ξϵ)− c2(f2

2 (ξϵ) + f1(ξϵ)f3(ξϵ))
]
+O(c3).

Since to leading order c = O(κ), the error in the above equation is O(κ3). Next, using
Eq. (G.11), the terms on the right hand side may be further approximated as follows,

Eξϵ [cf2(ξϵ)] = cEϵ[f2] +
1

2
cr2E[f4] +O(cr4),

Eξϵ [c
2(f2

2 (ξϵ) + f1(ξϵ)f3(ξϵ)] = c2Eϵ[f
2
2 + f1f3] +O(c2r2).
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Given the assumed expansion for c(κ) and r2(κ), both error terms are O(κ3) and the
first equation reads

κ = cEϵ[f2] +
1
2cr

2Eϵ[f4]− c2Eϵ[f
2
2 + f1f3] +O(κ3). (G.17)

Next, we simplify the second equation (G.6). To this end, note that as κ → 0 and
also c → 0,

(ξϵ − proxc(ξϵ))
2 = (cf1 − c2f1f2 +O(c3))2 = c2f2

1 − 2c3f2
1 f2 +O(κ4). (G.18)

Thus, Eq.(G.6) reads

κr2 = Eξϵ [(ξϵ − proxc(ξϵ)
2] = Eξϵ [c

2f2
1 (ξϵ)− 2c3f2

1 (ξϵ)f2(ξϵ)] +O(κ4). (G.19)

Using Eq.(G.11), we further simplify the right hand side, to read

κr2 = c2Eϵ[f
2
[1]] + c2r2Eϵ[f

2
2 + f1f3]− 2c3Eϵ[f

2
1 f2] +O(κ4). (G.20)

For ease of notation, we thus write the system of Equations (G.17) and (G.20) as follows,

κ = cA2 + cr2A4 − c2T1 +O(κ3),

κr2 = c2B1 + c2r2T1 − 2c3B2 +O(κ4),
(G.21)

where the coefficients A2, A4, B1, B2 and T1 are given in Eq. (G.16).
To determine the coefficients c1, c2, r1, r2 we now insert the expansion (G.14) into

Eq.(G.21), and compare powers of κ. This gives

κ =A2c1κ+A2c2κ
2 +A4c1r1κ

2 − T1c
2
1κ

2 +O(κ3), (G.22)

r1κ
2 + r2κ

3 =B1(c
2
1κ

2 + 2c1c2κ
3) + T1c21r1κ

3 −B2c
3
12κ

3 +O(κ4). (G.23)

Thus, comparing the O(κ) terms in Eq. (G.22) gives c1 = 1
A2

. Similarly, comparing the

O(κ2) terms in Eq. (G.23) yields r1 = B1c
2
1 = B1

A2
2
. Next, comparing the O(κ2) terms in

Eq. (G.22) gives

c2 =
T1c

2
1 −A4c1r1
A2

=
T1

A3
2

− B1A4

A4
2

.

Finally, comparing the O(κ3) terms in Eq. (G.23) yields the expression for r2 in Eq.
(G.15).

H. Scope of Theorem 1

The assumptions of Theorem 1 are standard in the M-Estimation literature and apply
to many common learning tasks. Here is a non-comprehensive list of examples, relevant
for parallelization.
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Example 1 (Non-Linear Least Squares). Here the loss function is f(Z, θ) := (Y −
gθ(X))2, where gθ is a smooth function indexed by a parameter θ. Applicability of Theo-
rem 1 to this example, under suitable regularity conditions on the family gθ is discussed
in [Vaart, 1998, Example 5.27].

Example 2 (Non-Linear Quantile Regression). The loss function corresponding to a
quantile level τ , is the tilted hinge loss f(Z, θ) := |(Y −gθ(X))(τ−I{(Y−gθ(X))<0})|. This
case is similar to Example 1 with the complication that the loss function has a single
non differentiability point. Assumption (A3) is still satisfied for continuous X, since the
probability of f(Z, θ) to be non-differentiable at θ∗ is 0.

Example 3 (Robust Regression). Consider non-linear robust regression with the Huber
loss function,

f(Z, θ) :=

{
1
2(Y − gθ(X))2 if |Y − gθ(X)| ≤ δ

δ
(
|Y − gθ(X)| − 1

2δ
)

otherwise

The linear case with gθ(x) = X ′θ is discussed in [Vaart, 1998, Examples 5.28 & 5.29].
Theorem 1 also applies to the non-linear case, under appropriate assumptions on gθ.

Example 4 (Binary Regression). Here the binary response Y is assumed to arise from
the generative model P (Y |X) = Ψ(X ′θ), with a known and sufficiently regular Ψ. With
the loss function taken as the negative log likelihood, this case is discussed in [Vaart, 1998,
Example 5.40]. This setting covers popular generalized linear models such as Logistic,
Probit, and Complementary Log-Log regression.

Example 5 (SVM). For Y ∈ {−1, 1} and f(Z, θ) := max{0, 1 − Y X ′θ} + λ
2∥θ∥

2
2 we

get the SVM problem with l2 regularization. This problem satisfies the risk regularity
assumption (A2) [e.g. Shamir, 2012]. The differentiability of the empirical risk (A3) is
settled, for continuous X, as in Example 2.
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