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Abstract

The ratio of the largest eigenvalue divided by the trace of a p×p randomWishart
matrix with n degrees of freedom and identity covariance matrix plays an impor-
tant role in various hypothesis testing problems, both in statistics and in signal
processing. In this paper we derive an approximate explicit expression for the
distribution of this ratio, by considering the joint limit as both p, n → ∞ with
p/n → c. Our analysis reveals that even though asymptotically in this limit the
ratio follows a Tracy-Widom (TW) distribution, one of the leading error terms
depends on the second derivative of the TW distribution, and is non-negligible
for practical values of p, in particular for determining tail probabilities. We thus
propose to explicitly include this term in the approximate distribution for the
ratio. We illustrate empirically using simulations that adding this term to the
TW distribution yields a quite accurate expression to the empirical distribution
of the ratio, even for small values of p, n.

Keywords: Ratio of largest eigenvalue to trace; Principal components
analysis; Wishart matrices; Tracy-Widom distribution.

subject classification: 62H10, 62H15, 62E20, 62H25

1. Introduction

Let x1, . . . , xn be n i.i.d. p-dimensional observations from either a real val-
ued or a complex valued Gaussian distribution N (0,Σ), where the population
covariance matrix is assumed to be of the form Σ = σ2Ip×p with an unknown
scaling factor σ2. Denote the sample covariance matrix by

Sn =
1

n

∑

i

xix
H
i (1.1)

and let `j denote its eigenvalues, sorted in decreasing order, `1 ≥ `2 ≥ . . . ≥ `p.
In this setting, the matrix Sn, upon division by the unknown factor σ2, follows
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a Wishart distribution with n degrees of freedom and with identity covariance
matrix. For ease of notation we denote its average trace by

T =
1

p

p∑

j=1

`j =
1

p
Tr(Sn).

The focus of this paper is on the distribution of the ratio of the largest eigenvalue
of Sn divided by its average trace, namely the distribution of the following
random variable,

U =
`1

1
p

∑
j `j

=
`1
T
. (1.2)

Note that U is scale invariant and does not depend on the unknown noise level
σ. Hence, for the rest of the paper, we assume w.l.o.g. that σ = 1.

The random variable U plays a key role in various scale independent hy-
pothesis testing procedures, both in some classical problems in statistics as well
as in some modern applications in signal processing. Classical examples include
testing for the presence of interactions in multi-way data [8] and testing for
equality of the population covariance to a scaled identity matrix [11]. Some
modern signal processing applications include testing for the presence of signals
in cognitive radio as well as non-parametric signal detection in array processing
[2, 3]. Normalized Wishart matrices (e.g., with trace equal to one) are also a
common model for random density matrices in quantum information channels,
see for example [14, 20]. Hence, the largest eigenvalue of such matrices also
follows the distribution of U .

Regretfully, despite its importance there is no simple-to-compute expression
for the exact distribution of U . Various authors derived exact formulas for U in
terms of high dimensional integrals or as inverses of certain Laplace transforms,
which could then be evaluated numerically for small values of p, see [5, 18].
More recently, [12] developed asymptotic expansions for tail probabilities of U
by considering the extrema of certain random fields. The resulting expressions,
however, seem difficult to evaluate unless p is very small.

The difficulty in obtaining a simple closed form expression for the distribu-
tion of U is related, of course, to a similar difficulty regarding simply the largest
sample eigenvalue `1. Whereas the exact distribution of `1 also has no simple to
evaluate explicit expression, in the joint limit as both p, n → ∞ with p/n → c,
various authors have shown that upon proper centering and scaling [7, 9],

Pr

[
`1 − µnp

σnp
< s

]
→ TWβ (s) (1.3)

where TWβ denotes the Tracy-Widom distribution of order β, and β = 1, 2 for
real valued or complex valued observations, respectively. Moreover, for carefully
chosen centering and scaling functions µnp and σnp, the convergence rate in Eq.
(1.3) is O(p−2/3). For real valued observations, suitable expressions for µnp and
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σnp are [13]

µnp =
1

n

(√
n− 1/2 +

√
p− 1/2

)2

, (1.4)

σnp =

√
µn,p

n

(
1√

n− 1/2
+

1√
p− 1/2

)1/3

. (1.5)

For the complex case, similar expressions appear in [6].
The results above imply that asymptotically U also follows a Tracy-Widom

distribution. For a detailed proof we refer the reader to [3]. Here we provide
an intuitive explanation for this: In the joint limit p, n → ∞, p/n → c, we have
that µnp → (1 +

√
c)2 = O(1), whereas σnp = O( 1√

n p1/6 ) = O(p−1/2−1/6). In

contrast, the denominator T = Tr(Sn)/p in the definition of U , Eq. (1.2) is
distributed as a χ2

βnp/βnp random variable, and thus has mean E[T ] = 1 and

fluctuations of the order O(1/
√
pn) = O(p−1). The key point is that asymptot-

ically the fluctuations in T are negligible compared to those of `1. Combining
these properties with Eq. (1.3), it then follows that as both p, n → ∞,

Pr

[
U − µnp

σnp
< s

]
→ TWβ (s) . (1.6)

Indeed, based on this analysis some recent works use Eq. (1.6) either to set
the threshold corresponding to a given false alarm rate for various detection
procedures, or to analyze them, see for example [3, 10]. Since these thresholds
depend on tail probabilities of U , an interesting question is how accurate is
the approximation in Eq. (1.6) for finite values of n and p, and in particular
for the setting common in some modern signal processing applications, where
p = O(10) and n À p.

Before providing a theoretical analysis of this question it is instructive to first
look at some simulation results. In figure 1, we compare the exact TW density
with the empirical density of the largest eigenvalue `1 and of the ratio U , both
centered and scaled by µnp and σnp as described above, for β = 1, p = 20
and n = 500. As shown in the figure, the empirical distribution of `1 is very
well approximated by the limiting TW distribution. In contrast, approximating
the distribution of U by the TW distribution (Eq. (1.6)) is quite inaccurate
for small and even moderate values of p. In particular, tails probabilities may
exhibit relative errors of 100%, even for quite large values of p. As an example, at
a false alarm of α = 1% which gives s = 0.4776 in the complex case, with p = 20

and n = 500 we have 1− TW2(s) = 0.01, whereas Pr
[
U−µnp

σnp
> s

]
= 0.0054.

In this paper we elucidate the reason for this observed behavior, and propose
a simple correction term to Eq. (1.6) suitable for finite values of p, n and s. First,
we show that even though the convergence rate in (1.6) is still O(p−2/3), there
are two main error terms in the difference

Pr

[
U − µnp

σnp
< s

]
− TWβ(s).
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Figure 1: Comparison of Tracy-Widom density with empirical density of largest
eigenvalue `1 and of ratio U , after centering and scaling by µnp and σnp respec-
tively.

The first term is the approximation error already present in Eq. (1.3), namely

Pr
[
`1−µ
σ < s

]
− TWβ(s). The second term depends on the second derivative of

TWβ(s). While asymptotically both terms are O(p−2/3), empirically the first
term is quite small even for small values of p. In contrast, for the second term
we show theoretically that it is non-negligible, in particular for tail probabilities,
unless p À 10.

This second term is the source of the relatively large difference between tail
probabilities of U and of `1. The main result of this paper is the following
explicit approximate formula for tail probabilities of U :

Pr
[
U−µnp

σnp
> s

]
≈ 1− TWβ(s) +

1

2

(
2

βnp

)(
µnp

σnp

)2

TW ′′
β (s). (1.7)

As shown in the simulation section, compared to the Tracy-Widom approxima-
tion, this formula provides a significantly better fit to the empirical density of

U , with an error comparable to that of Pr
[
`1−µnp

σnp
< s

]
− TWβ(s). We remark

that our analysis is valid both for real and for complex valued data, β = 1, 2.
This modified expression for the distribution of U should be useful both for
practitioners (to set the threshold for a required false alarm rate) as well as for
theoretical purposes. An example of the latter is the performance analysis of
various detection tests in signal processing that depend on the distribution of
this random variable [15, 16].

2. Distribution of the ratio of largest eigenvalue to the trace

We first introduce the following notation. Let Fnp(s) be the finite sample
distribution function of the largest eigenvalue `1 properly centered and scaled by
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µnp and σnp such that the convergence rate in Eq. (1.3) is O(p−2/3). Similarly,
let Hnp(s) denote the distribution function of U , also centered and scaled by
the same parameters. That is,

Fnp(s) = Pr

[
`1 − µnp

σnp
< s

]
, Hnp(s) = Pr

[
U − µnp

σnp
< s

]
.

We also denote the respective densities by fnp(s) and hnp(s).
For our main result we first need the following lemma.

Lemma 1. In the joint limit as both p, n → ∞, p/n = c, not only does Eq.
(1.3) hold, but also both

|F ′
np(s)− TW ′

β(s)| → 0 and |F ′′
np(s)− TW ′′

β (s)| → 0 (2.1)

In the appendix we outline the proof of this lemma for the complex valued
case β = 2. The proof is similar to the proof of convergence of Eq. (1.3), e.g.,
using the Fredholm determinant representation. We conjecture that the lemma
holds also in the real valued case β = 1. A proof in this case may be con-
siderably more difficult as the distributions are now represented by regularized
determinants of operators with matrix kernels, so that even the proof of Eq.
(1.3) is much more involved, see [13].

Our main result regarding the distribution of the ratio of the largest eigen-
value to the average trace can be stated as follows:

Theorem 2.1. Assume that in the joint limit as both p, n → ∞ with p/n → c,
the following two conditions hold:

(i) uniformly in p and s, Hnp(s) is a smooth function with bounded third
derivative, |H ′′′

np(s)| < C.
(ii) Eq. (2.1) holds.

Then, in the joint limit as both p, n → ∞,

Hnp(s)−TWβ(s) = [Fnp(s)− TWβ(s)]− 1

2

(
2

βnp

)(
µnp

σnp

)2

TW ′′
β (s)+o(p−2/3).

(2.2)

As discussed above, condition (ii) indeed holds for β = 2. We conjecture it
holds also for β = 1. Condition (i), which seems a reasonable assumption, is
required for our proof of the Theorem. It remains an open question whether the
theorem can be proven without this assumption, or whether this assumption
can be proven itself.

Before proving the theorem, let us discuss the two terms on the r.h.s. of
Eq. (2.2). The first term is the error in approximating the distribution of the
largest eigenvalue `1 by the TW distribution. While in principle this term is
O(p−2/3), empirically it has been shown to be very small even for small values of
p, n, see [6, 9, 13]. Next, consider the second term, in particular in the context
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of right tail probabilities, which are the most relevant for hypothesis testing
applications. First, note that as p, n → ∞, with p/n → c

2

βnp

(
µnp

σnp

)2

=
2

β
(1 +

√
c)4/3

1

p2/3
(1 + o(1)).

Hence the second term on the r.h.s. of Eq. (2.2) is also O(p−2/3). Regard-
ing the accuracy in approximating right tail probabilities by the TW distri-
bution, the key quantity to analyze is the relative size of this second cor-
rection term with respect to the leading order term, 1 − TWβ(s). Since for
s À 1, 1−TW (s) ∼ C exp(−as3/2)/s3/2 for some constants a,C, it follows that
|TW ′′(s)|/(1−TW (s)) becomes increasingly large as s → ∞. However, even for
small values of s the second term in Eq. (2.2) is non-negligible, unless p À 1.
To see this, consider for example s = −0.2325, where 1 − TW2(s) ≈ 5%. At
this value of s, |TW ′′

2 (s)|/(1 − TW2(s)) ≈ 7. Furthermore, for n À p, we have
that 1

np (µnp/σnp)
2 ≈ 1/p2/3. Hence, for the second term in Eq. (2.2) to have

at most a 10% relative error, namely

1

2

2

βnp

(
µnp

σnp

)2 |TW ′′
2 (s)|

1− TW2(s)
≤ 0.1

we need p & (35)3/2 ≈ 200. To correct for these potentially large relative errors,
our proposed approximation for tail probabilities of the ratio is thus

Pr
[
U−µnp

σnp
> s

]
≈ 1− TWβ(s) +

1

2

(
2

βnp

)(
µnp

σnp

)2

TW ′′
β (s). (2.3)

Simulation results shown in fig. 2 and summarized in the tables below illus-
trate that Eq. (2.3) indeed provides a much more accurate fit to the empirical
distribution of U .

Proof. The proof consists of two main steps. First, we show that the density
fnp(s) is approximately given by a convolution of hnp(s) with a Gaussian. In
the second step we approximately invert this deconvolution, showing that the
overall error is o(p−2/3).

The starting point for our analysis is the well known fact that the two random
variables U and T are independent, see for example [8], Eq. (5.4), or [2]. Thus,
suppressing the dependence on p, n, their joint density can be written as

f(u, t) = h(u)g(t).

Next, recall that the random variable T follows a χ2
βnp/(βnp) distribution.

Hence its density g(t) is known explicitly,

g(t) = βnp
1

2βnp/2Γ
(

βnp
2

) (βnpt)βnp/2−1e−βnpt/2 = Cβ,n,p
e−η(t−1−ln t)

t
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where η = βnp/2 and Cβ,n,p = ηηe−η/Γ(η).
Finally, to relate the distribution of U to that of `1 we consider the following

equality,

Pr[`1 < x] =

∫ px

0

Pr
[
U <

x

t

]
g(t)dt. (2.4)

Note that the upper limit of integration is px since by definition Pr[U < 1
p ] = 0.

At this point it is convenient to perform a change of variables x = µnp + σnps.
The equation above can then equivalently be written as

Fnp(s) = Pr

[
`1 − µnp

σnp
< s

]
=

∫ p(µnp+sσnp)

0

Hnp

(
s

t
+

µnp

σnp

1− t

t

)
g(t)dt.

Furthermore, upon differentiation w.r.t. s, and using the fact that

Hnp

(
s

t
+

µnp

σnp

1− t

t

) ∣∣∣∣∣
t=p(µnp+sσnp)

= Pr

[
U <

1

p

]
= 0

we obtain a similar equation for the densities,

fnp(s) =

∫ p(µnp+sσnp)

0

hnp

(
s

t
+

µnp

σnp

1− t

t

)
g(t)dt.

According to assumption (ii), Eq. (2.1), the left hand side converges to
TW ′

β(s). We thus study the behavior of the integral on the r.h.s. as both
p, n → ∞. In this limit, g(t) becomes increasingly concentrated around a value
of 1 with fluctuations of the order of ε = 1/

√
η. Hence, as in Laplace’s method

for the asymptotic expansion of integrals, we make the change of variables t =
1 + εz, keeping in mind that ε → 0 as n, p → ∞. Note that via a Taylor
expansion,

exp(−η(t− 1− ln t)) = exp(− z2

2 ) exp(− ε
3

z3

(1+εθ(z))3 )

where θ(z) ∈ [0, z]. In addition, from the asymptotics of the Gamma function
we have that

Cβ,n,p =
1√
2πε

(1 +O(ε2)).

Thus,

fnp(s) =
1√
2π

∫ (pµnp+psσnp−1)/ε

−1/ε

hnp

(
s

1 + εz
− ε

µnp

σnp

z

1 + εz

)
exp

(
−z2

2

)
×

1

1 + εz
· exp

(
− ε

3

z3

(1 + εθ(z))3

)
dz(1 +O(ε2))

Note that the lower and upper limits of integration converge to ±∞ as ε → 0.
Furthermore, since the Gaussian function decays exponentially fast, up to ex-
ponentially small errors in p, n, we have that

fnp(s) =

∫ ∞

−∞
hnp

(
s− ε

µnp

σnp
z − εsz +O

(
µnp

σnp
ε2
))

e−z2/2

√
2π

dz(1+O(ε)). (2.5)
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We remark that up to now, the above algebraic manipulations were nothing but

the approximation, for large values of k, of a χ2
k/k random variable by 1+

√
2
kZ

where Z ∼ N(0, 1).
Next, recall that in the joint limit p, n → ∞, with p/n → c, we have that

ε = O(p−1) whereas ε
µnp

σnp
= O(p−1/3), so that the latter is the leading order

correction term inside the parentheses in Eq. (2.5) above. Denoting δp = ε
µnp

σnp
,

up to order O(p−1) terms, we have that

fnp(s) =

∫ ∞

−∞
hnp(s− δpz)

e−z2/2

√
2π

dz. (2.6)

This equation shows that the density of the largest eigenvalue, fnp(s), is approx-
imately the convolution of the required density of the ratio, hnp(s), convolved
with a Gaussian. The required solution is thus the inverse operation, e.g., a
deconvolution.

To perform the deconvolution and obtain an expression for hnp(s) and thus
for Hnp(s) it is convenient to work in Fourier space. Since both fnp and hnp are
probability density functions, their Fourier transforms are well defined. We use
the following definition of the Fourier transform, ĝ(ω) =

∫
g(x)e−iωxdx, and de-

note by t̂w(ω) the Fourier transform of the Tracy-Widom density. Conveniently,
the convolution operator translates into multiplication in Fourier space, and the
Fourier transform of a Gaussian is again a Gaussian. Therefore,

f̂np(ω) = ĥnp(ω)e
−δ2pω

2/2 (2.7)

or equivalently ĥnp(ω) = eδ
2
pω

2/2f̂np(ω). Simple algebraic manipulations give

ĥnp(ω) =
(
1 + 1

2δ
2
pω

2
)
t̂w(ω) +

(
1 + 1

2δ
2
pω

2
)
(f̂np(ω)− t̂w(ω)) + q̂(ω) (2.8)

where

q̂(ω) =
(
eδ

2
pω

2/2 − 1− 1
2δ

2
pω

2
)
f̂np(ω)

=
(
1− e−δ2pω

2/2 − 1
2δ

2
pω

2e−δ2pω
2/2

)
ĥnp(ω). (2.9)

Taking an inverse Fourier transform of Eq. (2.8) gives that

hnp(s) = tw(s)− 1
2δ

2
p tw

′′(s) + (1− 1
2δ

2
p

d2

ds2 )(fnp(s)− tw(s)) + q(s) (2.10)

where q(s) is the inverse Fourier Transform of q̂(ω). Integrating from −∞ to s
gives

Hnp(s) = TW (s)− 1

2
δ2pTW

′′(s) +
[
1− 1

2
δ2p

d2

ds2

]
(Fnp(s)− TW (s)) +Q(s),

(2.11)
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where

Q(s) = Hnp(s)−
∫ ∞

−∞
Hnp(s+ δpz)

e−z2/2

√
2π

dz +
1

2
δ2p

∫ ∞

−∞
H ′′

np(s+ δpz)
e−z2/2

√
2π

dz

(2.12)

Since δ2p = O(p−2/3), Eq. (2.1), implies that the term δ2p
d2

ds2 [Fnp(s)−TW (s)] =

o(p−2/3) and is thus negligible w.r.t. the term δ2pTW
′′(s) in Eq. (2.11). To

conclude the proof we thus need to show that the last term Q(s) is also o(δ2p) =

o(p−2/3). To this end, we expand Hnp(s + δpz), as well as H ′′
np(s + δpz) in a

Taylor series,

Hnp(s+ δpz) = Hnp(s) + δpzH
′
np(s) +

1

2
δ2pz

2H ′′
np(s) +

1

6
δ3pz

3H ′′′
np(s+ δpθ1(z))

H ′′
np(s+ δpz) = H ′′

np(s) + δpzH
′′′
np(s+ δpθ2(z))

Inserting these expansions into Eq. (2.12) gives that

Q(s) = δ3p

∫ ∞

−∞

[
1

6
z3H ′′′

np(s+ δpθ1(z)) +
1

2
zH ′′′

np(s+ δpθ2(z))

]
e−z2/2

√
2π

dz

Finally, using assumption (i) that |H ′′′
np(s)| is bounded it follows that |Q(s)| ≤

Cδ3p = o(p−2/3).

Remarks: i) Eq. (2.6) shows that the density of the ratio U is approximately a
deconvolution of the density of the largest eigenvalue `1 with a Gaussian. Since
deconvolution is in general an ill-conditioned inverse operation, some a-priori
regularity conditions, such as the condition that |H ′′

np(s)| ≤ C must be imposed
on the solution to prove the Theorem.
ii) The deconvolution Eq. (2.6), or its equivalent in the Fourier space, Eq. (2.7),
may also be used to numerically compute the distribution Hnp(s), given an ac-

curate approximation of Fnp(s), simply by computing f̂np(ω) and performing
an inverse Fourier transform of Eq. (2.7). Rather than using the TW approxi-
mation, the exact distribution Fnp may be accurately evaluated numerically for
finite values of p, n, via its Fredholm determinant representation by the methods
developed in [4], for example.
iii) Note that Eq. (2.2) implies that to leading order in p,

E[U ] = E[`1]

where the latter may be approximated by µn,p + aβσn,p, with aβ the mean of a
TW-distributed random variable. The reason is that by definition

E[U ] = µnp + σnp

∫ ∞

−∞
Pr

[
U−µnp

σnp
> s

]
ds

and the integral of the correction term containing TW ′′(s) vanishes, as TW ′(s)
vanishes as s → ±∞.
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β = 1
p = 10
n = 100

s(α) Pr
[
`1−µ
σ > s(α)

]
Pr

[
U−µ
σ > s

]
s̃(α) Pr

[
U−µ
σ > s̃(α)

]

α = 10% 0.4501 0.0969 0.0600 0.1624 0.0937
α = 5% 0.9793 0.0479 0.0243 0.6015 0.0470
α = 1% 2.023 0.0097 0.0031 1.4303 0.0104

Table 1: Results of 5 · 106 simulations for real valued data, β = 1.

iv) A final remark on universality and non-Gaussianity is in place: As proven in
[17, 19], under certain regularity conditions on the underlying distribution, the
largest eigenvalue of a sample covariance matrix of non-Gaussian multivariate
random variables asymptotically also follows a TW distribution. However, for
a finite and relatively small number of dimensions p considered here, the devia-
tions in the distribution of `1 from the TW distribution may be quite significant.
Hence, Eq. (1.3) itself may potentially be not very accurate for tail probabil-
ities, and may be much larger than the difference between the distribution of
the two random variables `1 and U .

3. Simulation Results

In tables 1 and 2 and in figure 2 we present simulation results for the empiri-

cal tail probabilities Pr
[
`1−µ
σ > s(α)

]
and Pr

[
U−µ
σ > s(α)

]
, where TW (s(α)) =

1− α, for various values of α, p, n.
We compare the empirical probability of U to the theoretical formula in Eq.

(2.3). In addition, we use Eq. (2.3) to find a modified threshold s̃(α), such that
1 −Hnp(s̃(α)) = α. As seen in the simulations and predicted by our analysis,
the TW distribution is a relatively poor approximation for tail probabilities of
the random variable U , whereas Eq. (2.3) is far more accurate.

All simulations were performed in Matlab. The TW distribution and density
were computed numerically using the RMLab package by Dieng1. The derivative
of the TW density, tw′(s), was computed numerically via a standard central
differencing scheme with ∆s = 10−3. This provided sufficient accuracy for our
purposes. We remark that if needed, more accurate numerical methods for
evaluating the TW distribution and its derivatives are available, see e.g. [4].
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β = 2
p = 10
n = 100

s(α) Pr
[
`1−µnp

σnp
> s(α)

]
Pr

[
U−µnp

σnp
> s

]
s̃(α) Pr

[
U−µnp

σnp
> s̃(α)

]

α = 10% -0.5969 0.0969 0.0602 -0.8042 0.0966
α = 5% -0.2325 0.0474 0.0237 -0.5087 0.0486
α = 1% 0.4776 0.0092 0.0028 0.0287 0.0113

Table 2: Results of 5 · 106 simulations for complex valued data, β = 2.
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Figure 2: Comparison of empirical tail probabilities for the ratio U vs. the-
oretical approximation, Eq. (2.3), with t(α) = µnp + s(α)σnp and t̃(α) =
µnp + s̃(α)σnp.
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Appendix A. Proof of Lemma

We provide an outline of the proof of the Lemma. For simplicity, we prove
only convergence of the density of the largest eigenvalue `1 to the TW density.
The proof for convergence of its derivative is similar. Furthermore, we present
the proof only for the complex case β = 2.

Our analysis follows the notation and proof of convergence of Eq. (1.3)
as described in [1]. Let X be an n × p matrix with i.i.d. complex Gaussian
N(0, 1) entries, and let W = 1/nX∗X be the sample covariance matrix (a
scaled Wishart matrix). Let I = [s, s′] be a finite interval. The starting point
of the analysis is the Fredholm determinant representation

Fnp(I) = Pr[no eigenvalues of W in µnp + σnpI] = det(I −KpχI) (A.1)

where χI is the indicator function for the interval I, and Kp is an operator with
corresponding kernel

Kp(x, y) =

p∑

j=1

φj(x)φj(y)

where φj are scaled Laguerre polynomials. Eq. (A.1) can also be written as

Pr[no eigenvalues of W in µn,p + σn,pI] = ∆I(Kp) =

p∑

k=1

(−1)k

k!
∆k,I(Kp)

(A.2)
where

∆k,I(K) =

∫

I

· · ·
∫

I

k

det
i,j=1

K(xi, xj)

k∏

i=1

dxi

Using the asymptotics of the Laguerre polynomials, it is possible to show that
[9]

lim
n,p→∞

Pr[no eigenvalues of W in [s, s′]] = det(I − K̄χ[s,s′]) = ∆I(K̄)

where K̄ is the limiting operator corresponding to the Airy kernel, and further
one may take the limit s′ → ∞, thereby proving Eq. (1.3).

We now consider the density of the largest eigenvalue `1. Taking the deriva-
tive with respect to s in Eq. (A.2) gives

∂

∂s
∆[s,s′](Kp) =

p∑

j=1

(−1)k

k!
k

∫ s′

s

· · ·
∫ s′

s

k

det
i,j=1

Kp (xi, xj)
∣∣∣
x1=s

k∏

i=2

dxi

We note that each of the terms in the sum above is known as a Fredholm
adjugant, see [1].

We now claim that in the joint limit as both p, n → ∞, the finite kernel Kp

can be replaced by the limiting kernel K̄. To this end, we use Lemma 3.4.2 from
[1]: For any two kernels, F (x, y) and G(x, y),
∣∣∣∣

k

det
i,j=1

F (xi, xj)−
k

det
i,j=1

G(xi, xj)

∣∣∣∣ ≤ k1+k/2‖F −G‖∞ max(‖F‖∞, ‖G‖∞)k−1
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This lemma implies that

∣∣∣∣
∂

∂s
∆k,[s,s′](F )− ∂

∂s
∆k,[s,s′](G)

∣∣∣∣ ≤ k1+k/2 max(‖F‖∞, ‖G‖∞)k−1|s′ − s|k−1

It also implies that for the limiting kernel K̄, the order of differentiation and
summation in ∂

∂s∆[s,s′](K̄) can be switched,

∂

∂s
∆[s,s′](K̄) =

∑

k

(−1)k

k!

∂

∂s
∆k,[s,s′](K̄)

as the sum of differentiated terms converges uniformly in s. Hence,

∣∣∣∣
∂

∂s
∆[s,s′](Kp)− ∂

∂s
∆[s,s′](K̄)

∣∣∣∣ ≤
( ∞∑

k=1

k1+k/2

(k − 1)!
max(‖Kp‖, ‖K̄‖)k−1|s′ − s|k−1

)
×

‖Kp − K̄‖∞ (A.3)

Note that the sum is convergent. Hence, if ‖Kp − K̄‖∞ → 0 then the difference
above converges to zero. Indeed, as shown in [9], there is uniform convergence
of the kernel Kp to the limiting Airy kernel K̄ on compact sets. Furthermore,
the bounds

|Kp(x, y)| ≤ Ce−(x+y), |K̄(x, y)| ≤ Ce−(x+y)

for all x, y > s imply that one can take the limit s′ → ∞. This yields,

∣∣∣∣
d

ds
Fnp(s)− TW ′

2(s)

∣∣∣∣ → 0.

¤.
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