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Abstract

Over the past decade, single image Super-Resolution

(SR) research has focused on developing sophisticated im-

age priors, leading to significant advances. Estimating and

incorporating the blur model, that relates the high-res and

low-res images, has received much less attention, however.

In particular, the reconstruction constraint, namely that the

blurred and downsampled high-res output should approxi-

mately equal the low-res input image, has been either ig-

nored or applied with default fixed blur models. In this

work, we examine the relative importance of the image prior

and the reconstruction constraint. First, we show that an

accurate reconstruction constraint combined with a simple

gradient regularization achieves SR results almost as good

as those of state-of-the-art algorithms with sophisticated

image priors. Second, we study both empirically and the-

oretically the sensitivity of SR algorithms to the blur model

assumed in the reconstruction constraint. We find that an

accurate blur model is more important than a sophisticated

image prior. Finally, using real camera data, we demon-

strate that the default blur models of various SR algorithms

may differ from the camera blur, typically leading to over-

smoothed results. Our findings highlight the importance

of accurately estimating camera blur in reconstructing raw

low- res images acquired by an actual camera.

1. Introduction

Single image Super-Resolution (SR) is the problem of

estimating a High-Resolution (HR) image x from a single

input Low-Resolution (LR) image y. Mathematically, the

relation between these two images is typically modeled (in

vectorized form) as a linear transformation

y = Ax+ n , (1)

where n denotes imaging noise and the matrix A encodes

the processes of blurring and downsampling. Recovering x
from y involves two non-trivial challenges. First, since the

matrix A has far fewer rows than columns, the SR problem

is under-constrained, with an infinite number of solutions.

Thus, to recover a visually pleasing HR image, SR algo-

rithms typically employ some image prior. The second chal-

lenge is to enforce the reconstruction constraint Ax ≈ y,

which implies that up to imaging noise, the recovered HR

image should be consistent with the LR input. This con-

straint requires knowledge of the matrix A, which, in turn,

relies on an accurate estimation of the camera’s optical blur.

Developing sophisticated image priors has been the fo-

cus of much single image SR research in the past decade,

with many significant successes [7, 20, 23, 8, 6, 9, 21, 27,

25, 5, 19, 22, 1, 8, 13]. In contrast, the reconstruction con-

straint has received relatively little attention. Some algo-

rithms do not enforce Ax ≈ y at all. Those that do of-

ten assume a predefined blur kernel. Examples include an-

tialiasing with bicubic interpolation (Matlab’s default im-

resize function) [8, 27], Gaussian blur [3], Gaussian blur

followed by bicubic interpolation [7], simple pixel averag-

ing [5], and sampling without any pre-smoothing [15]. A

critical concern in applying such SR algorithms to real im-

ages is how well these synthetic forward models approxi-

mate real camera blur. For example, the bicubic interpo-

lation used by many algorithms is generally not physically

feasible, as it involves negative weights. Furthermore, in

most SR algorithms, the blur kernel is not an input parame-

ter: it is coupled to various internal components which are

not easily adjusted. A few single-image SR works which do

attempt to estimate or take the unknown kernel into account

include [3, 24, 17, 10, 11, 12].

This state of affairs naturally raises the following ques-

tions, which are the focus of our paper: i) what is the effect

of an incorrect blur model on SR algorithms? ii) what is

the importance of the reconstruction constraint compared to

that of the image prior?

We make several contributions towards answering these

questions. First, we argue that the reconstruction constraint

is at least as important as the image prior. In particular, we

demonstrate that combining a simple prior, an L2 penalty on

image gradients, with an accurate reconstruction constraint,

provides SR results almost as good as those produced by

state-of-the-art SR algorithms with sophisticated priors.

Second, we empirically examine the sensitivity of sev-

eral SR algorithms to the accuracy of the estimated blur ker-
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nel. We show that incorporating an accurate estimate into

these algorithms improves their output, by allowing them

to take full advantage of the reconstruction constraint. In

contrast, when the SR algorithms utilize an inaccurate blur

kernel, the resulting images are either too blurred or contain

over-sharpening artifacts. These results are consistent with

results from previous work on performance bounds in multi-

frame SR [2, 18]. For the L2 prior case, we also present a

theoretical analysis explaining these phenomena, via a fre-

quency analysis of the kernel mismatch.

Finally, we demonstrate the importance of accurately es-

timating camera blur when applying SR to raw images cap-

tured with a real camera. We show that the default kernels

used by many algorithms are not sufficiently close to the

camera blur, and produce over-smoothed results. Moreover,

we show that incorporating a more accurate estimate of the

camera blur improves the results. Our findings highlight the

importance of modeling and estimating the camera blur, a

topic which has not received much attention in the context

of single-image SR.

2. Problem Setup

Let x be a HR image of size n1 × n2 pixels, and let y be

its corresponding LR image of size (n1/s)×(n2/s) , where

s > 1 is the downsampling factor. The relation between x
and y is typically expressed as

y = k ∗ x ↓s +n (2)

where k denotes a blur kernel (low pass filter), ↓s denotes

subsampling by factor s, and n is imaging noise. Further

details of this model can be found in [2]. In vectorized form,

we can express the above relation as a linear transformation

y = Ax+ n (3)

where A is a matrix of size (n1 ·n2/s
2)× (n1 ·n2), y, n are

(n1 · n2/s
2)× 1 vectors and x is (n1 · n2)× 1.

The SR problem, recovering x from y, poses two chal-

lenges. First, we need to knowA, that is, to have an accurate

estimate of the blur k. Second, the linear system in Eq. (3)

is underconstrained. To recover a visually plausible x, it is

thus common practice to use some natural image prior.

Perhaps the simplest prior is a penalty on the image gra-

dients. It leads to the following optimization problem, sim-

ilar to total variation [1],

x̂ = argmin
x

‖Ax− y‖2 + λ
∑

i

(ρ(ghi
(x)) + ρ(gvi(x))) (4)

where ghi
(x), gvi(x) denote horizontal and vertical deriva-

tives at the i-th pixel, and ρ is a penalty function. For

example, ρ(z) = |z|2 gives a Gaussian (L2) prior, while

ρ(z) = |z|α for α ≤ 1 yields a sparse prior.

Most modern SR algorithms are not expressed explicitly

as the minimizer of a functional as in Eq. (4), for example

when their prior is non-parametric. Moreover, some meth-

ods are patch-based and either do not enforce the global re-

construction constraint Ax ≈ y at all, or apply it only in a

separate post-processing step, with a default blur kernel.

In this paper we study, both qualitatively and quantita-

tively, the importance of an accurate blur model and the

corresponding reconstruction constraint in SR algorithms.

We start with an empirical evaluation in Sec. 3 and provide

a theoretical analysis in Sec. 4. Additional results to the

ones presented in the paper, and a supplementary file, are

available online at our projct page [4].

3. Empirical Evaluation of SR Algorithms

Evaluation Metric: As our goal is to evaluate various as-

pects of SR, it is important to distinguish between two dif-

ferent SR problems: i) the computer graphics problem of

image hallucination – the addition of visually plausible HR

details, even if these are not actually present; and ii) the

task of image reconstruction – the recovery of accurate data

for some application, such as seismic measurements, or car

license plates captured by a security camera.

Since visual plausibility is somewhat subjective, we fo-

cus on the reconstruction task, which can be evaluated nu-

merically against ground truth. We adopt two measures,

PSNR and SSIM. While the correlation between numerical

and visual measures of success is not perfect, the former

method is useful to objectively compare various SR algo-

rithms and their variants.

To numerically evaluate an SR algorithm, we calculate

its Mean Squared Error (MSE) over all test image pixels,

MSE =
1

N

∑

HR images x

∑

i

|x0(i)− x(i)|2 , (5)

where x(i), x0(i) are the i-th pixel in the HR image and

in the algorithm output, respectively. Scaling image inten-

sity to be in the [0, 1] range, we then compute PSNR =
−10 log10 MSE, and SSIM as described in [26]. To avoid

boundary artifacts, for both measures we discarded all pix-

els at distance up to 60 pixels from the image boundary.

Experimental Setup: We performed experiments on im-

ages synthetically downsampled with a known kernel, as

well as on raw LR images acquired by a real camera.

First, we compared several SR algorithms on the same

set of HR/LR image pairs, using 50 test images from the

Berkeley Segmentation Dataset [16] (BSDS). Each LR im-

age was synthesized from a corresponding HR image, thus

providing a ground truth solution. The algorithms we con-

sidered are: Freeman et al. [7], Kim&Kwon [13], and Yang

et al. [27] whose implementations are available online, as

well as Glasner et al. [8], whose code was kindly provided

by the authors. In addition, we also tested the simple gradi-

ent regularization approach of Eq. (4) with both a Gaussian

http://www.wisdom.weizmann.ac.il/~levina/papers/supres


η = 10−2 kA = camera kA = b kA = b ∗ g1 kA = b ∗ g2 original

kT = camera 26.774 / 0.787 26.115 / 0.779 26.739 / 0.785 23.312 / 0.702 25.956 / 0.780

kT = b 26.130 / 0.805 27.481 / 0.835 25.570 / 0.790 20.664 / 0.646 27.329 / 0.837

kT = b ∗ g1 26.111 / 0.759 25.549 / 0.751 26.294 / 0.764 23.361 / 0.698 25.494 / 0.756

kT = b ∗ g2 23.281 / 0.594 22.991 / 0.597 23.272 / 0.591 24.079 / 0.642 23.031 / 0.609

η = 10−4 kA = camera kA = b kA = b ∗ g1 kA = b ∗ g2 original

kT = camera 27.675 / 0.871 26.447 / 0.824 26.136 / 0.836 14.232 / 0.390 26.138 / 0.807

kT = b 25.411 / 0.846 27.902 / 0.877 21.186 / 0.709 11.599 / 0.281 27.578 / 0.863

kT = b ∗ g1 27.000 / 0.845 25.815 / 0.793 27.675 / 0.864 15.904 / 0.462 25.654 / 0.782

kT = b ∗ g2 23.586 / 0.663 23.101 / 0.633 23.600 / 0.662 25.529 / 0.751 23.119 / 0.634

Table 1. Kernel sensitivity of Glasner et al [8]. Rows indicate the kernel with which the image was downsampled. Columns correspond

to the kernel the algorithm assumes. The rightmost column presents results of the unmodified algorithm with its default bi-cubic kernel.

Noise level η = 0.01 on the top and η = 0.0001 on the bottom. In each cell the first number is a PSNR value and the second is SSIM.

❍
❍
❍
❍
❍

kT

kA

Figure 1. Sensitivity to kernel mismatch. On the diagonal, the

algorithm uses kA = kT . On the upper right off-diagonal im-

ages, the assumed kernel is smoother than the true one, leading to

over sharpening artifacts. For the lower left, the assumed kernel is

sharper than the correct one, leading to over-smoothed results.

and a sparse prior. The sparse prior was optimized using

the iterative re-weighted least squares algorithm [14], with

parameters chosen using a separate training set.

We denote by kT the true kernel used to synthesize a

test LR image and by kA the kernel assumed by a SR algo-

rithm. To test the role of different kernels we prepared 4 sets

of test images, each set blurred synthetically with a differ-

ent kernel kT : 1) antialiased bicubic interpolation kT = b,
(Matlab’s imresize); 2-3) Gaussian smoothing followed by

bicubic interpolation, denoted as kT = b ∗ g1, kT = b ∗ g2,

where gℓ is a Gaussian with std of ℓ pixels; 4) a real cam-

era blur kernel, estimated by capturing a known calibration

target with a Canon 5D Mark II camera, shown in Fig. 2.

We added to the test images Gaussian zero mean i.i.d. noise

with variance η2. We tested both realistic and nearly noise-

free images with η = 0.01 and η = 0.0001.
Our experiments study what happens when the two ker-

nels kT , kA mismatch. Furthermore, if an algorithm is given

an exact estimate of the kernel, can it be modified to take

this into account and what are the benefits of doing so?

The algorithms of Yang, Kim, and Glasner use as de-

fault the bicubic kernel, kA = b, whereas Freeman uses

kA = b ∗ g1. Unfortunately, these algorithms do not accept

a kernel as one of their input parameters and adjusting them

to use a different kernel is not straightforward. For exam-

ple, Glasner et al. upsample the image in gradual steps, and

defining a kernel for each intermediate step is non-trivial.

As a simple modification, we introduced two kernel-

dependent changes to the algorithms. First, (if applicable)

the LR/HR training patch pairs were prepared with a desired

blur. Second, following [27], we introduced a reconstruc-

tion constraint with the desired kernel in post-processing.

To this end, we found the image x1 which minimizes

x
1 = argmin

x
λ‖Ax− y‖2 + ‖x− x

0‖2 (6)

where x0 is the original algorithm output1. The weight-

ing factor λ was selected to minimize the empirical error

on a separate set of training images. Eq. (6) is not needed

for the simple regularization algorithms which already op-

timize the reconstruction constraint in Eq. (4).

3.1. Evaluation Results

Kernel sensitivity: Table 1 reports numerical results,

with the method of Glasner et al., on a set of 4 × 5 SR ex-

periments. SR was applied to the 4 test sets (prepared with

different kernels kT ), each time adjusting the algorithm to

use a different kernel kA in reconstruction. The fifth col-

umn shows the original authors’ results, unmodified, using

the default bicubic kernel.

1The algorithms of Yang et al. and of Glasner et al. already include a

back-projection process which minimizes a constraint similar to Eq. (6).

We replaced their back-projection procedures with Eq. (6), where x
0 is

their output before the final back-projection stage. Note that Eq. (6) can

modify an algorithm’s results, even when applied with its default kernel.
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Figure 2. Estimated camera blur vs. bicubic kernel. Despite the seemingly similar shape, the kernels’ frequency content is different.

The camera blur attenuates high frequencies more than the bicubic one. This highlights the importance of accurate kernel estimation.
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Figure 3. Results on real images: The default implementation of SR algorithms (assuming a bicubic kernel) produces over-smooth results.

Sharpness is improved by adjusting the algorithm to incorporate the camera kernel. Images embedded at 96PPI.

This table leads us to several observations. First, incor-

porating the reconstruction constraint with the true kernel

improves accuracy. One can see this by comparing the fifth

column (the original algorithm with its default kernel), with

the diagonal entries, for which the reconstruction constraint

uses kA = kT . Similar trends hold for all other algorithms,

as shown in [4]. Moreover, SR using an incorrect kernel

drastically increases reconstruction error. The diagonal en-

tries in Table 1, in terms of both PSNR and SSIM, are larger

than the off-diagonal ones. In particular, when the assumed

kernel is smoother than the true kernel, the recovered im-

age is blurred. On the other hand, when the assumed kernel

is sharper than the true kernel, high frequency ringing arti-

facts appear, as illustrated in Fig. 1. Though the first type

of error may be less visually disturbing than the second, if

we are aiming to increase resolution, over-smoothing con-

stitutes an equally undesirable effect. We provide a theoret-

ical analysis of these observations in Sec. 4.

Real images: Given the sensitivity of SR algorithms to

the assumed blur kernel, it is interesting to assess their per-

formance on raw LR images acquired by an actual camera.

To this end, we captured images with a Canon 5D Mark II

camera, and estimated its blur using a known calibration tar-

get (calibration details can be found in [4]). Fig. 2 compares

our estimated camera blur with the bicubic kernel. Despite

their seemingly similar shapes in the primal domain, their

frequency content is quite different. As seen in the Fourier

domain, the camera kernel attenuates high frequencies more

than the bicubic one.

Our theoretical analysis (Sec. 4) predicts that using the

sharper bicubic kernel will result in over-smoothed SR im-

ages. Fig. 3 indeed demonstrates this on actual camera im-

ages (for additional images, see [4]). The default imple-

mentation of various algorithms that assume a bicubic ker-

nel indeed yields over-smoothed results, while adjusting the

algorithms to incorporate the camera kernel sharpens them.

This highlights the sensitivity of SR algorithms to correctly

modeling the kernel. Such modeling is a promising venue

for future improvements, if SR is to be applied to real cam-

era data.

Image prior vs. reconstruction constraint: Next, we

consider the relative importance of the assumed image prior

vs. the reconstruction constraint, with the correct kernel. To

this end, Table 2 compares all algorithms2 and their mod-

ified versions, which incorporate the reconstruction con-

straint, on two test sets - blurred with kT = b and with

kT = b ∗ g1. As rows 2 and 4 show, using simple gradient

2For a fair comparison, where applicable, all algorithms were trained

on the same separate training dataset.
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Figure 4. Image prior vs. reconstruction constraint. The left columns show SR results of various algorithms on LR images downsampled

with kT = b. Columns on the right show results on images downsampled with kT = b ∗ g1. All LR images were corrupted by noise at

level η = 0.0001. One can see the of a more sophisticated prior by comparing rows 2-3 to rows 4-6 in the left columns. Comparing the

same rows in the right columns shows the effect of using the correct blur kernel instead of the default one. kA = kT images are marked in

blue, kA 6= kT in red. The effect of using the exact blur kernel is more dominant than that of the prior. Images embedded at 96PPI.

regularization produces results which are roughly compara-

ble to sophisticated SR algorithms, both in terms of PSNR

and SSIM values. The first 2 columns of Fig. 4 show repre-

sentative visual results, when all algorithms use the true ker-

nel. While visual comparison is somewhat subjective and

one may argue in favor of one algorithm or the other, over-

all the results of all algorithms (except the baseline bicubic

interpolation) are not significantly different.

Second, the influence of different image priors is much

smaller than the effect of kernel mismatch. This can be seen

from Table 2. Contrast the changes along a row (0.1dB-

0.5dB), which correspond to different image priors, to the

difference of almost 2dB between the third and fourth rows,

which capture the effect of using a correct kernel instead of

the default bicubic one. Visually, this is seen by contrasting

the changes along the rows of Fig. 4. In the two left columns

all algorithms use the true kernel and hence produce com-

parable results. In contrast, in the two right columns, only

the sparse and L2 algorithms use the correct kernel, others

use their default one. This kernel mismatch leads to infe-

rior results. This emphasizes that an accurate reconstruction

constraint can be more important than a sophisticated prior.

The fact that simple regularization give results compa-

rable to those of sophisticated priors seems surprising at

first sight. One possible explanation relates back to the

reconstruction constraint. Example-based algorithms pro-

cess the image locally using small patches. While each

LR/HR patch pair satisfies the reconstruction constraint,

this property is not retained when the patches are fused into

a global solution. Since this is not a trivial task most algo-

rithms only impose the global reconstruction constraint in

post-processing. In contrast, simple gradient regularization

methods explicitly optimize a functional which jointly ac-

counts for the global reconstruction constraint and the prior.



L2 Sparse Freeman [7] Kim [13] Yang [27] Glasner [8]

kT = b, original 25.16 / 0.77 27.83 / 0.87 27.45 / 0.87 27.57 / 0.86

kT = b, RC with kA = b 27.47 / 0.87 27.68 / 0.87 26.78 / 0.84 27.90 / 0.87 27.39 / 0.86 27.90 / 0.88

kT = b ∗ g1, original 24.81 / 0.73 25.82 / 0.79 25.73 / 0.79 25.65 / 0.78

kT = b ∗ g1, RC with kA = b ∗ g1 27.50 / 0.86 27.77 / 0.87 27.03 / 0.84 27.68 / 0.86 27.56 / 0.86 27.67 / 0.86

Table 2. Kernel accuracy is more important than choice of image prior. The original implementation of each algorithm with its default

kernel is compared with a modified one which accepts a kernel as a parameter, when applicable learns a dictionary with it, and also enforces

the reconstruction constraint (RC). In the first two rows the image was downsampled with kT = b, in the bottom rows with kT = b∗g1. In

each cell the first number is a PSNR value and the second is SSIM. Most algorithms use kA = b as default, thus in the 3rd row algorithms

process images with kA 6= kT and in the 4th row adjust to the correct kernel kA = kT . The difference between the 3rd and 4th rows is

much larger than the gap between different algorithms on the same row.

4. Theoretical Analysis

To gain further insight into the detrimental effect of ker-

nel mismatch, let us examine SR with a simple L2 gradient

regularization (Gaussian prior) as presented in Eq. (4). For

notational simplicity we consider SR of 1D signals with a

fixed upsampling factor s = 2.

We first rewrite the problem in the frequency domain.

Neglecting image boundaries, convolution k ∗ x translates

to multiplication, and sampling translates to aliasing of the

HR signal. Denoting Fourier transforms by capital letters,

we can express Eq. (2) as

Yω = KT,ωXω +KT,ω′Xω′ +Nω , (7)

where the discrete HR signal has a frequency range of

[0,Ω], the LR one [0,Ω/2], and ω′ = ω + Ω/2 denotes

the aliased replica of the frequency ω.

Recall that if KT is an ideal low pass filter (KT,ω′ = 0
for all ω′ > Ω/2), the second term in Eq. (7) disappears.

Otherwise, at all frequencies where |KT,ω′ | > 0, the LR

observation Yω includes aliasing.

SR algorithms that assume a kernel KA in fact assume

that Y and X are related via

Yω = KA,ωXω +KA,ω′Xω′ +Nω . (8)

A standard approach to reconstructing the signal X from

the measurements in Eq. (7) is via MAP estimation. The

following lemma characterizes the resulting estimator and

the relation between the estimated signal X̂ and the true

signal X in case of kernel mismatch (KA 6= KT ).

Lemma 1 Let Y be given by Eq. (7), with i.i.d. zero mean

Gaussian noise of variance η2. The MAP SR estimate X̂ ,

assuming a Gaussian prior on X and a kernel KA as in,

Eq. (8), can be written as

(

X̂ω

X̂ω′

)

= HA,ω







KT,ω

KA,ω
Xω

KT,ω′

KA,ω′

Xω′

Nω






, (9)

where

HA,ω =
1

σ2
ω |KA,ω|2 + σ2

ω′ |KA,ω′|2 + η2
· (10)

[

σ2
ω |KA,ω|

2 σ2
ωK

∗

A,ωKA,ω′ σ2
ωK

∗

A,ω

σ2

ω′K∗

A,ω′KA,ω σ2

ω′ |KA,ω′|2 σ2

ω′K∗

A,ω′

]

and σ2
w is inversely related to Gh, the Fourier transform of

the derivative operator gh, via σ2
w = 1/|Gh,ω|

2.

Proof: Up to constants, the log-likelihood with KA is

− logP (Y |X)=
1

2η2

Ω/2
∑

w=0

|KA,ωXω +KA,ω′Xω′ −Yω|
2
. (11)

Next, the assumed gradient prior in Eq. (4) can be written

as a function of the convolution of the signal with derivative

filters. For a 1-D signal with only horizontal gradients,

− logP (x) = ‖gh ∗ x‖2 + const. (12)

From Parseval’s theorem, ‖gh ∗x‖
2 =

∑

ω |Gh,ω ·Xω|
2. In

the frequency domain, the prior thus becomes diagonal:

− logP (X) =
Ω
∑

ω=0

|Xω |
2

2σ2
ω

+ const, σ
−2

ω = |Gh,ω |
2
. (13)

In other words, an L2 prior on image gradients is a diago-

nal Gaussian prior in the Fourier domain, whose variance at

each frequencyω is the power of the derivative filter. Hence,

σ2
ω decays to zero as ω increases, in agreement with well-

studied properties of natural image statistics.

Combining Eqs. (11) and (13), The MAP estimate is

X̂ = argmax logP (X |Y )

= argmax(logP (Y |X) + logP (X))

= argmin

Ω/2
∑

w=0

|KωXω +Kω′Xω′ − Yω|
2

η2

+
|Xω|

2

σ2
ω

+
|Xω′ |2

σ2

ω′

. (14)

A short calculation shows that the solution X̂ is given by
(

X̂ω

X̂ω′

)

= FωYω, (15)



where Fω is a generalized Wiener filter

Fω=





(

K∗

A,ω

K∗

A,ω′

)

(KA,ω,KA,ω′)+





η2

σ2
ω

0

0 η2

σ2

ω′









−1
(

K∗

A,ω

K∗

A,ω′

)

=
1

σ2
ω |KA,ω|2 + σ2

ω′ |KA,ω′|2 + η2

(

σ2
ωK

∗

A,ω

σ2

ω′K∗

A,ω′

)

.

When KT=KA, combining the above with Eq. (7) yields

Eq. (9). The case KT 6=KA follows by writing Eq. (7) as:

Yω = KA,ω

(

KT,ω

KA,ω
Xω

)

+KA,ω′

(

KT,ω′

KA,ω′

Xω′

)

+Nω . (16)

We now study the implications of this lemma. First,

note that when KT = KA, the recovered X̂ω, X̂ω′ are

shrunk versions of the input Yw. For instance, consider

an ideal low pass filter with KA,ω′ = 0, with noise-free

data, η = 0. We find that at the high frequency ω′, which

did not contribute to Yω (since KA,ω′ = 0), Xω′ = 0.

At the low frequency, meanwhile, X̂ω is exactly the true

value, X̂ω = Yω/KA,ω = Xω. In the presence of noise

with variance η2, at frequencies where σ2
ω ≪ η2, the ele-

ments of Fω are close to zero. This makes sense because

at these frequencies, the measurement Yω is dominated by

noise, and the actual signal Xω cannot be accurately recov-

ered. We should instead estimate it as some quantity signif-

icantly shrunk towards zero. If the filter includes aliasing,

i.e. |KA,ω′ | > 0, the recovered signal includes aliasing as

well. That is, some of the high frequency component Xω′

contributes to the low frequency reconstruction at X̂ω, and

visa versa.

Kernel Mismatch: Next, we study the implication of the

lemma when the signal was blurred withKT while the MAP

estimator assumed a different kernel KA 6= KT . According

to Eq. (9), HA now acts on the signal KT,ω/KA,ω · Xω

instead of on the true Xω. At high frequencies, where signal

variance is lower than noise level, HA,ω ≈ 0, and kernel

mismatch has little effect on the output.

In contrast, at other frequencies, an incorrect kernel may

have strong detrimental effects. As in deconvolution, if the

true KT blurs more than the assumed KA, then typically

|KT,ω| < |KA,ω|, and thus Xω is more attenuated. If KT

is sharper than KA, |KT,ω| > |KA,ω|, and Xω is amplified.

In the first case KT,ω/KA,ω acts as a blurring filter and in

the second as a sharpening filter (see Fig. 1).

As an illustration of this effect, Fig. 5 simulates two

Gaussian filters. If

KT,ω = exp

(

−
1

2
βT |ω|

2

)

, KA,ω = exp

(

−
1

2
βA|ω|

2

)

(17)

then
KT,ω

KA,ω
= exp

(

(βT − βA)|ω|
2
)

. (18)

Blur Sharpening

Figure 5. Effect of an inaccurate kernel. βT > βA yields a Gaus-

sian blur filter (left); βT < βA gives a sharpening filter (right).

For βT > βA we obtain a Gaussian blur filter, and for

βT < βA a sharpening filter (the exponent is positive).

Assuming for simplicity KA,ω′ = 0, the red curve of

Fig. 5 demonstrates the expected power scaling of each fil-

ter, namely E[|X̂ω|
2/|Xω|

2]. For βT > βA the amplitude is

decreased (red curve below 1) while for the βT < βA case

the amplitude is magnified at the middle band of frequen-

cies. High frequencies whose expected power is below the

noise variance are not amplified by the reconstruction filter.

The off-diagonal panels in Fig. 1 illustrate these phe-

nomena. An assumed wider kernel results in ringing, and

a narrow kernel in over-blurring. As mentioned earlier, for

practical SR, both effects are undesirable.

Kernel Uncertainty: In practice, SR algorithms may be

applied to real images whose blur kernel is not precisely

known. One approach, taken by several SR algorithms,

is to ignore the true blur kernel, and utilize some default,

such as bicubic. As noted previously, when the assumed

default kernel is narrower than the true kernel, as occurs

with our actual camera (see Fig. 2), this results in somewhat

smoother SR images, but without ringing artifacts. Hence,

the resulting images are visually acceptable. A second ap-

proach taken by various SR algorithms to cope with impre-

cise knowledge of the true kernel, is to give more weight to

the image prior and reduce the weight of the reconstruction

constraint (e.g. smaller λ in Eq. (6)). This makes such al-

gorithms less sensitive to kernel mismatch, but also reduces

the quality of their results.

We now derive a principled estimation strategy to take

into account kernel uncertainty. As expected, this comes at

the price of reduced accuracy.

Let us denote by q(K) the density of possible kernels

K . We denote by µK ,ΣK the 2 × 1 and 2 × 2 matrices of

mean and covariance of (Kω,Kω′) according to the distri-

bution q(K). We see below that these first and second order

moments serve as sufficient statistics.

Extending Eq. (14) we seek X̂ minimizing
∫

q(K)
∑

w

|KωXω +Kω′Xω′ − Yω|
2

η2
+
|Xω |

2

σ2
ω

+
|Xω′ |2

σ2

ω′

dK .

(19)



A short calculation shows that the minimum is obtained by

(

X̂ω

X̂ω′

)

=



µ
K(µK)T + ΣK +





η2

σ2
ω

0

0 η2

σ2

ω′









−1

(µK)TYω .

(20)

Comparing the above formula to Eq. (16), if q(K) had

no uncertainty, then µK = (Kω,Kω′) and ΣK is the zero

matrix, and Eq. (20) reduces to the Wiener filter of Eq. (16).

The effect of kernel uncertainty is similar to that of noise:

the kernel covariance ΣK adds to the noise covariance part

in Eq. (20), and the resulting estimator has a larger shrink-

age factor. Hence the accuracy of the estimate is reduced.

In conclusion, one can derive SR algorithms which are

more robust to uncertainty in the kernel, but this comes at

the price of estimation quality. If an accurate model of k
can be found (a smaller-norm certainty covariance ΣK), the

reconstruction accuracy is improved.

5. Discussion

In this paper, we examined the effect of two components

of SR: the natural image prior and the reconstruction con-

straint. We showed that an accurate blur model and its cor-

responding reconstruction constraint are crucial to the suc-

cess of SR algorithms. The influence of an accurate esti-

mate of the blur kernel is significantly larger than that of a

sophisticated prior.

These observations suggest that to advance SR algo-

rithms, in particular for applications to real images, future

research should place more emphasis on the recovery of real

camera blur. While existing blind motion deblurring meth-

ods can be adapted to this task, we note that SR kernel re-

covery is a simpler task, since the blur is a property of the

sensor and is fixed for all images captured by the same cam-

era under similar imaging conditions. As described in [4],

this camera blur can be calibrated using two images of the

same calibration target.
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