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Abstract. Image restoration tasks are ill-posed problems, typicsdlyed with
priors. Since the optimal prior is the exact unknown dengftyatural images,
actual priors are only approximate and typically restddie small patches. This
raises several questions: How much may we hope to improvertutestoration
results with future sophisticated algorithms? And morelAmentally, even with
perfect knowledge of natural image statistics, what is tieient ambiguity of
the problem? In addition, since most current methods aiiéglchto finite support
patches or kernels, what is the relation between the pateiplexity of natural
images, patch size, and restoration errors? Focusing a@eigdenoising, we make
several contributions. First, in light of computationahstraints, we study the re-
lation between denoising gain and sample size requirenireateon parametric
approach. We present a law of diminishing return, namely whth increasing
patch size, rare patches not only require a much largeretatag also gain little
from it. This result suggests novel adaptive variableeizatch schemes for de-
noising. Second, we study absolute denoising limits, iigas of the algorithm
used, and the converge rate to them as a function of patchSae invariance
of natural images plays a key role here and implies both etlstpositive lower
bound on denoising and a power law convergence. Extrapglétis parametric
law gives a ballpark estimate of the best achievable dempisiuggesting that
some improvement, although modest, is still possible.

1 Introduction

Characterizing the properties of natural images is ctif@acomputer and human vi-
sion [20, 13,22, 18, 6, 26]. In particular, low level visiasks such as denoising, su-
per resolution, deblurring and completion, are fundanibritaposed since an infinite
number of images can explain an observed degraded imagenage priors are crucial
in reducing this ambiguity, as even approximate knowledgée probabilityp(z) of
natural images can rule out unlikely solutions.

This raises several fundamental questions. First, at thst basic level, what is the in-
herent ambiguity of low level image restoration problems? tan they be solved with
zero error given perfect knowledge of the dengity)? More practically, how much
can we hope to improve current restoration results withreuadvances in algorithms
and image priors?

Clearly, more accurate priors improve restoration restltsvever, while most image
priors (parametric, non-parametric, learning-based)4222, 18, 26] as well as studies



onimage statistics [13, 6] are restricted to local imagelpeg or kernels, little is known
about their dependence on patch size. Hence another quespoactical importance is
the following: What is the potential restoration gain fromiacrease in patch size? and,
how is it related to the "patch complexity” of natural imageamely their geometry,
density and internal correlations.

In this paper we study these questions in the context of thelsst restoration task:
image denoising [20, 22,5, 10, 8, 16, 9, 26]. We build on paitempts to study the lim-
its of natural image denoising [19, 3, 7]. In particular, e hon-parametric approach
of [14], which estimated the optimal error for the class dichebased algorithms that
denoise each pixel using only a finite support of noisy pieetund it. A major limi-
tation of [14], is that computational constraints resétttt to relatively small patches.
Thus, [14] was unable to predict the best achievable dempisi algorithms that are
allowed to utilize the entire image support. In other worts.absolute PSNR bound,
independent of patch size restrictions, is still unknown.

We make several theoretical contributions with practiogllications, towards answer-
ing these questions. First we consider non-parametricigieigowith a finite external
database and finite patch size. We study the dependence oiSitgnerror on patch
size. Our main result islaw of diminishing returnwhen the window size is increased,
the difficulty of finding enough training data for an input syppatch directly correlates
with diminishing returns in denoising performance. Thathist only is it easier to in-
crease window size for smooth patches, they also benefit frmresuch an increase.
In contrast, textured regions require a significantly larggmple size to increase the
patch size, while gaining very little from such an increds®m a practical viewpoint,
this analysis suggests adaptive strategwhere each pixel is denoised with a variable
window size that depends on its local patch complexity.

Next, we put computational issues aside, and study the fuedtal limit of denois-
ing, with an infinite window size and a perfectly knowf) (i.e., an infinite training
database). Under a simplified image formation model we stivelyollowing question:
What is the absolute lower bound on denoising error, and lasivdo we converge to
it, as a function of window size. We show that tbeale invarianceof natural images
plays a key role and yields a power law convergence curve.aReably, despite the
model’s simplicity, its predictions agree well with empal observations. Extrapolat-
ing this parametric law provides a ballpark prediction oa best possible denoising,
suggesting that current algorithms may still be improve@byut0.5 — 1 dB.

2 Optimal Mean Square Error Denoising

In image denoising, given a noisy versign= = + n of a clean imager, corrupted
by additive noisen, the aim is to estimate a cleaner versinThe common quality
measure of denoising algorithms is their mean squared, enreraged over all possible
clean and noisy., y pairs, wherer is sampled from the densip(x) of natural images

MSE = E[|¢ — «|*] = / ) / plyl) |z — & dyda @)
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It is known, e.g. [14], that for a single pixel of interest the estimator minimizing
Eq. (1) is the conditional mean:

R p(ylz)
Te = =Elz.ly] = | ——p(x)x.de. 2
1(y) = Elzcly] / ) p(z) 2)
Inserting Eqg. (2) into Eq. (1) yields that the minimum meanaed error (MMSE) per

pixel is the conditional variance

MMSE = E, [V]z.[y]] = /p(y) /p(mly) (ze — p(y))? dzdy. (3)

The MMSE measures thieherent ambiguityf the denoising problem and the statistics
of natural images, as any natural imageithin the noise level off may have generated
y. Since Eq. (2) depends on the exact unknown depsity of natural images (with full
image support), it is unfortunately not possible to comphtanetheless, by definition it
is the theoretically optimal denoising algorithm, and imtjgallar outperforms all other
algorithms, even those that detect the class of a picturéhemduse class-specific priors
[3], or those which leverage internal patch repetition [, Zhat said, such approaches
can yield significant practical benefits when using a finitewda

Finally, note that the densipyx) plays adualrole. According to Eq. (1), itis needed for
evaluatingany denoising algorithm, since the MSE is the average over abimages.
Additionally, it determines the optimal estimatofy) in Eq. (2).

Finite support: First, we consider algorithms that only use information imiadow of

d noisy pixels around the pixel to be denoised. When neededienete by, , y.,
the restriction of the clean and noisy images thixel window and byz.., y. the pixel

of interest, usually the central one with= 1. As in Eq. (3), the optimal MMS[ of
any denoising algorithm restricted talgixels support is also the conditional variance,
but computed over the space of natural patches of&siaéher than on full-size images.

By definition, the optimal denoising error may only decreagh window sized, since
the best algorithm seeing + 1 pixels can ignore the last pixel and provide the an-
swer of thed pixels algorithm. This raises two critical questiomsw does MMSE
decrease withl, and what is MMSE,, namely the best achievable denoising error of
any algorithm (not necessarily patch based) ?

Non-Parametric approach with a finite training sefThe challenge in evaluating
MMSE, is that the density(z) of natural images is unknown. To bypass it, a non-
parametric study of MMSEfor small values ofi was made in [14], by approximating
Eq. (2) with a discrete sum over a large dataset of ctedimensional patchese; } Y, .

N % Zz’p(ywd|xi~,’wd)xi~,c

fa(y) = (4)
% Zz p(ywd |Ii~,’wd)
where, for iid zero-mean additive Gaussian noisgith variances2,
1 T
P(YuwglTw,) = (@ron)ar® 207 ®)
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An interesting conclusion of [14] was that for small patcbhekigh noise levels, exist-
ing denoising algorithms are close to the optimal MMSE

For Eq. (4) to be an accurate estimateufy), the given dataset must contain many
clean patches at distan¢éo?)'/2 from y,,,, which is the expected distance between
the original and noisy patcheR|[||z.,, — yu,||?] = do?. As a result, non-parametric
denoising requires a larger training set at low noise lewelhere the distancéo? is
smaller, or at larger patch sizéswhere clean patch samples are spread further apart.
This curse of dimensionality restricted [14] to small vauwéd.

In contrast, in this paper we are interested in the best aabie denoising oanyalgo-
rithm, without restrictions on support size, namely MMSBENe thus generalize [14]
by studying how MMSE decreases as a function@ifand as a result provide a novel
prediction of MMSE,, (see Section 4).

Note that MMSE, corresponds to an infinite database of all clean images,hwhic
in particular also includes the original image However, this does not imply that
MMSE., = 0, since this database also includes many slight variants wfth small
spatial shifts or illumination changes. Any of these vatsamay have generated the
noisy imagey, making it is impossible to identify the correct one withaerror.

3 Patch Size, Complexity and PSNR Gain

Increasing the window size provides a more accurate prigra@ssiders the informa-
tion of distant pixels on the pixel of interest. However, in@-parametric approach,
this requires a much larger training set and it is unclear sahstantial the PSNR gain
might be. This section shows that this tradeoff depends @atctpcomplexity”, and
presents daw of diminishing returnpatches that require a large increase in database
size also benefit little from a larger window. This gain is gmed by the statistical
dependency of peripheral pixels and the central one: weakiselated pixels provide
little information while leading to a much larger spread atgh space, and thus require

a significantly larger training data.

3.1 Empirical study

To understand the dependence of PSNR on window size, werp@sempirical study
with M = 10* clean and noisy pair§(z;, y;) ;‘il andN = 10® samples taken from
the LabelMe dataset, as in [14]. We compute the non-paramagan (Eq. (4)) at
varying window sizes!. For each noisy patch we determine the largést which
estimation is still reliable by comparing the results witfigtent clean subsets

! We divide theN clean samples into 10 groups, compute the non-parametiteager /i, (y; )
on each group separately, and check if the variance of theestiimators is much smaller than
o2. For smalld, samples are dense enough and all these estimators provisistent results.
For larged, sample density is insufficient, and each estimator givesradifferent result.
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Fig. 1: For patch groupsG, of varying complexity, we present PSNR vs. number of pikais
windowwg, whered = 1,...,¢. Higher curves correspond to smooth regions, which flatten a
larger patch dimensions. Textured regions correspond welocurves which not only run out of
samples sooner, but also their curves flatten earlier.
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Fig. 2: (a) A clean and noisy 1D signal. (b) Unconditional joint dilstition p(x1, x3). (c-€)
Conditional distributionsp(x1, z3|y1, y2) for a few observed gradientg, —y2|, at noise s.t.d.
o =10. The original dependence of, x3 is broken if a high gradient is observeg; —y2| > o.

We divide theM test patches into grougs, based on the largest window siZeat
which the estimate is still reliable. For each group, Figisblhys the empirical PSNR
averaged over the group’s patches as a function of windavisiord = 1, .. ., ¢ (that
is, up to the maximal window siz& = ¢ at which estimation is reliable), where:

PSNRGelus) = 1010810 ( by 3 (a3 = )

JEGY

We further compute for each group its mean gradient magajti™y.,, ||, and observe
that groups with smaller support sizewhich run more quickly out of training data, in-
clude mostly patches with large gradients (texture). Tipegehes correspond to PSNR
curves that are lower and also flatten earlier (Fig. 1). Inmemt, smoother patches are
in groups that run out of examples later (higiieand also gain more from an increase
in patch width: the higher curves in Fig. 1 flatten later. Th¢adn Fig. 1 demonstrates
an important principletWhen an increase in patch width requires many more training
samples, the performance gain due to these additional ssiprelatively small.

To understand the relation between patch complexity, dampgain, and required num-
ber of samples, we show that the statistical dependencyeeetadjacent pixels is bro-
ken when large gradients are observed. We sample rowscofsecutive pixels from
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Fig. 3: Atoy example of 2D sample densities.

cleanz and noisyy natural images (Fig. 2(a)), discretize them into 100 intgrsns,
and estimate the conditional probabilityx;, z5|y1, y2) by counting occurrences in
each bin. When the gradienf, — 1] is high with respect to the noise level;, x5
are approximately independemx1 = i,23 = jl|ly1 — y2| > o) = p1(i)ps(j),
see Fig. 2(e). In contrast, small gradients don't break gpeddency, and we observe
a much more elongated structure, see Fig. 2(c,d) . For referd-ig. 2(b) shows the
unconditional joint distributiom(z1, 3), without seeing any. Its diagonal structure
implies that while the pixeléz1, z3) are by default dependent, the dependency is bro-
ken in the presence of a strong edge between them. From acpigmtrspective, if
ly1 — y2| > o, adding the pixel;s does not contribute much to the estimationcef If
the gradienty; — y»| is small there is still dependency betwegrandz,, so addingys
does further reduce the reconstruction error. A simpleanqtion for this phenomenon
is to think of adjacent objects in an image. As objects carlirsdependent colors, the
color of one object tells us nothing about its neighbor onatier side of the edge.

3.2 Theoretical Analysis

Motivated by Fig. 1 and Fig. 2, we study the implications oftjgé statistical depen-
dence between pixels, both on the performance gain expeygtedreasing the window
size, and on the requirements on sample size.

2D Gaussian caseTo gain intuition, we first consider a trivial scenario whewgch
size is increased from 1 to 2 pixels and distributions aresSians. In Fig. 3(a);
andz, are independent, while in Fig. 3(b) they are fully dependerntr; = x,. Both
cases have the same marginal distribufi@r, ) with equal denoising performance for
a 1-pixel window. We drawNV = 100 samples fromp(z1, x2) and see how many of
them fall within a radiug around a noisy observatidp;, y2). In the uncorrelated case
(Fig. 3(a)), the samples are spread in the 2D plane and trerehly a small portion
of them fall near(y1, y2). In the second case, since the samples are concentrated in a
significantly smaller region (a 1-D line), there are many ensamples neafy:, y2).
Hence, in the fully correlated case a non parametric estintatjuires a significantly
smaller dataset to have a sufficient number of clean samplbg ivicinity ofy.



To study the accuracy of restoration, Fig. 3(c,d) shows thaditional distributions
p(z1|y1,y2). Whenzy, xo are independent, increasing window size to takéto ac-
count provides no information abowt, andp(x1|y1) = p(z1|y1,y2). Worse, denois-
ing performance decreases when the window size is incrdasealise we now have
fewer training patches inside the relevant neighborhoodointrast, in the fully cor-
related case, adding, provides valuable information about, and the variance of
p(x1|y1,y2) is half of the variance giver, alone. This illustrates how high correlation
between pixels yields a significant decrease in error witheguiring a large increase
in sample size. Conversely, weak correlation gives onlytéichgain while requiring a
large increase in training data.

General derivation:We extend our 2D analysis tbdimensions. The following claim,
proved in [15], provides the leading error term of the nonapaetric estimatof.,(y)
of Eq.(4) as a function of training set si2é and window sizei. It is similar to results
in the statistics literature on the MSE of the Nadaraya-@atstimator.

Claim. Asymptotically, asV — oo, the expected non-parametric MSE with a window
of sized pixels is

En[MSEi(y)] = MMSEq(y) + +Va(y) + o (%) 6)
vy o Lol 1] (7)

with V[x1 |y, ] the conditional variance of the central pixglgiven a windoww, from
y, and|d,| is the determinant of the locdlx d covariance matrix op(y),

2
a7 = |- gl | ©®)

82ywd

The expected error is the sum of the fundamental limit MM&# and a variance term
that accounts for the finite number of sampl€sin the dataset. As in Monte-Carlo
sampling, it decreases .’# When window size increases, MM$y) decreases, but
the variance),;(y) might increase. The tension between these two terms detesmi
whether for a constant training si2éincreasing window size is beneficial.

The variancé/; is proportional to the volume qf(y,,, ), as measured by the determi-
nant|®,| of the local covariance matrix. When the volume of the distiion is larger,
the N samples are spread over a wider area and there are fewepddues near each
noisy patchy. This is precisely the difference between Fig. 3(a) and B{b).

For the error to be close to the optimal MMgEhe termV; /N in Eq. (6) must be

small. Eq. (7) shows tha?,; depends on the volumé,| and we expect this term to
grow with dimensioni, thus requiring many more sampl&s Both our empirical data
and our 2D analysis show that the required increase in sasiggds a function of the
statistical dependency of the central pixel with the add=zl o

To understand the required increase in training $izashen window size is increased
by one pixel fromd — 1 to d, we analyze the ratio of varianc¥s/V,_1. Letg,(y) be



the gain in performance (for an infinite dataset), which adiog to Eq. (3) is given by:

gd(y) _ MMSEdfl(y) _ V[l’1|y1, N ydfl]
MMSE.(y) Viz1ly1, - - . yd]

9)

We also denote by (y) the ideal gain ifz; andz;, were perfectly correlated, i.e.
r = cor(x1,zq|y1,---,Yy4—1) = 1. Assuming for simplicity a Gaussian distribution,
the following claim shows that when MM3Ey) is most improved, sampling is not
harder since the volume and varianggedo not grow.

Claim. Let p(y) be Gaussian. When increasing the patch size fdom1 to d, the
variance ratio and the performance gain of the estimaterssdated by:

Vi _ 9d 5. (10)
Va-1  9a

That s, the ratio of variances equals the ratio of optimabilging gain to the achievable
gain. Wheney, z4 are perfectly correlategq = g5, we getV;/V,_1 = 1, and a larger
window gives improved restoration results without inciegshe required dataset size.
In contrast, ifzy, 1 are weakly correlated, increasing window size requiresygéoi
dataset to keep;/N small, and yet the PSNR gain is small.

Proof. Let C be the2 x 2 covariance ofc1, z4 givenyy, ..., yq—1 (before seeingy)

C =Cov(z1,zalyr, ... Yi-1) = < “ 012) (12)

Ci2 C2
and letr = ¢12//c1¢2 be the correlation between, 2.

Under the Gaussian assumption, upon obseryinghe marginal variance af; de-
creases froma; to the following expression (see Eq. 2.73 in [4]),

2 2 _ 2 2
C;Q = C1 (1— 012/01 ) 26102(1 " )+U . (12)

c2+o ca2 + o2 co + o2

Vizilyr, ...,y = a1 —

Hence the contribution to performance gain of the additipheel y, is

Vizi|yr, ... ya—1] 2 + o2
= = . 13
9d Vizilyi, - - yd c2(1 —12) + 02 (13)

Whenr = 1, the largest possible gain from is g5 = (c2 + 02)/0?. The ratio of best
possible gain to achieved gain is

* 1— 2 2
%:7@( ;"2)+". (14)

Next, let us compute the ratid;/V,—1. For Gaussian distributions, accord-

ing to Eq. 2.82 in [4], the conditional variance af; given yi,...,yq4—1 IS
independent of the specific observed values. Further, sp@g,...,vs) =
(Y1, -, Ya—1)p(Wdly1, - - - ya—1), we obtain that

|Pal = V(yalyr, - - ya—1)|Pa—1] (15)



o |20 35 50 75 100
Optimal Fixed32.4 30.1 28.7 27.2 26.0
Adaptive  [33.030.529.0 27.526.4
BM3D 33.230.328.6 26.925.6

Table 1: Adaptive and fixed window denoising results in PSNR.

This implies that

Va _ Yalyr, .- ya—1) Viza|yi, ...yl (16)
Vi1 o? Vizily, ... ya—1]
Next, sinceyy, = x4 + nq With ng ~ N(0,0?) independent ofy1, ..., yq4_1, then

V(yaly1,---Ya—1) = c2 + o2, Thus,

Vi CQ+0'262(1—T2)—|—0'2_£

Vi1 o? ¢ + o? ga’

I

In [15] we compute); and g, for several cases. For a signal whose pixels are all in-
dependent with equal variancg; and the required number of sampl¥sboth grow
exponentially with dimensiod. In contrast, for a fully correlated signal, is constant.

3.3 Adaptive Denoising

Our analysis suggests that patch based denoising can bevietpmostly in flat areas
and less in textured ones. In [15] we show that this is impiicseveral recent works,
consistent with [7]. This motivates auaptivedenoising scheme [12] where each pixel
is denoised with a variable patch size that depends on idilmage complexity. To test
this idea, we devised the following scheme. Given a noisygnave denoise each pixel
using several patch widths and multiple disjoint clean damAs before, we compute
the variance of all these different estimates, and seleckattyest width for which the
variance is still below a threshold. Table 1 compares theR8Nhis adaptive scheme
to fixed window size non-parametric denoising using theroatiwindow size at each
noise level, and to BM3D [8], a state-of-the-art algoritiive usedM = 1000 test
pixels andN = 7 - 10° clean samples. At all considered noise levels, the adaptive
approach significantly improves the fixed patch approaclkjdmut0.3 —0.6dB. At low
noise levels, sample siz€ is too small, and adaptive denoising is worse than BK3D
At higher noise levels it increasingly outperforms BM3D.

Fig. 4 visualizes the difference between the adaptive ardl fpatch size approaches,
at noise leveb = 50. When patch size is small, noise residuals are highly \ésifl

2 The reason is that at this finifé, with o = 20 our non-parametric approach uges5 patches
at textured regions. In contrast, BM3D uses 8 ones, with additional algorithmic operations
which allow it to better generalize from a limited number afrples.



(2)Original  (b)Noisy input (c)Adaptive (d)Fixdd= 5 (e)Fixedk = 6 (f)Fixedk = 10

Fig. 4: Visual comparison of adaptive vs. fixed patch size non paramenoising (optimal fixed
size results obtained with = 6). A fixed patch has noise residuals either in flat areas(ayen
textured areas(f).

the flat regions. With a large patch size, one cannot find goafttimes in the textured
regions, and as a result noise is visible around edges. Rigfbseand flat regions are
handled properly by the adaptive approach. Moreover, updereptual error metrics
such as SSIM [24], decreasing the error in the smooth regiom®re important, thus
underscoring the potential benefits of an adaptive approach

Note that this adaptive non-parametric denoising is notatmal algorithm, as Fig. 4
required several days of computation. Nonetheless, thessats suggest that adaptive
versions to existing denoising algorithms such as [10, 89186] and other low-level
vision tasks are a promising direction for future research.

4 The Convergence and Limits of Optimal Denoising

In this section, we put computational and database sizessaside, and study the be-
havior of optimal denoising error as window size increagemtinity. Fig. 1 shows
that optimal denoising yields a diminishing return beyon@iadow size that varies
with patches. Moreover, patches that plateau at largerovirgizes also reach a higher
PSNR. Fig. 2 shows that strong edges break statisticallatioe between pixels. Com-
bining the two suggests that each image pixel has a finite aotmpgion of informative
neighboring pixels. Intuitively, the size distribution thfese regions must directly im-
pact both denoising error vs. window size and its limit withiafinite window.

We make two contributions towards elucidating this questitrst we show that a com-
bination of the simplifiedlead leavedmage formation model, together wiitale in-
varianceof natural images implies bothpower-lawconvergence, MMSE~ e + ¢/d,
as well as a strictly positive lower bound on the optimal dsing with infinite window,
MMSE.. =e> 0. Next, we present empirical results showing that despéesitmplicity
of this model, its conclusions match well the behavior of heages.

4.1 Scale-invarianceand Denoising Conver gence

We consider adead leavesmage formation model, e.g. [1], whereby an image is a
random collection of piecewise constant segments, whaseisidrawn from a scale-
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invariant distribution and whose intensity is drawn i.ifichm a uniform distribution.
This yields perfect correlation between pixels in the sagggon, as in Fig. 3(b).

To further simplify the analysis, we conservatively asswanedge oracle which gives
the exact locations of edges in the image. The optimal danpis then to average all
observations in a segment. For a pixel belonging to segniaitas pixels, the MMSE
is o2 /s. Overall the expected reconstruction error with infiniized windows is

MMSE:/p(s)(éds a7

wherep(s) is the probability that a pixel belongs to a segment wiglixels. The optimal
error is strictly larger than zero if the probability of fieisegments is larger than zero.
Without the edge-oracle, the error is even higher.

Scale invariance:Scale invariance is a fundamental property of natural image
shown in numerous studies, down-sampling natural imagameemany of their statis-
tical properties, from gradient distributions to segmeegion) areas, e.g.[11,23,1,17,
21]. A simple argument [1, 15] shows that scale-invariameglies that the probability
that a random image pixel belongs to a segment of sigseof the formp(s) o« 1/s. In

a Markov model, in contrasp(s) decays exponentially fast with[21, 15].

To get a sense of the empirical size distribution of neadgstant-intensity regions
in natural images, we perform a simple experiment inspingfilth For a random set
of pixels {z;}, we compute the sizé(i) of the connected region whose pixel values
differ from x; by at most a threshold: d(i) = #{x;||x; — ;| < T'}. The empirical
histogramh(d) of region sizes follows a power law behaviofd) « d=* with a = 1,

as shown in Fig. 5(a,b), which plotgh(d).

Optimal denoising as a function of window siz&@/e now compute the optimal de-
noising for the dead leaves model with the scale invariamepepty. Sincel /s is not
integrable, scale invariance cannot hold at infinitely éesgales. Assuming it holds up
to a maximal sizeD > 1, gives the normalized probability

po(s) = —p——— = =~ (18)



]
L}
I
1)
o
Rl

o
I3

@
» ¢
s oo

« Data
-~ Power law fit
-+ Exponential fit
0 50 100

d

* Data

---Power law fit

--- Exponential fit
50100 150 200 20 40 69 80 100 120

>
—Iog(MMSEd—e)

—\og(MMSEd—e)

3
log(d)

()0 =50 (b) o = 100 (c) Log plot (d) Log log plot

Fig. 6: PSNR vs. patch dimension. A power law fits the data well, wBere exponential law fits
poorly. Panels (c) and (d) shojtog(MMSE; — ¢)| v.s.d or log(d). An exponential law should
be linear in the first plot, a power law linear in the second.

We compute the optimal error with a window of side< D pixels. Given the edge
oracle, every segment of size< d attains its optimal denoising error of /s, whereas
if s > d we obtain onlyr?/d. Splitting the integral in (17) into these two cases gives

d D
MMSE, — / o b (s)ds + / o b (s)ds (19)
1 d

2
= MMSEp + & (1 - B25) + 5875 ~ MMSEp + =

InD DlIn D

For this model, MMSE, = MMSEp,. Thus,the dead leaves model with scale invari-
ance property implies a power laly'd convergence to a strictly positive MMSE

4.2 Empirical validation and optimal PSNR

While dead leaves is clearly an over-simplified model, ittaegs the salient proper-
ties of natural images. Even though real images are not mhg&cewise constant
segments, the results of Sec. 3, and Fig. 5 suggest that macje ipixel has a finite
“informative region”, whose pixel values are most relevimmtdenoising it. While for
real images, correlations may not be perfect inside thimnegnd might not fully drop
to zero outside it, we now show that empirically, optimal dismg in natural images
indeed follows a power law similar to that of the dead-leaveslel.

To this end, we apply the method of [14] and compute the optatch based MMSE

for several small window sizes Fig. 6(a-b) show that consistent with the dead leaves
model, we obtain an excellent fit to a power law MMSE e + J& with o =~ 1. In
contrast, we get a poor fit to an exponential law, MMSE e + ¢r~¢, implied by the
common Markovian assumption [21, 15]. In addition, Fig.,8Jshow log and log-log
plots of (MMSE, — ¢), with the best fitted: in each case. The linear behavior in the
log-log plot (Fig. 6(d)) further supports the power lawtifig details appear in [15].

Predicting Optimal PSNRFor small window sizes, using a large database and Eq. (4),
we can estimate the optimal patch-based denoising MMBIg. 6 shows that the curve

of MMSE,; is accurately fitted by a power law MMSE= e + ¢/d“, with o ~ 1. Ex-
trapolating this curve, we can predict the value of MMSEwhich is the best possible
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o |35 50 75 100
Extrapolated bound (PSNR) |30.6 28.8 27.3 26.3

KSVD [10] 28.7 26.9 25.0 23.7
BM3D [8] 30.0 28.1 26.3 25.0
EPLL [26] 29.8 28.1 26.3 25.1

Table 2: Extrapolated optimal denoising in PSNR, and the resulteoént algorithms.
A modest room for improvement exists.

error ofanydenoising algorithm (not necessarily patch based). Sime@ower law is
only approximate, this extrapolation should be taken witiran of salt. Nonetheless,
it gives an interesting ballpark estimate on the amountihér achievable gain by any
future algorithmic improvements. Table 2 compares the P8N&xisting algorithms
to the predicted PSNR, over M = 20, 000 patches using the power law fit based on
N = 108 clean samplés The comparison suggests that depending on noise dgvel
current methods may still be improved by — 1dB. While the extrapolated value may
not be exact, our analysis does suggest that there are nilenits imposed by the
statistics of natural images, which cannot be broken, néenhabw sophisticated future
denoising algorithms will be.

5 Discussion

In this paper we studied both computational and informagigpects of image denois-
ing. Our analysis revealed an intimate relation betweemidery performance and the
scale invariance of natural image statistics. Yet, onlyd@proaches account for it [20].
Our findings suggest that scale invariance can be an impgauarto explore in the de-

velopment of future natural image priors. In addition, a&degppatch size approaches
are a promising direction to improve current algorithmsfsas [10, 8, 16,9, 26].

Our work also highlights the relation between the frequerfayccurrence of a patch,
local pixel correlations, and potential denoising gairtsisiconcept is not restricted to
the denoising problem, and may have implications in othé&idie
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