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Abstract

Roy’s largest root is a common test in multivariate analysis of variance (MANOVA),
with applications in several other problems, such as signal detection in noise. In this paper,
assuming multivariate Gaussian observations, we derive a simple yet accurate approxima-
tion for the distribution of Roy’s largest root test, in the extreme case of concentrated
non-centrality, where the signal or difference between groups is concentrated in a single
direction. Our main result is that in the MANOVA setting, up to centering and scaling,
Roy’s largest root test approximately follows a non-central F distribution whereas in the
signal detection application, it approximately follows a modified central F distribution
(of the form (s + χ2

a)/χ
2

b). Our results allow power calculations for Roy’s test, as well as
estimates of sample size required to detect a given (rank-one) group difference by this test,
both of which are important quantities in hypothesis-driven research.

1 Introduction

In the analysis of multivariate data, hypothesis tests often play an important first and sometimes
crucial step. Some classical examples of hypothesis testing problems include: i) testing the
equality of p multivariate Gaussian distributions, and ii) testing independence between two sets
of variables having joint multivariate Gaussian distribution with unknown mean. Of course,
multivariate hypothesis testing problems are common in many other settings and applications.
In this context, and of relevance to this paper, let us mention the signal processing literature
whereby the fundamental task of detection of signals embedded in noise can also be cast as a
hypothesis testing problem.

In his seminal work [24], S.N. Roy proposed the union-intersection principle to derive suit-
able test statistics for a variety of problems. For the above mentioned settings, the resulting
statistic is the largest eigenvalue or characteristic root of a random matrix of the form E−1H.
This test statistic complements various other tests, such as Wilk’s Lambda, Hotelling-Lawley
trace and Pillai-Bartlett trace, all derived by different considerations, see [1].

Since the proposal of these various test statistics, significant efforts have been devoted to
the study of their properties, in particular their distributions under the null and alternative
hypotheses, and a comparison of their relative powers under different settings. Of course,
accurate knowledge of a test’s distribution under a given alternative is a valuable quantity as
it enables the analytical computation of the test’s power and thus of the minimal number of
samples needed to detect a given alternative by this test.

For Wilk’s Lambda, Hotelling-Lawley trace and Pillai-Bartlett trace tests, various accurate
F approximations have been developed both for the null and for the non-null distributions. In

∗This research was supported by the following grants: NSF DMS 0906812 and NIH BIB R01EB1988.
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contrast, the derivation of a simple tractable approximation to the distribution of Roy’s largest
root test has remained a longstanding problem in multivariate analysis. To date, for dimension
larger than two, no acceptable method has been developed for transforming Roy’s largest root
test statistic to an F or χ2 statistic, and no straightforward method exists for computing powers
for Roy’s statistic itself [1, 13, 18].

In this paper, we aim to (partially) bridge this gap by presenting a simple yet accurate and
easy-to-evaluate expression for the distribution of Roy’s largest root test under a particular
alternative, known as concentrated non-centrality. In the setting of MANOVA, this alternative
hypothesis corresponds to an assumption that the mean responses of the different groups are
concentrated along a single direction. Concentrated non-centrality can thus be viewed as a
specific form of sparsity, indicating that the system under study can be described by relatively
few parameters. This assumption leads to a rank one non-centrality matrix with a single non-
zero eigenvalue. As we also discuss, our analysis equally applies to a similar and fundamental
problem in signal processing, detection of a single signal embedded in additive Gaussian noise,
when the noise covariance matrix is arbitrary and unknown.

In contrast to previous works that considered asymptotic expansions in the limit as sample
size (or number of groups) tend to infinity, or in the joint limit as both sample size and dimension
tend to infinity together, our approach keeps all of these parameters fixed. Instead, following our
previous work [15], we study the behavior of the largest eigenvalue in the limit of large signal-to-
noise ratio or a large non-centrality parameter, or equivalently as noise strength tends to zero.
This analysis, using standard tools from matrix perturbation theory, yields an approximate
stochastic representation for Roy’s largest root test statistic, from which we can deduce its
approximate distribution.

The main result of our analysis, summarized in Propositions I and II in Section 4 is that in
the MANOVA setting, after suitable centering and scaling, the distribution of Roy’s largest root
test approximately follows a non-central F distribution, In contrast, in the signal processing
application, Roy’s test is approximately distributed as a modified central F , of the form (s +
χ2
a)/χ

2
b .

As a side result of our analysis, we also derive a novel approximate expression for the
distribution of the largest root of a single covariance matrix H, when it contains a single
significant one-dimensional structure, see Lemma (h) in Section 4. This result reveals that
for small sample size the resulting distribution may significantly deviate from the classical
asymptotic Gaussian approximation. Therefore, this result may be of independent interest to
the statistical community.

The paper is organized as follows: In Section 2 two different hypothesis testing problems
are described, the first is the problem of signal detection in noise and the second is the classical
MANOVA problem of testing for equality of means of p multivariate Gaussian populations.
Section 3 contains a description of Roy’s largest root test and a review of previous results.
The main results of the paper are stated in Section 4, with the proofs appearing in Section 5
and in the appendix. Section 6 contains simulation results. We conclude with a summary and
discussion in Section 7.

Some preliminary results of this paper, mainly in the context of signal detection in noise,
were presented in the 2011 IEEE Statistical Signal Processing conference [17].

2 Problem Setup

We consider two different settings, one from multivariate statistics and the other from signal
processing. While the observed samples in these two settings have different distributions,
statistical interpretations and uses, they both lend themselves to a similar analysis. We first
describe the signal processing application and then the classical MANOVA setting.
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Notation: We denote column vectors by boldface lowercase letters, as in v or a, whereas their
row transpose is vT . The dot product between two vectors is then vTa, whereas the Euclidean
norm of v is ‖v‖ = (vTv)1/2. Matrices are denoted by capital Latin letters as in E or H.
Finally, ‖A‖ denotes the spectral norm of A.

2.1 Signal Detection with an Arbitrary Noise Covariance Matrix

Consider a measurement device consisting of m sensors (antennas, microphones, etc). In the
signal processing literature, see for example [10], a standard model for the observed samples in
the presence of a single emitting signal is

x =
√
ρsuh+ σξ (1)

where h is an unknown channel vector, assumed to be fixed during the measurement time
window, u is a random variable distributed N (0, 1), ρs is the signal strength, σ is the noise
level and ξ is a random noise vector that follows a multivariate Gaussian distribution N (0,Σ).
If ρs = 0 the observations contain only noise, whereas if ρs > 0 a signal is present. In this
paper, for the sake of simplicity, we assume real valued signals and noise. The case of complex
valued signals and noise can be handled in a similar manner.

Let xi ∈ R
m, for i = 1, . . . , nH , denote nH i.i.d. observations from the assumed ”signal plus

noise” model, Eq. (1), and let H denote their sample covariance matrix,

H =
1

nH

nH
∑

i=1

xix
T
i . (2)

A fundamental problem in statistical signal processing is to distinguish, given observed data,
between the following two hypotheses,

H0 : no signal present, ρs = 0, vs. H1 : signal present, ρs > 0. (3)

If the noise covariance matrix Σ is known, the observed data can be whitened by the transfor-
mation Σ−1/2xi. Various methods to detect the presence of a signal, based on the eigenvalues
of the whitened matrix Σ−1H can be employed.

In this paper we consider the case where the noise covariance matrix Σ is arbitrary and
unknown, but we have at our disposal an additional independent set {zj}nE

j=1 of nE noise-only
i.i.d. observations of the form

z = σξ.

This setting is plausible in several communication systems whereby such noise-only observations
can be collected in time slots at which it is a-priori known that no signals are transmitting.

Here, a standard method for detecting the presence of a signal is to form an estimate of the
noise covariance matrix,

E =
1

nE

nE
∑

i=1

ziz
T
i (4)

and devise signal detection schemes based on the eigenvalues of E−1H (instead of the unknown
Σ−1H).

Zhao et. al. [27] were amongst the first to study signal detection in this setting of noise-only
and signal-plus-noise observations. Considering a more general scenario whereby several sources
may be present, [27] proposed a source enumeration method based on all eigenvalues of E−1H,
with the number of signals determined by an information theoretic criteria. Subsequently,
several other works considered this detection problem, typically making structural assumptions
on the unknown covariance matrix Σ, see for example [28, 26]. More recently, [21] suggested a
much improved estimator for the number of sources, by sequentially testing the significance of
the largest eigenvalues of E−1H, e.g., by performing an iterative version of Roy’s largest root
test.
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2.2 Multivariate Analysis of Variance (MANOVA)

In multivariate analysis of variance, there are several settings that give rise to a similar hy-
pothesis testing problem. For the sake of completeness we briefly describe and latter analyze
perhaps the most common of them. For each of p groups, i = 1, . . . , p, we are given ni inde-

pendent multivariate Gaussian observations, denoted as y
(i)
j ∈ R

m, j = 1, . . . , ni. The model
we consider is that inside class i, the observations are of the form

y = µ(i) + σξ

where µ(i) is an unknown mean response vector characteristic of group i, and ξ ∼ N (0,Σ),
where Σ is an unknown and arbitrary covariance matrix common to all groups.

Given the observed data {y(i)
j }, the problem here is to distinguish between the following

two hypotheses: The null hypothesis H0 of equality between groups,

H0 : no differences between groups,µ(1) = µ(2) = . . . = µ(p) (5)

against the alternative H1, that some differences between the groups do exist,

H1 : not all µ(i) are equal. (6)

To test these hypotheses, we form the between classes and the within classes matrices, both of
size m×m,

H =
1

p− 1

p
∑

i=1

ni(ȳi − ȳ)(ȳi − ȳ)T (7)

and

E =
1

n− p

p
∑

i=1

ni
∑

j=1

(y
(i)
j − ȳ(i))(y

(i)
j − ȳ(i))T (8)

where n =
∑

i ni is the total number of samples, ȳi is the sample mean inside group i,

ȳi =
1

ni

ni
∑

j=1

y
(i)
j

and ȳ is the overall mean.

This hypothesis testing problem is fundamental in multivariate statistics. Several test statis-
tics to distinguish between H0 and H1 have been suggested, all based on the eigenvalues of the
matrix E−1H. The four most common ones are Wilk’s Lambda test, Hotelling-Lawley trace,
Pillai-Bartlett trace, and Roy’s largest root test, see for example [1, 14, 11] or essentially any
other book on multivariate statistics. The distributions of the first three test statistics, both
under the null and under the alternative have been thoroughly studied, and relatively accurate
expressions in terms of F or χ2 distributions have been derived. However, as summarized in
[12, 18], only limited distributional results for the fourth test, namely Roy’s largest root test,
have been published in the literature. Via extensive simulations [22], Olson concluded that
in the case of “concentrated non-centrality”, where the trace of the non-centrality matrix is
concentrated in its largest eigenvalue, Roy’s largest root test has the most power. The main
goal of this paper is to derive approximate yet accurate distributional results for Roy’s largest
root test in this setting. In particular, we consider the most concentrated case possible, where
the non-centrality matrix is of rank one. The study of the distribution of Roy’s largest root
test under less restrictive assumptions will be described in future work.

Remark: Our definition of the matrices H and E in the MANOVA case, Eqs. (7) and (8),
differs slightly from the common practice in the statistical literature as it includes a division
by the factors (p − 1) and (n − p), respectively. The reason for doing so is to allow a unified
treatment of the distribution of Roy’s largest root test both in the MANOVA case and in the
signal detection setting, where the relevant matrices do typically include such normalization
factors, see Eqs. (2) and (4).
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2.3 Equivalence of the two models under the null

Before we embark on our analysis, we note that under the null hypothesis, the two models
are equivalent. In the MANOVA setting, under H0, both (n − p)E and (p − 1)H follow a
Wishart distribution, with (n− p) and (p− 1) degrees of freedom and with covariance matrix
Σ, respectively. Similarly, in the signal detection case the two matrices nEE and nHH are also
Wishart distributed with nE and nH degrees of freedom and covariance Σ. Therefore, under
the null the two settings are equivalent, with the one-to-one correspondence

nE = n− p and nH = p− 1. (9)

In our analysis we shall thus use the notation nH and nE , though in the statement of the main
results we distinguish between the two cases, see Propositions I and II below.

2.4 Distributions Under the Alternative

The focus of this paper is on the distribution of the largest eigenvalue `1(E
−1H) under the

alternative H1. While the matrix nEE still follows a Wishart distribution with covariance
matrix Σ, the matrix H has a different distribution in the two settings described above. As
we describe explicitly below, this leads to a different distribution for `1(E

−1H), which is the
quantity of interest.

In the signal detection setting, since only a single signal is present underH1, the matrix nHH
follows a Wishart distribution with a covariance matrix having a single spike, Wm(nH , σ2Σ+
ρshh

T ). In the MANOVA case, in contrast, the matrix (p− 1)H follows a non-central Wishart
distribution Wm(p− 1, σ2Σ,Ω), where the non-centrality matrix Ω is given by

Ω = σ−2 Σ−1

p
∑

i=1

(µi − µ̄)(µi − µ̄)T

with

µ̄ =
1

n

∑

i

niµi.

We refer the reader to Muirhead’s book [11] for details regarding this distribution.

Rank One Assumption: The closest analogy to having a single signal present in the
MANOVA setting is to assume that under the alternative, when a difference exists between the
p groups, the mean responses of the different groups are all proportional to the same unknown
vector µ0, with each multiplied by a group dependent strength parameter. That is, we assume

µi = siµ0.

where ‖Σ−1/2µ0‖ = 1. This yields a non-centrality matrix Ω which is of rank one.

In more detail, let s̄ = 1
n

∑

i nisi, and define

δ =

p
∑

i=1

ni(si − s̄)2 (10)

then the non-centrality matrix is Ω = δ
σ2Σ

−1µ0µ
T
0 .

As mentioned above, in his simulation study [22], Olson termed this case as concentrated
non-centrality. Given a constraint on the differences among the p groups, as captured by the
trace of Ω, Olson found that the case of concentrated non-centrality is the most favorable
scenario for detection. Furthermore, it can be shown that Roy’s largest root test is asymptot-
ically the optimal test in this setting. As such, our result allows to calculate, for any given
false alarm rate, the lower bound on the number of samples needed to detect such differences.
Of course, detection of a concentrated non-centrality effect by other test statistics, such as
Hotelling-Lawley trace may require more samples.
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3 Hypothesis Testing via Roy’s Largest Root Test

Let `1 = `1(E
−1H) denote the largest eigenvalue of E−1H. To employ Roy’s largest root test

one typically sets a required false-alarm rate α � 1, and then accepts the alternative hypothesis
H1 if

`1(E
−1H) > th(α) (11)

where th(α) is the corresponding threshold.

To set the threshold, the distribution of `1(E
−1H) under the null, or at least its right tail

behavior, needs to be accurately known. To analyze the probability of detection or the power
of the test,

PD = Pr
[

`1(E
−1H) > th(α) |H1

]

the distribution of `1 under the alternative, and in particular its dependence on the various
problem parameters needs to be understood.

Accurate and efficiently computable expressions for the distribution of the largest eigenvalue
of E−1H, under both the null and alternative hypotheses, have been an open problem in
multivariate analysis for several decades. In principle, the distribution of the largest eigenvalue
of E−1H has an exact representation in terms of a hypergeometric function of matrix argument.
In certain cases this leads to a finite series of generalized Laguerre polynomials under the
alternative or zonal polynomials under the null, see [8] for formulas and a discussion of the
relevant references. However, unless all problem parameters m,nE , nH are small (say < 15),
these formulas are difficult to evaluate numerically. Furthermore, a theoretical analysis of the
distribution, and its dependence on the underlying parameters using this exact representation
is also a challenging task. Under the null, fast and accurate expressions for the distribution
of Roy’s test have been recently devised, using the Pfaffian representations of the relevant
hypergeometric functions, see [3].

A second line of research is to study the largest eigenvalue in the high dimensional setting.
In [25], Silverstein proved that under the null hypothesis H0, and in the joint limit as both
m,nE , nH → ∞ with their ratios converging to fixed constants, the largest eigenvalue of E−1H
converges to a deterministic value, given by

b2 =





1 +
√

1− (1− m
nH

)(1− m
nE

)

1− m
nE





2

. (12)

Note that if nE/m → ∞, which implies that E → I, then as expected b2 → (1 +
√

m/nH)2,
which is the limit of the largest eigenvalue of H under the null.

Recently, using tools from random matrix theory, both Jiang [5] and Johnstone [8] proved
that asymptotically in the limit as nH , nE ,m → ∞, the logarithm of the largest eigenvalue of
E−1H follows a Tracy-Widom distribution, after appropriate scaling and centering.

Theorem: Let W = log(nH

nE

`1(E
−1H)). Then under the null H0 and in the joint limit as

m,nE , nH → ∞ with their ratios converging to fixed constants,

Pr

[

W − µTW

σTW
< s

]

→ F1(s) (13)

where F1(s) is the Tracy-Widom distribution of order one, and the centering and scaling con-
stants are given by the following equations,

µTW = 2 log tan

(

ϕ+ γ

2

)

(14)

σ3
TW =

16

(nE + nH − 1)2
1

sin2(ϕ+ γ) sin(ϕ) sin(γ)
(15)
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with the angle parameters γ, ϕ given by

sin2
(γ

2

)

=
min(m,nH)− 1/2

nE + nH − 1
, sin2

(ϕ

2

)

=
max(m,nH)− 1/2

nE + nH − 1
. (16)

By inverting the Tracy-Widom distribution, Eq. (13) can be used to set the approximate
threshold for Roy’s test, for any required false alarm α. Specifically, let s(α) = F−1

1 (1 − α),
then the threshold for the largest eigenvalue is

th(α) =
nE

nH
exp (µTW + σTW s(α)) . (17)

4 On the Distribution of the Largest Root Test

The goal of this paper is to study, under the presence of a signal or of group differences (e.g.,
under the alternative hypothesis H1), the distribution of the largest eigenvalue of E−1H, and
its dependence on the largest eigenvalue of Σ−1H, and the various parameters m, nE and nH .

As mentioned above, the derivation of a simple tractable approximation to the distribution of
Roy’s largest root test has been a longstanding problem in multivariate analysis. In particular,
for dimension m > 2, no acceptable method has been developed for transforming Roy’s test
to an F or χ2 statistic, and no straightforward method exists for computing powers for Roy’s
statistic itself [1, 18]. Our analysis sheds light on this failure, as we show that in the MANOVA
setting, the largest eigenvalue indeed does not follow a standard F distribution, but rather a
non-central one, only after proper scaling and centering.

Recently, Silverstein and Nadakuditi [21] studied the largest eigenvalue of E−1H in the joint
limit as m,nE , nH → ∞, under the alternative hypothesis of signals present, e.g., when the
matrix H has a population covariance with a few spikes1. As in the simpler case of principal
component analysis with a spiked covariance matrix, for a signal to be detected by the largest
eigenvalue, the underlying signal strength must be larger than some threshold. Otherwise, the
signal is buried in noise and the largest eigenvalue converges to the limit of Eq. (12). In [21]
the authors derived both an explicit expression for this threshold, as well as the deterministic
limiting value for `1 when the underlying signal is sufficiently strong. The latter is given by

`1 → 2cHµH

2cH + cE

(

1− cH − µH +
√

f(µH , cH)
) (18)

where cE = m/nE , cH = m/nH ,

f(µH , cH) = (µH − (1−√
cH)2)(µH − (1 +

√
cH)2)

and µH is the limit, as m,nH → ∞, of the largest eigenvalue of the whitened matrix σ−2Σ−1H,
namely [2, 19, 15]

µH =
1

σ2
(λH + σ2)

(

1 +
m− 1

nH

σ2

λH

)

. (19)

In the above equation, λH = ρs‖Σ−1h‖2 is the signal part of the spike in the whitened matrix.

It is instructive to consider the asymptotics of Eq. (18) when µH � (1 +
√
cH)2. We then

have that

`1 → µH
1

1− cE
+

cE
(1− cE)2

+O

(

1

µH

)

. (20)

1The analysis of [21] is in fact quite general and does not require Gaussian distributions. As described in their
paper, due to universality and under appropriate regularity conditions, the deterministic limit of the largest
eigenvalue holds for a large class of underlying noise and signal distributions.
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We thus see that the largest eigenvalue of E−1H is larger than that of the matrix H itself,
to leading order due to a multiplicative factor 1/(1 − cE) > 1 and to second order due to an
additive constant cE/(1− cE)

2 that is independent of µH .

Since the exact limiting expression in Eq. (18) was derived by analyzing the limiting Stieltjes
transform of the spectral density of the matrix E−1H as both m,nE , nH → ∞, its accuracy for
finite values of m,nE , nH is unclear. Furthermore, although [21] suggested, by analogy to PCA,
that asymptotically the largest eigenvalue may follow a Gaussian distribution, no expression
for its asymptotic variance was derived. As such, while [21] is a major advancement, its results
do not allow for calculations of power or probability of detection.

4.1 Main Results

In this paper we derive simple approximate expressions for the distribution of Roy’s largest root
test both for the classical MANOVA setting as well as for the signal detection problem described
above. As a by-product, we provide a simple explanation for the emergence of the first two terms
in Eq. (20), and an assessment of their accuracy for finite parameter values. Our analysis thus
allows, in the case of concentrated non-centrality, a straightforward and simple computation of
the approximate power of Roy’s largest root test, as well as its analytic comparison to several
alternative popular test statistics. Matlab code for the resulting approximate distributions and
power of Roy’s test is available at the author’s website2.

To present our results we shall first need to introduce the following distribution, which is a
slight modification of the well known central F distribution.

Definition 1 A random variable X follows a modified central F distribution, denoted CFa,b,s,
if it can be written as

X =
s+ χ2

a/a

χ2
b/b

. (21)

where the two χ2 random variables are independent.

Remarks: i) Note that when the shift parameter vanishes, s = 0, this random variable resorts
to the classical central F . ii) We note that this modified F distribution has been considered
previously in the signal processing literature, see Eqs. (8)-(9) in [23]. iii) The distribution of
the modified F can be expressed as the following one-dimensional integral

Pr [X < x] = Pr[s+ χ2
a/a < xχ2

b/b]

= 1−
∫

∞

0

Pb ((bs+ bt/a)/x) pa(t)dt (22)

where pa(t) is the density of a χ2
a random variable, and Pb is the distribution of a χ2

b random
variable. This integral and thus the distribution of X can be easily evaluated numerically. The
density of X can be similarly evaluated numerically. It can also be written explicitly as a finite
sum, see Eq. (9) in [23].

Our key results can be summarized by the following two propositions.

Proposition I: Let `1(E
−1H) be the largest eigenvalue in the MANOVA setting with σ = 1,

under the alternative hypothesis whereby (p − 1)H follows a non-central Wishart distribution
Wm(p− 1, Im,Ω), with a rank-one non-centrality matrix Ω whose non-zero root is δ. Then, in
the asymptotic limit as δ → ∞, up to centering and scaling constants, Roy’s largest root can be
approximated by a non-central F distribution,

`1 ≈ c1Fa,b(δ) + c2. (23)

2 http://www.wisdom.weizmann.ac.il/∼nadler
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Similarly,

Proposition II: Let `1(E
−1H) be the largest eigenvalue in the signal detection setting, under

the alternative hypothesis of a single Gaussian signal of strength λH and with σ = 1. Then, in
the asymptotic limit as λH → ∞, up to centering and scaling constants, Roy’s largest root can
be approximated by a modified central F distribution

`1 ≈ c1CFa,b,s + c2. (24)

The values of the parameters in the MANOVA setting are

a = p+m− 2, b = n− p−m+ 1, (25)

and

c1 =
n− p

n− p−m+ 1

p+m− 2

p− 1
, c2 =

m− 1

n− p

1

(1− m
n−p )(1− m+1

n−p )
. (26)

Similarly, in the signal processing case, the coefficients are given by

a = nH , b = nE −m+ 1, s =
m− 1

nH(λH + 1)
(27)

and

c1 =
nE

nE −m+ 1
(λH + 1), c2 =

m− 1

nE

1

(1− m
nE

)(1− m+1
nE

)
. (28)

Finally, let us say a few words about the accuracy of the approximation above. First recall
that in the classical statistical literature the typical approach is to study the asymptotics of
the random variable of interest as sample size n → ∞. In this paper, in contrast, Eqs. (23)
and (24) are derived based on a two term asymptotic expansion of the largest eigenvalue `1,
where the asymptotics are at fixed nH , nE ,m but as λH → ∞ (or equivalently as σ → 0). The
term c1F is an approximation to the distribution of the first term in this expansion, whereas
the constant c2 is the approximation of the second term, which has a much smaller variance,
by its mean. To leading order, the error incurred in the approximation of the first term is
O(

√
m− 1/nH). Since the variance of the second term is O((m − 1)/n2

E), the overall error in
the above expansions is O( 1

λH

)+O(
√
m− 1/min(nE , nH)). As shown in the simulation section,

provided that the signal strength is sufficiently large, Eqs. (23) and (24) are quite accurate
even for small dimension and sample size values.

4.2 A Matrix Perturbation Approach

Following our previous work [15], our approach to the analysis of Roy’s largest root and to the
proof of the two propositions is based on a matrix perturbation approach, considering the noise
level σ as a small parameter. In our analysis, the dimension m of the observations, as well as
the sample sizes nE and nH are all fixed. Therefore, rather than relying on asymptotic results
from random matrix theory, we shall use well known results regarding the distribution of finite
Wishart and inverse Wishart matrices.

First, note that since E−1H = (Σ−1E)−1(Σ−1H), rather than analyzing the matrices E
and H we can equivalently work with whitened matrices Σ−1E and Σ−1H. In other words, for
analysis purposes, we may assume that nEE follows a Wishart distribution Wm(nE , Im). Sim-
ilarly, in the signal+noise setting, the matrix nHH is distributed as Wm(nH , σ2Im + λHvvT ),
where ‖v‖ = 1, namely a covariance matrix with a single spike. Similarly, in the MANOVA
case the matrix nHH follows a noncentral Wishart distribution Wm(nH , Im,Ω), where the non-
centrality matrix Ω is of rank one and has unit spectral norm, that is Ω = δvvT with ‖v‖ = 1.
For the two settings to have comparable large eigenvalue, we assume that δ = nHλH .

9



Next, rather than studying the non-symmetric matrix E−1H, we work with the symmetric
matrix E−1/2HE−1/2, which has the same eigenvalues as E−1H. Let h1 ≥ h2 ≥ . . . ≥ hm

denote the eigenvalues of the matrix H, sorted in decreasing order of magnitude, and let
{ai}mi=1, denote their corresponding unit-norm eigenvectors. Since the matrix H is symmetric,
these constitute a (random) orthonormal basis of Rm. We can thus write

H =

m
∑

i=1

hiaia
T
i (29)

We consider the case where λH � σ2(1 +
√

m/nH)2. In this case, the largest eigenvalue
h1 = O(λH) is substantially larger than the remaining eigenvalues h2, . . . , hm, which are all
O(σ2). We thus write the matrix H as

H = H0 + σ2H1, (30)

where H0 = h1a1a
T
1 and H1 =

∑m
j=2 h̃jaja

T
j , where h̃j = hj/σ

2 = O(1). In our study of

the eigenvalues of E−1/2HE−1/2, we view the matrix σ2E−1/2H1E
−1/2 as a perturbation of

the matrix E−1/2H0E
−1/2. Since both the unperturbed and the perturbed matrices are sym-

metric, standard results from matrix perturbation theory [9] imply that the largest eigenvalue
`1(E

−1/2HE−1/2) is an analytic function of σ, for sufficiently small values of σ. Similar to the
approach in [15], we expand the leading eigenvalue and corresponding eigenvector in a Taylor
series,

`1(ε) = λ0 + ελ1 + . . .

(31)

v̂(ε) = v0 + εv1 + . . .

where ε = σ2 is the small perturbation parameter. Our first result, proven in the appendix, is
the following:

Theorem 1: The first two terms in Eq. (31) in the Taylor expansion as σ → 0 of the largest
eigenvalue of E−1/2HE−1/2 are given by

λ0 = h1

(

aT1 E
−1a1

)

(32)

and

λ1 =
aT1 E

−1H1E
−1a1

aT1 E
−1a1

=
1

aT1 E
−1a1

·
m
∑

i=2

h̃i

(

aT1 E
−1aj

)2
(33)

The leading order term for the eigenvector is

v0 = E−1/2a1. (34)

Eqs. (32) and (33) provide an approximate stochastic representation for the largest eigen-
value `1(E

−1H), and reveal several interesting points. First, the leading order term in the
largest eigenvalue of E−1H depends only on h1, the largest eigenvalue of H, whereas the next
term depends on the remaining eigenvalues h2, . . . , hm but not on h1. Second, the leading order
term depends also on an additional random variable aT1 E

−1a1, which, as we shall see below is
independent of the random variable h1.

To prove the two propositions, we first introduce some further notations. We denote by

B = aT1 E
−1a1 (35)

and by

Ci =

(

aT1 E
−1ai

)2

B
(36)

10



In this notation, the first and second terms in the expansion of the leading eigenvalue are simply

λ0 = h1B, and λ1 =

m
∑

i=2

h̃iCi. (37)

Next, we make use of the following auxiliary lemmas regarding the distributions of these
random variables. The first lemma below provides the exact distribution of the random variable
B:

Lemma (B): Let nEE be a random Wishart matrix with identity covariance, and let {ai}mi=1

be either a deterministic orthonormal basis of R
m, or a random orthonormal basis that is

independent of E. Then for the random variable B defined in Eq.(35), we have

1/B ∼ 1

nE
χ2
nE−m+1 . (38)

In particular, for nE > m+ 3

E[B] =
nE

nE −m− 1
(39)

and

V ar[B] =
2n2

E

(nE −m− 1)2(nE −m− 3)
. (40)

The following lemma characterizes the mean and variance of the random variables Ci. Ob-
viously, they all have the same distribution.

Lemma (C): Let nEE follow a Wishart distribution Wm(nE , I), and let {ai}mi=1 be either a
deterministic orthonormal basis of Rm, or a random orthonormal basis that is independent of
E. Then,

E[Ci] =
nE

(nE −m)(nE −m− 1)
= O

(

1

nE

)

. (41)

Furthermore, asymptotically in nE,

V ar [Ci] = O

(

1

nE
2

)

. (42)

Our final ingredient is an approximate expression for the distribution of h1, the largest
eigenvalue of the sample covariance matrix H. Recall that in the signal detection case the
matrix H follows a Wishart distribution with a single spike of strength λH whereas in the
MANOVA setting it follows a non-central Wishart distribution with a rank-one noncentrality
matrix. In general, the distribution of roots of sample covariance matrices is a classical subject,
see [1, 11]. For the case of non-central Wishart matrices, the asymptotic expansion of the various
roots including the largest one has been studied in [4]. However, these results are asymptotic as
sample size (or number of groups) tend to infinity. The following lemma, in contrast, provides
an accurate approximation even for small sample sizes nH , as it is asymptotic as the signal-to-
noise ratio tends to infinity, instead. Although relatively simple to derive, to the best of our
knowledge, the results of this lemma are new. Moreover, as shown in the simulation section,
they provide much more accurate expressions for the distribution of the largest root as compared
to the classical Gaussian approximation, in particular for small sample sizes.

Lemma (h1): Let h1 denote the largest eigenvalue of the sample covariance matrix H. Then,
in the MANOVA case, where nHH follows a non-central Wishart distribution Wm(nH , σ2I,Ω)
with a rank one non-centrality matrix of the form Ω = δvvT , with ‖v‖ = 1, asymptotically as
σ → 0,

h1 ∼ σ2

nH
χ2
nH+m−1

(

δ

σ2

)

+ o
(

σ2
)

(43)
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In contrast, in the signal processing setting, with H ∼ Wm(nH , σ2I + λHvvT ),

h1 ∼ 1

nH
·
(

(λH + σ2)χ2
nH

+ σ2χ2
m−1 + o(σ2)

)

(44)

where the two χ2 random variables are independent in the equation above.

For our purposes, in particular when the dimension m is relatively small and λH � σ2 it will
suffice to approximate the χ2

m−1 random variable in Eq. (44) by its mean value, equal to m−1.
In general, one may instead approximate the weighted sum of the two independent χ2 random
variables by a single scaled χ2, though we do not explore this here. With this approximation,
in the signal processing case the asymptotic distribution of the largest eigenvalue of H, up to
scaling and centering, is distributed as a central χ2, whereas in the MANOVA setting it follows
a non-central χ2 distribution. When δ = λHnH , the largest eigenvalue has the same mean in
both settings. The key difference is in the variance of h1. Whereas in the signal processing
case, with σ = 1

V ar[h1] =
2

nH
(λH + 1)2 + o

(

1

nH

)

(45)

in the MANOVA setting the variance is

V ar[h1] =
2

nH
(2λH + 1) + o

(

1

nH

)

. (46)

Therefore, when λH � 1, the fluctuations of h1 in the MANOVA setting are significantly
smaller.

Given the above expansion, we can now relatively easy compute the leading order mean and
variance of the largest eigenvalue, as described by the following theorem.

Theorem 2: As σ → 0, the leading order terms for the mean and variance of the largest
eigenvalue of E−1H are given by

E[`1(E
−1H)] = E[λ0] + σ2

E[λ1] + o(σ2) + t.s.t. (47)

where t.s.t. stands for transcendentally small terms in σ, and

E[λ0] = E[h1] ·
1

1− m+1
nE

, (48)

E[λ1] =
m− 1

nE
· 1

1− m
nE

· 1

1− m+1
nE

(

1 +O

(

1

nH

))

. (49)

As for the variance, to leading order

V ar[`1(E
−1H)] =

n2
E

(nE −m− 1)(nE −m− 3)

[

V ar[h1] + E[h1]
2 2

nE −m− 1

]

+2σ2
E[h1]

(m− 1)(m+ 3)nE

(nE −m)(nE −m− 1)(nE −m− 3)
(50)

Remark: The above expressions, Eqs. (48)-(49) with fixed m,nE and nH , for the means of
the first two terms in the Taylor expansion of the largest eigenvalue, shed new light on the
limiting formula (18) derived in [21]. In particular, E[λ0] is identical, up to a correction factor
O(1/nE), to the first term in (20). Similarly, when all of m,nE , nH are large, and in particular
in the limit as they all tend to infinity, E[λ1] → cE/(1 − cE)

2 which is the second term in the
asymptotic expansion (20).
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Figure 1: Mean and variance of the largest eigenvalue of H and of E−1H in both the signal
processing setting (SP) and in MANOVA.

5 Proof of Propositions

Given the substantial preparations above, the two propositions 1 and 2 follow almost immedi-
ately. First, according to theorem 1, the largest eigenvalue `1(E

−1H) admits the form

`1 = h1B +

m
∑

j=2

hjCj + o(σ2).

Next, note that since H and E are independent random matrices, and since the distribution
of E is invariant to unitary transformations, it follows that h1 and B are independent random
variables. Furthermore, the distributions of h1 and of B are characterized by the two lemmas
above. Thus, the distribution of h1B approximately follows a modified F distribution in the
signal detection case and a non-central F in the MANOVA setting. Approximating the term
∑m

j=2 hjCj by its mean value concludes the proof. �

6 Simulations

We present a series of simulations that support our theoretical analysis and illustrate the
accuracy of our approximations. For different signal strengths we make 150,000 independent
random realizations of the two matrices E and H, and record the largest eigenvalue `1. First,
in the left panel of Fig. 1 we compare the empirical mean of both h1 and of `1(E

−1H) to
the theoretical formulas, Eqs. (10) and (47), as a function of λH . Next, in the right panel we
compare the standard deviation

√

V ar[h1] for both the MANOVA and the signal processing
case to the theoretical formulas, Eqs (45) and (46), respectively. Finally, in Fig. 2 we compare
the standard deviation of Roy’s largest root test in the two settings to the leading order term
in Eq. (50). Note that even though in this simulation all parameter values are small (m = 5
dimensions, p = 5 groups with ni = 8 observations per group yielding a total of n = 40
samples), the fit between the simulations and theory is remarkably good.

Next, at the same parameter values, and with λH = 10, we compare the empirical density
of h1 both in the MANOVA and in the signal detection cases to the theoretical formulas, Eqs.
(43) and (44), respectively. As shown in figure 3, the theoretical approximation is remarkably
accurate, and far more accurate than the classical asymptotic Gaussian approximation.
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Figure 2: Standard deviation of the largest eigenvalue of E−1H in both the signal processing
setting (SP) and in MANOVA. Comparison of simulations results to theoretical approximations.
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Figure 3: Density of largest eigenvalue of H in the signal processing setting (left) and in the
MANOVA setting (right) with λH = 10. We compare the empirical density to the theoretical
approximation from Lemma (h), Eqs. (44) and Eq.(43). For reference, the red curve is the
density of a standard Gaussian.
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Figure 4: Density of Roy’s Largest Root, `1(E
−1H), in the signal detection setting (left) and

in the MANOVA setting (right) with λH = 10. We compare the empirical density to the
theoretical approximation from Propositions 1 and 2, Eqs. (23) and (24), respectively. The red
curve is the density of a standard normal.

Finally, we study the accuracy of the approximation to the full distribution of the largest
eigenvalue `1(E

−1H). Recall that in the MANOVA setting, according to Eq. (54),

Pr

[

`1 − c1
c2

< x

]

≈ Fa,b(δ;x)

Making a change of variables, `1 = E[`1] + σ(`1)η, we have that

Pr [η < t] = Fa,b

(

δ;
E[`1]− c2

c1
+

σ(`1)

c1
t

)

or, upon taking the derivative w.r.t. t,

p(η = t) ≈ σ(`1)

c1
fa,b

(

δ;
E[`1]− c2

c1
+

σ(`1)

c1
t

)

In Fig. 4, we compare the empirical density of η = (`1 − E[`1])/σ(`1) to the theoretical
density of a non-central F variable in the MANOVA case and to a modified central F in the
signal detection setting. For reference, we also compare to the density of a standard normal,
(2π)−1/2e−t2/2. Note that as expected from the analysis, the density of the largest eigenvalue
is skewed, and that our theoretical distribution is quite accurate.

6.1 Power Calculations

We conclude this section with a comparison of the empirical detection power of Roy’s largest
root test to theoretical preditions based on Eq. (23). For a given rank-one non-centrality matrix
with parameter δ, according to Eq. (23) we have that

PD = Pr[`1 > t(α)]

= 1− Fa,b

(

δ;
t(α)− c2

c1

)

(51)

where the parameters a, b, δ, c1 and c2 are given in Eqs. (25) and (26), and the threshold t(α)
is given in Eq. (17).
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dim. groups samples per non-centrality Pd sim. Pd Pd sim. Pd

m p group, ni δ (α = 1%) theory α = 5% theory

3 3 10 5 0.053 0.049 0.227 0.212
3 3 10 10 0.174 0.171 0.483 0.475
3 3 10 20 0.529 0.530 0.847 0.846
3 3 10 40 0.938 0.939 0.995 0.995

6 3 10 5 0.032 0.027 0.148 0.128
6 3 10 10 0.098 0.093 0.320 0.304
6 3 10 20 0.336 0.333 0.671 0.668
6 3 10 40 0.806 0.808 0.964 0.966

6 6 10 5 0.024 0.011 0.111 0.061
6 6 10 10 0.075 0.055 0.244 0.183
6 6 10 20 0.294 0.264 0.581 0.533
6 6 10 40 0.802 0.789 0.946 0.940

10 6 20 5 0.021 0.007 0.101 0.038
10 6 20 10 0.060 0.037 0.208 0.127
10 6 20 20 0.256 0.213 0.520 0.442
10 6 20 40 0.785 0.759 0.932 0.914

Table 1: Comparison of empirical power of Roy’s largest root test to theoretical approximation
at a false alarm rate of α = 1%.

Table 1 compares the theoretical expression (51) to the results of simulations. Each entry
in the table is the result of 100,000 independent random realizations of matrices H and E. The
parameters in the table are a subset of those studied by Olson [22]. We compare the empirical
power with the predicted one both at the standard α = 5% false alarm rate, as well as at the
more stringent value α = 1%. As one can observe from the table, our approximations are quite
accurate at high powers, say larger than 80%. In contrast, at low power, our estimate is lower
than the true power, e.g. it is a bit conservative.

Let us relate these empirical observations to our analysis. Recall that our asymptotic
expansion studies the behavior of the largest eigenvalue `1, when it is indeed due to a signal
and not due to noise, as it is based on a Taylor expansion as σ → 0. It is thus valid only when
the signal strength is sufficiently large, so no eigenvalue cross-over has occurred, meaning that
the largest eigenvalue is not due to large fluctuations in the noise. Therefore, our theoretical
predictions are indeed expected to be more accurate for larger values of δ and for smaller values
of α. Fortunately, they are very accurate where it matters most to statistical applications, e.g.
where the required power is large, say 80% or above. At the other extreme, when the signal
strength is weak, our approximation of power is conservative since we do not model the case
where the largest eigenvalue may arise due to large deviations of the noise. As expected, the
discrepancy between true and estimated power is thus larger at larger values of α.

7 Discussion

In this paper, relatively accurate expressions for the distribution of Roy’s largest root test were
derived in the extreme setting of a rank-one concentrated non-centrality matrix. Deriving such
expressions, even in this restricted case, has been an open problem in multivariate analysis for
several decades and has potentially limited the practical use of Roy’s test. The new distributions
derived in this paper are simple and straightforward to compute. From the practical aspect, they
allow for a simple prospective evaluation of the power of Roy’s largest root test in hypothesis
driven research, for example in biomedical experiments and medical trials.
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These approximate distributions were derived by a perturbation approach, in the limit
of small noise or equivalently strong signal-to-noise ratio. This approach may be useful in
a variety of other problems. First, Roy’s largest root test for the generalized eigenvalues of
sample covariance matrices is applicable in several additional settings. Examples include testing
for independence of two sets of variates jointly distributed as Gaussian with unknown mean,
and testing equality of covariance matrices of two normal distributions with unknown means.
Furthermore, Roy’s test can also be used for testing significance in canonical correlation and in
multiple response linear regression. As mentioned in Section 4, even in the single matrix case,
Roy’s largest root may also be applied to test for interactions in two way tables and in a variety
of signal detection problems. Each of these cases may yield a somewhat different distribution
under the alternative, that hopefully one may still be able to analyze using our approach.

Second, in this paper, we studied the case of a single signal or a rank-one non-centrality
matrix. It should be possible to relax this strict and somewhat unrealistic assumption and
study the resulting distribution under say two strong signals, or perhaps one strong signal and
many weak ones. Finally, our approach can be applied to study other test statistics, such as
the Hotelling-Lawley trace. These and related issues, such as the sensitivity of the distributions
to departures from normality, are interesting problems for further research.

Acknowledgments. It is a pleasure to thanks Prof. Donald Richards and Prof. David Banks
for many useful discussions and suggestions.

A Proofs

A.1 Proofs of Auxiliary Lemmas

Proof of Lemma (B): Let A be the m×m matrix whose columns are the eigenvectors {ai}
of H. Then, by definition,

B = aT1 E
−1a1 =

(

ATE−1A
)

1,1
(52)

That is, B is simply the upper left diagonal entry of the matrix E−1, in the basis {ai} that
diagonalizes H. Next, recall that the matrices H and E are independent, and thus the random
basis ai is independent of E. Since nEE is Wishart distributed with identity covariance and
thus its distribution is invariant to unitary transformations, we may apply theorem 3.2.11 from
Muirhead’s book [11], to obtain Eq. (38). Equations (39) and (40) readily follow as the first
two moments of an inverse χ2 random variable. �

Proof of Lemma (C): As in the proof of lemma B above, let A be the matrix whose columns
are the vectors {ai}. Note that by definition, we can equivalently write

aT1 E
−1ai =

(

ATE−1A
)

1,i
.

Combining this with Eq. (52) gives that

Ci =

(

(ATE−1A)1,i
)2

(ATE−1A)1,1
.

Again, since A is unitary and independent of E, and since the distribution of the matrix E is
invariant to unitary transformations we may equivalently study the distribution of

Ci =

(

(E−1)1,i
)2

(E−1)1,1
.

To the best of our knowledge, the exact distribution of this random variable is not explicitly
known. However, its mean can be computed exactly by the following argument: First, w.l.g.
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we consider the index i = 2 and the following 2× 2 sub-matrix of E−1,

(

E−1
11 E−1

12

E−1
12 E−1

22

)

(53)

According to Theorem 3.2.11 in [11], the inverse of this matrix, up to multiplication by a factor
of nE , follows a Wishart distribution W2(nE −m+ 2, I2). However, as this is a 2 × 2 matrix,
its inverse can be computed explicitly. It is given by

1

E−1
11 E−1

22 − (E−1
12 )2

(

E−1
22 −E−1

12

−E−1
12 E−1

11

)

(54)

In particular, up to a multiplicative factor of 1/nE , its diagonal entries follow a χ2 distribution
with (nE −m+ 2) degrees of freedom. Taking the inverse of the (2, 2) entry gives that

E−1
22 − C2 ∼ nE

χ2
nE−m+2

.

Recall that according to Eq. (38), E−1
22 ∼ nE/χ

2
nE−m+1. Taking expectations proves Eq. (41)

of the lemma.

For the second part of the lemma, recall that E is the sample covariance matrix from nE

multivariate normal samples with an identity population covariance. Therefore, as nE → ∞,

both E → Im and E−1 → Im. In particular, Ei,i = 1 + OP (n
−1/2
E ) whereas for i 6= j,

Ei,j = OP (n
−1/2
E .

To study the value of C1,j and thus the off-diagonal entries of E−1, can view the off-diagonal
entries in the matrix E as a perturbation of the diagonal terms. That is, we write

E = E0 + E1 = E0(I + E−1
0 E1)

where E0 contains the diagonal terms and E1 the off-diagonal ones. Then

E−1 = (I + E−1
0 E1)

−1E−1
0

= (I − E−1
0 E1 + (E−1

0 E1)
2 + oP (1/nE))E

−1
0 (55)

In particular, for the off-diagonal term we obtain

E−1
1,2 = − E1,2

E1,1E2,2
+
∑

j>2

E1,jE2,j

E1,1E2,2Ej,j
+ o(1/nE)

It thus follows that E−1
1,2 = OP (1/

√
nE) whereas C1,2 = O(1/nE), and as required C2

1,2 =

O(1/n2
E).

�

Proof of Lemma (h1): We decompose the matrix H into its signal part in the direction v of
the spike and its pure noise part, in the subspace of dimension m− 1, orthogonal to the spike.
Let {vj}mj=2 be some arbitrary orthonormal basis for this subspace, that is independent of H.
In the basis {v,v2, . . . ,vm} of Rm, the matrix takes the form

H =











Zs b2 . . . bm
b2 z2,2 z2,m
...

. . .
...

bm zm,2 . . . zm,m











(56)

where Zs denotes the variance in the direction of v, and the random variables z2,2, . . . , zm,m

denote the variances of the observed data in the (m − 1) directions vj orthogonal to v. In
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the MANOVA case, Zs ∼ σ2χ2
nH

(λH/σ2)/nH , whereas in the signal processing case, Zs ∼
(λH + σ2)χ2

nH
/nH . In both cases, as σ → 0, we have that Zs = O(λH), and is the most

significant entry in the matrix H, with all other entries converging to zero as σ → 0.

Indeed, since the (m−1) directions {vj}mj=2 are orthonormal and independent of the matrix

H, all entries zj,k in the lower right (m− 1)× (m− 1) matrix above are O(σ2). In particular,
the diagonal entries z2,2, . . . , zm,m are all i.i.d. as σ2χ2

nH
/nH .

Finally, the random variables bj capture the sample covariance between the direction v of
the signal and the direction vj orthogonal to it. In terms of the nH original observations xi

used to construct the matrix H these are given by

bj =
1

nH

nH
∑

i=1

xi,1xi,j (57)

where xi,1 is the projection of the i-th observation onto the direction v, and xi,j is its projection
onto vj . Note that by construction, since the directions vj are indepedent ofH, for j > 1 all xi,j

are i.i.d. N(0, σ2) random variables, and independent of xi,1. Furthermore, Zs = 1
nH

∑

i x
2
i,1.

Hence, conditional on the nH values {xi,1}nH

i=1,

bj =
σ√
nH

√

1

nH

∑

i

X2
i,1 ηj =

σ√
nH

√

Zs ηj (58)

where ηj are all i.i.d. N(0, 1).

As in Eq. (3.6) in [15] we can thus write the matrix H as a sum of three symmetric matrices
whose entries are O(1), O(σ) and O(σ2) respectively. It then follows that the largest eigenvalue
h1 of H is analytic in σ and we can expand it in a corresponding Taylor series. We then apply
Eq. (2.14) from [15] (where in their notation Zs = κ2 + 2σκρ1 + σ2β1,1, and ηj =

√
nHρj)

h1 = Zs +
σ2

nH

m
∑

j=2

η2j + o(σ2) (59)

To conclude the proof, we recall that since all ηj are independent N(0, 1), this sum follows a
χ2 distribution with (m − 1) degrees of freedom. Finally, in the MANOVA setting we have

that Zs ∼ σ2

nH

χ2
nH

(δ/σ2). Using the additivity property of sums of central and non-central χ2

random variables gives Eq. (43). In the signal processing case, Zs ∼ λH+σ2

nH

χ2
nH

and hence Eq.
(44) follows. �

Remarks: i) In [15] the above result was proven only for the case of Gaussian signal and noise.
Here we extended the proof to the case of a signal with a non-central χ2 distribution. However,
a closer inspection reveals that the technique is applicable under more general assumptions
on the signal model. The key requirement is that the noise be multivariate Gaussian and
independent of the signal. If the signal has a different distribution, possibly even be correlated
in time, then that will affect the distribution of the first term Zs but as σ → 0 will not affect
the distribution of the second term, which to leading order will still be σ2χ2

m−1.

ii) The results of this lemma are of independent interest, as they may be used to compute the
power of tests that consider the largest eigenvalue of single covariance matrices. In particular,
for the case of a non-central Wishart with rank one noncentrality matrix, this is relevant in
testing the presence of interactions in two way tables, see [7, 4]. Similarly, in the case of complex
valued signals and noise, the eigenvalues of non-central complex Wishart matrices are also of
interest in communications systems, see for example [6].
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A.2 Proofs of Theorems

Proof of Theorem 1: We insert the expansion (31) into the eigenvalue equation

E−1/2(H0 + εH1)E
−1/2 = λ(ε)v(ε).

This yields to leading order
E−1/2H0E

−1/2v0 = λ0v0.

Since the matrix H0 is of rank one, so is E−1/2H0E
−1/2 and it thus has a single non-zero

eigenvalue. Inserting the expression for H0 = h1a1a1
T and simple linear algebra then gives

Eqs. (32) and (34) for this eigenvalue and its corresponding eigenvector.

Next we consider the perturbation due to the remaining eigenvalues of H, stored in the
matrix H1. The next equation of order O(ε) is

(E−1/2H1E
−1/2)v0 + (E−1/2H0E

−1/2)v1 = λ0v1 + λ1v0. (60)

Next, recall that v0 = E−1/2a1, and that H0 = h1a1a1
T . Thus

vT
0 (E

−1/2H0E
−1/2)v1 = h1

(

aT1 E
−1a1

)

aT1 E
−1/2v1 = λ0v

T
0 v1

Hence, taking the dot product of Eq. (60) with v0 the term λ0v
T
0 v1 cancels out, and we obtain

vT
0 (E

−1/2H1E
−1/2)v0 = λ1v

T
0 v0

Substituting the expression for v0 yields the required expression for λ1, Eq. (33). �

Proof of Theorem 2: We first consider the mean of the largest eigenvalue of E−1H. Using
the decomposition (31), we thus compute the means of the two leading order terms λ0 and λ1,
Eqs. (32) and (33), respectively. Further recall that λ0 = h1B and that h1 depends only on
the matrix H and that since the matrices H and E are independent, then the random variable
B is independent of h1. Therefore,

E[λ0] = E[h1] · E [B] .

Eq. (48) immediately follows from Eq. (39) for the mean of the random variable B.

Next, we consider the mean of λ1. To this end, recall that

λ1 =

m
∑

j=2

h̃jCj

and hence

E[λ1] =
m
∑

j=2

E

[

h̃jCj

]

=
m
∑

j=2

EH

[

h̃j E[Cj |H]
]

Next, from Lemma (C) it follows that E[Cj |H] is independent of the matrix H and is given
by Eq. (41). Therefore,

E[λ1] = E [C2] · E





m
∑

j=2

h̃j



 = E [C2] · E [Tr(H1)]

Similarly, since all the eigenvalues h̃j are due to noise, the average of their sum is (m− 1)(1 +
o(σ2)). Combining all of these results yields Eq. (49). As in [15], the reason for the additional
transcendentally small terms in σ in Eq. (47) is due to small probability of a crossover between
the eigenvalue due to the signal and the largest eigenvalue due to noise. When this crossing oc-
curs, the Taylor expansion (31) does not capture anymore the behavior of the largest eigenvalue
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of E−1H. The probability of such an event is of the form e−c/σ2

, and thus is transcendentally
small in σ, as σ → 0.

Next, we consider the variance of `1. By definition,

V ar[`1] = E
[

(λ0 + σ2λ1)
2
]

− E[λ0 + σ2λ1]
2 + o(σ2)

= V ar[λ0] + 2 (E[λ0λ1]− E[λ0]E[λ1])σ
2 + o(σ2) (61)

Again using the independence of the two random variables h1 and B gives

V ar(λ0) = V ar(h1)E[B
2] + V ar(B)E[h1]

2.

where the variance of B is given by Eq. (40). As for the mixed term E[λ0λ1], it can be written
as

E



h1

∑

j

h̃j((A
TE−1A)1j)

2



 .

Since the matrix A is independent of the matrix E, we have that E[((ATE−1A)1,j)
2] =

E[(E−1
1j )2]. As is well known, see e.g. [20],

E
[

(E−1
ij )2

]

=
n2
E

(nE −m)(nE −m− 1)(nE −m− 3)
. (62)

Furthermore, asymptotically as σ → 0,

E



h1

m
∑

j=2

h̃j



 = (m− 1)E[h1](1 +O(σ2)).

Therefore,

E [λ0λ1] =
(m− 1)n2

E

(nE −m)(nE −m− 1)(nE −m− 3)
E[h1]

(

1 +O(σ2)
)

Combining all of the above expressions yields Eq. (50). �
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