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In a broad range of classification and decision-making problems,
one is given the advice or predictions of several classifiers, of
unknown reliability, over multiple questions or queries. This scenario
is different from the standard supervised setting, where each
classifier's accuracy can be assessed using available labeled data,
and raises two questions: Given only the predictions of several
classifiers over a large set of unlabeled test data, is it possible to
(i) reliably rank them and (ii) construct a metaclassifier more accu-
rate than most classifiers in the ensemble? Here we present a
spectral approach to address these questions. First, assuming con-
ditional independence between classifiers, we show that the off-
diagonal entries of their covariance matrix correspond to a rank-one
matrix. Moreover, the classifiers can be ranked using the leading
eigenvector of this covariance matrix, because its entries are pro-
portional to their balanced accuracies. Second, via a linear ap-
proximation to the maximum likelihood estimator, we derive the
Spectral Meta-Learner (SML), an unsupervised ensemble classifier
whose weights are equal to these eigenvector entries. On both
simulated and real data, SML typically achieves a higher accuracy
than most classifiers in the ensemble and can provide a better
starting point than majority voting for estimating the maximum
likelihood solution. Furthermore, SML is robust to the presence of
small malicious groups of classifiers designed to veer the ensemble
prediction away from the (unknown) ground truth.

spectral analysis | classifier balanced accuracy | unsupervised learning |
cartels | crowdsourcing

Every day, multiple decisions are made based on input and
suggestions from several sources, either algorithms or ad-
visers, of unknown reliability. Investment companies handle their
portfolios by combining reports from several analysts, each pro-
viding recommendations on buying, selling, or holding multiple
stocks (1, 2). Central banks combine surveys of several pro-
fessional forecasters to monitor rates of inflation, real gross do-
mestic product growth, and unemployment (3-6). Biologists study
the genomic binding locations of proteins by combining or ranking
the predictions of several peak detection algorithms applied to
large-scale genomics data (7). Physician tumor boards convene
a number of experts from different disciplines to discuss patients
whose diseases pose diagnostic and therapeutic challenges (8).
Peer-review panels discuss multiple grant applications and make
recommendations to fund or reject them (9). The examples above
describe scenarios in which several human advisers or algorithms
provide their predictions or answers to a list of queries or ques-
tions. A key challenge is to improve decision making by combining
these multiple predictions of unknown reliability. Automating
this process of combining multiple predictors is an active field
of research in decision science (cci.mit.edu/research), medicine
(10), business (refs. 11 and 12 and www.kaggle.com/competitions),
and government (www.iarpa.gov/Programs/ia/ACE/ace.html and
www.goodjudgmentproject.com), as well as in statistics and ma-
chine learning.

Such scenarios, whereby advisers of unknown reliability pro-
vide potentially conflicting opinions, or propose to take opposite
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actions, raise several interesting questions. How should the de-
cision maker proceed to identify who, among the advisers, is the
most reliable? Moreover, is it possible for the decision maker to
cleverly combine the collection of answers from all of the advisers
and provide even more accurate answers?

In statistical terms, the first question corresponds to the
problem of estimating prediction performances of preconstructed
classifiers (e.g., the advisers) in the absence of class labels.
Namely, each classifier was constructed independently on a po-
tentially different training dataset (e.g., each adviser trained on
his/her own using possibly different sources of information), yet
they are all being applied to the same new test data (e.g., list of
queries) for which labels are not available, either because they
are expensive to obtain or because they will only be available in
the future, after the decision has been made. In addition, the
accuracy of each classifier on its own training data is unknown.
This scenario is markedly different from the standard supervised
setting in machine learning and statistics. There, classifiers are
typically trained on the same labeled data and can be ranked, for
example, by comparing their empirical accuracy on a common
labeled validation set. In this paper we show that under standard
assumptions of independence between classifier errors their
unknown performances can still be ranked even in the absence of
labeled data.

The second question raised above corresponds to the problem
of combining predictions of preconstructed classifiers to form a
metaclassifier with improved prediction performance. This prob-
lem arises in many fields, including combination of forecasts in
decision science and crowdsourcing in machine learning, which
have each derived different approaches to address it. If we had
external knowledge or historical data to assess the reliability of
the available classifiers we could use well-established solutions
relying on panels of experts or forecast combinations (11-14). In
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our problem such knowledge is not always available and thus
these solutions are in general not applicable. The oldest solution
that does not require additional information is majority voting,
whereby the predicted class label is determined by a rule of
majority, with all advisers assigned the same weight. More re-
cently, iterative likelihood maximization procedures, pioneered
by Dawid and Skene (15), have been proposed, in particular in
crowdsourcing applications (16-23). Owing to the nonconvexity
of the likelihood function, these techniques often converge only
to a local, rather than global, maximum and require careful
initialization. Furthermore, there are typically no guarantees on
the quality of the resulting solution.

In this paper we address these questions via a spectral analysis
that yields four major insights:

1. Under standard assumptions of independence between clas-
sifier errors, in the limit of an infinite test set, the off-diagonal
entries of the population covariance matrix of the classifiers
correspond to a rank-one matrix.

2. The entries of the leading eigenvector of this rank-one matrix
are proportional to the balanced accuracies of the classifiers.
Thus, a spectral decomposition of this rank-one matrix provides
a computationally efficient approach to rank the performances
of an ensemble of classifiers.

3. Alinear approximation of the maximum likelihood estimator
yields an ensemble learner whose weights are proportional to
the entries of this eigenvector. This represents an efficient,
easily constructed, unsupervised ensemble learner, which we
term Spectral Meta-Learner (SML).

4. An interest group of conspiring classifiers (a cartel) that mali-
ciously attempts to veer the overall ensemble solution away
from the (unknown) ground truth leads to a rank-two covari-
ance matrix. Furthermore, in contrast to majority voting,
SML is robust to the presence of a small-enough cartel whose
members are unknown.

In addition, we demonstrate the advantages of spectral ap-
proaches based on these insights, using both simulated and real-
world datasets. When the independence assumptions hold ap-
proximately, SML is typically better than most classifiers in the
ensemble and their majority vote, achieving results comparable
to the maximum likelihood estimator (MLE). Empirically, we find
SML to be a better starting point for computing the MLE that
consistently leads to improved performance. Finally, spectral
approaches are also robust to cartels and therefore helpful in
analyzing surveys where a biased subgroup of advisers (a cartel)
may have corrupted the data.

Problem Setup

For simplicity, we consider the case of questions with yes/no
answers. Hence, the advisers, or algorithms, provide to each
query only one of two possible answers, either +1 (positive) or
—1 (negative). Following standard statistical terminology, the
advisers or algorithms are called “binary classifiers,” and their
answers are termed “predicted class labels.” Each question is
represented by a feature vector x contained in a feature space X

In detail, let {f; } —1 be M binary classifiers of unknown re-
liability, each providing predicted class labels f;(xx) to a set of S
instances D = {x; },_; C X, whose vector of true (unknown) class
labels is denoted by y=(y1,...,ys).We assume that each classi-
fier f; : X - {—1,1} was trained in a manner undisclosed to us
using its own labeled training set, which is also unavailable to us.
Thus, we view each classifier as a black-box function of unknown
classification accuracy.

Using only the predictions of the M binary classifiers on the
unlabeled set D and without access to any labeled data, we
consider the two problems stated in the introduction: (i) Rank
the performances of the M classifiers and (i) combine their
predictions to provide an improved estimate y=(y;,...,ys) of
the true class label vector y.
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We represent an instance and class label pair (X,Y)e X x{-1,1}
as a random vector with probability density function p(x,y), and
with marginals px (x) and py (y).

In the present study, we measure the performance of a binary
classifier f by its balanced accuracy x, defined as

sensitivity + specifici 1
p= R TPECREY L ), [

where y and # are its sensitivity (fraction of correctly predicted

positives) and specificity (fraction of correctly predicted nega-

tives). Formally, these quantities are defined as
w=Prf(X)=Y|Y =1],

and n=Prf(X)=Y|Y=-1]. [2]

Assumptions. In our analysis we make the following two assump-
tions: (i) The S unlabeled instances x; € D are independent and
identically distributed realizations from the marginal distribution
px(x) and (ii) the M classifiers are conditionally independent, in
the sense that prediction errors made by one classifier are inde-
pendent of those made by any other classifier. Namely, for all
1<i#j<M, and for each of the two class labels, with a;,a; €

{_151}

Pr[fi(X) =a;.f;(X) =qj|Y] =Pr[f;,(X) =a;|Y] - Pr[f;,(X) =q;]Y].

[3]

Classifiers that are nearly conditionally independent may arise,
for example, from advisers who did not communicate with each
other, or from algorithms that are based on different design
principles or independent sources of information. Note that
these assumptions appear also in other works considering a set-
ting similar to ours (15, 23), as well as in supervised learning, the
development of classifiers (e.g., Naive Bayes), and ensemble
methods (24).

Ranking of Classifiers

To rank the M classifiers without any labeled data, in this paper
we present a spectral approach based on the covariance matrix of
the M classifiers. To motivate our approach it is instructive to
first study its asymptotic structure as the number of unlabeled
test data tends to infinity, |D|=8— c0. Let Q be the M xM
population covariance matrix of the M classifiers, whose entries
are defined as

=E[(5X) - (5X) - )] 41

where E denotes expectation with respect to the density p(x,y)

and y; =E[f;(X)].

The following lemma, proven in SI Appendix, characterizes the
relation between the matrix Q and the balanced accuracies of the
M classifiers:

Lemma 1. The entries q;; of Q are equal to
) 1—p? i=j
%= { (27;=1)(27;—1)(1-b%) otherwise 5]
where b € (-1, 1) is the class imbalance,
b=Pr[Y=1]-Pr[Y =-1]. [6]

The key insight from this lemma is that the off-diagonal entries
of Q are identical to those of a rank-one matrix R =Avv! with
unit-norm eigenvector v and eigenvalue

Parisi et al.
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a=(1-b%)- ZZﬂ,—l (7]

i=

Importantly, up to a sign ambiguity, the entries of v are propor-
tional to the balanced accuracies of the M classifiers,

« (27— 1). [8]

Hence, the M classifiers can be ranked according to their bal-
anced accuracies by sorting the entries of the eigenvector v.
Although typically neither Q nor v is known, both can be es-
timated from the finite unlabeled dataset D. We denote the
corresponding sample covariance matrix by Q. Its entries are

S
=g D (1) 1) ()~

where ji; =+>",fi(xx). Under our assumptions, Q is an unbiased
estimate of Q, e.g., E[Q] =Q. Moreover, the variances of its off-
diagonal entries are given by

0D ) 0 (4,522

S-1 s ”f”f‘ﬁ%‘)' ®l

In particular, g; —g;=0(1/ VS) and asymptotically Q — Q as
S — o0. Hence, for a sufficiently large unlabeled set D, it should
be possible to accurately estimate from Q the eigenvector v and
consequently the ranking of the M classifiers.

One possible approach is to construct an estimate R of the
rank-one matrix R and then compute its leading eigenvector.
Given that E[Q] = Q, for all i #j we may estimate #; =g, and we
only need to estimate the diagonal entries of R. A computa-
tionally efficient way to do this, by solving a set of linear equa-
tions, is based on the following observation: Upon the change of
variables |r;j| =e' -, we have for all i #J,

Var [6],_-7-] =

log|ri| — i — 1;=1log|q;;| -t —1;=0.

Hence, if we knew g; we could find the vector t by solving the
above system of equations. In practice, because we only have
access to §; we thus look for a vector t with small residual error
in the above M (M —1)/2 equations. We then estimate the di-
agonal entries by 7; =exp(2f;) and proceed with eigendecompo-
sition of R. Further details on this and other approaches to
estimate v appear in SI Appendix.

Next, let us briefly discuss the error in this approach. First, be-
cause O — Q as § — oo, it follows that £ — t and consequentlyR —R.
Hence, asymptotically we perfectly recover the correct ranking of
the M classifiers. Because R is rank-one, R — R = O (1/+/S) and both
R and R are symmetric, as shown in SI Appendix, the leading eigen-
vector is stable to small perturbations. In particular, v —v= 0(1%)

Finally, note that if all classifiers are better than random and the
class imbalance is bounded away from +1, then we have a large
spectral gap with A=O(M).

SML

Next, we turn to the problem of constructing a metalearner
expected to be more accurate than most (if not all) of the M
classifiers in the ensemble. In our setting, this is equivalent to
estimating the S unknown labels yq,...,ys by combining the
labels predicted by the M classifiers.

The standard approach to this task is to determine the MLE
MY of the true class labels y for all of the unlabeled instances
(15). Under the assumption of independence between classifier
errors and between instances, the overall likelihood is the product

Parisi et al.

of the likelihoods of the S individual instances, where the likeli-
hood of a label y for an instance x is

L(fix), .- fux) H Pr(fi(x) [10]

As shown in SI Appendix, the MLE can be written as a weighted
sum of the binary labels f;(x) € {1, 1}, with weights that depend
on the sensitivities y; and specificities #; of the classifiers. For an
instance x,

MY = argmax Q(fi(x), ..., fu(x);y)
y

M [11]
=sign ( Zﬁ(x)loga,- + logﬂi> ,
i=1
where
Wil wi(l-y)
i = , i 12
A= P = zl

Eq. 11 shows that the MLE is a linear ensemble classifier, whose
weights depend, unfortunately, on the unknown specificities and
sensitivities of the M classifiers.

The common approach, pioneered by Dawid and Skene (15),
is to look for all S labels and M classifier specificities and sen-
sitivities that jointly maximize the likelihood. Given an estimate
of the true class labels, it is straightforward to estimate each
classifier sensitivity and specificity. Similarly, given estimates of
w; and 7;, the corresponding estimates of y are easily found via
Eq. 11. Hence, the MLE is typically approximated by expectation
maximization (EM) (18-21, 23).

As is well known, the EM procedure is guaranteed to increase
the likelihood at each iteration till convergence. However, its key
limitation is that owing to the nonconvexity of the likelihood
function the EM iterations often converge to a local (rather than
global) maximum.

Importantly, the EM procedure requires an initial guess of the
true labels y. A common choice is the simple majority rule of all
classifiers. As noted in previous studies, majority voting may be
suboptimal, and starting from it, the EM procedure may con-
verge to suboptimal local maxima (23). Thus, it is desirable, and
sometimes crucial, to initialize the EM algorithm with an esti-
mate y that is close to the true label y.

Using the eigenvector described in the previous section,
we now construct an initial guess that is typically more ac-
curate than majority voting. To this end, note that a Taylor
expansion of the unknown coefficients «; and g; in Eq. 12
around (y;,7;)=(1/2,1/2) gives, up to second-order terms,

O((wi=1/2)%, (n: = 1/2)* (wi = 1/2)- (1, = 1/2)),

ai~1+4(y;+n—-1)=1+4Q2=-1), pi=1l [13]
Hence, combining Eq. 13 with a first-order Taylor expansion of
the argument inside the sign function in Eq. 11, around (y;, ;) =
(1/2,1/2) yields

M
M)~ sign ( > file) (2 — 1)) . [14]
i=1

Recall that by Lemma I up to a sign ambiguity the entries of the
leading eigenvector of R are proportional to the balanced accu-
racies of the classifiers, v; « (2z; — 1). This sign ambiguity can be
easily resolved if we assume, for example, that most classifiers
are better than random. Replacing 27; — 1 in Eq. 14 by the ei-
genvector entries v; of an estimate of R yields a novel spectral-
based ensemble classifier, which we term the SML,
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M
ML) —sign < > i) ﬁ,—) . [15]

i=1

Intuitively, we expect SML to be more accurate than majority
voting as it attempts to give more weight to more accurate
classifiers. Lemima S2 in SI Appendix provides insights on the
improved performance achieved by SML in the special case
when all algorithms but one have the same sensitivity and spec-
ificity. Numerical results for more general cases are described in
Simulations, where we also show that empirically, on several real
data problems, SML provides a better initial guess than majority
voting for EM procedures that iteratively estimate the MLE.

Learning in the Presence of a Malicious Cartel

Consider a scenario whereby a small fraction r of the M classi-
fiers belong to a conspiring cartel (e.g., representing a junta or an
interest group), maliciously designed to veer the ensemble so-
Iution toward the cartel’s target and away from the truth. The
possibility of such a scenario raises the following question: How
sensitive are SML and majority voting to the presence of a car-
tel? In other words, to what extent can these methods ignore, or
at least substantially reduce, the effect of the cartel classifiers
without knowing their identity?

To this end, let us first introduce some notation. Let the M
classifiers be composed of a subset P of (1—r)M “honest” clas-
sifiers and a subset C of rM malicious cartel classifiers. The
honest classifiers satisfy the assumptions of the previous section:
Each classifier attempts to correctly predict the truth with a
balanced accuracy z;, and different classifiers make independent
errors. The cartel classifiers, in contrast, attempt to predict
a different target labeling, T. We assume that conditional on
both the cartel’s target and the true label, the classifiers in the
cartel make independent errors. Namely, for all i,j € C, and for
any labels a;,4;,Y, T e {-1,1}

Pr(fi(X) =a;.fj(X) =a}|T, Y] =Pr{fi(X) =a;|T] - Pr [£;(X) = ;| T].
[16]

Similarly to the previous sections, we assume that the prediction
errors of cartel and honest classifiers are also (conditionally)
independent.

The following lemma, proven in SI Appendix, expresses the
entries of the population covariance matrix Q in terms of the
following quantities: the balanced accuracies of the M classifiers,
the balanced accuracy . of the cartel’s target with respect to the
truth, and the balanced accuracies &; of the rM cartel members
relative to their target.

Lemma 2. Given (1—r)M honest classifiers and rM classifiers of
a cartel C, the entries q; of Q satisfy

1—p} i=j
(27— 1) (2= 1) (1 =) ieP,jeP
U=\ 2m—1)(2m—1)(25-1)(1-82) iepjec’ U
(26 -1)(2& - 1) (1-b?) ieCjeC

where b € (-1, 1) is the class imbalance, as in Eq. 6.

Next, the following theorem shows that in the presence of
a single cartel the off-diagonal entries of Q correspond to a rank-
two matrix. We conjecture that in the presence of k independent
cartels, the respective rank is (k+1).

Theorem 1. Given (1—r)M honest classifiers and rM classifiers

belonging to a cartel, 0 <r <1, the off-diagonal entries of Q corre-
spond to a rank-two matrix with eigenvalues

1256 | www.pnas.org/cgi/doi/10.1073/pnas.1219097111

21 = Apcosa + Acsin’f
.5 ) [18]
Ay =Apsin“a + Accos

and eigenvectors

_ | 2#;—1)cosa ieP _J @=—1)sina ieP
"”_{ (25 —1)sing ieC ez’_{(Zé,-—l)cos/)’ iec M1
where

ip=(1-0%)3" (25 =1)% de=(1-6) Y (25-1)° 120]

jepP jeC

and, with ki =2r. -1, k; =ﬂc//1p,

ey /1 - K

a—larctan L ﬂ—larctan R —
2 ka(1-2k3)—1)’ 2 1—ky =2k}

As an illustrative example of Theorem 1, consider the case where
the cartel’s target is unrelated to the truth, i.e., 7. =1/2. In this
case a=£=0, so 1y =4p, 1 =A¢ and

eF{o ieP [21]

oo [2mi—1i€P
L= 2%-1 ieC”

0 ieC

Next, according to Eq. 15 SML weighs each classifier by the
corresponding entry in the leading eigenvector. Hence, if the
cartel’s target is orthogonal to the truth (z. =1/2) and 1p > Ac,
SML asymptotically ignores the cartel (SI Appendix, Fig. S3). In
contrast, regardless of z., majority voting is affected by the cartel,
proportionally to its fraction size . Hence, SML is more robust
than majority voting to the presence of such a cartel.

Application to Simulated and Real-World Datasets

The examples provided in this section showcase strengths and
limitations of spectral approaches to the problem of ranking and
combining multiple predictors without access to labeled data.
First, using simulated data of an ensemble of independent clas-
sifiers and an ensemble of independent classifiers containing one
cartel, we confirm the expected high performance of our ranking
and SML algorithms. In the second part we consider the pre-
dictions of 33 machine learning algorithms as our ensemble of
binary classifiers and test our spectral approaches on 17 real-world
datasets collected from a broad range of application domains.

Simulations. We simulated an ensemble of M = 100 independent
classifiers providing predictions for S = 600 instances, whose
ground truth had class imbalance b = 0. To imitate a difficult
setting, where some classifiers are worse than random, each
generated classifier had different sensitivity and specificity cho-
sen at random such that its balanced accuracy was uniformly
distributed in the interval [0.3,0.8]. We note that classifiers that
are worse than random may occur in real studies, when the
training data are too small in size or not sufficiently represen-
tative of the test data. Finally, we considered the effect of
a malicious cartel consisting of 33% of the classifiers, having
their own target labeling. More details about the simulations are
provided in SI Appendix.

Ranking of classifiers. We constructed the sample covariance ma-
trix, corrected its diagonal as described in SI Appendix, and
computed its leading eigenvector v. In both cases (independent
classifiers and cartel), with probability of at least 80%, the
classifier with highest accuracy was also the one with the largest
entry (in absolute value) in the eigenvector v, and with proba-
bility >99% its inferred rank was among the top five classifiers
(SI Appendix, Fig. S4). Note that even if the test data of size S = 600

Parisi et al.
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Cartel (33% of classifiers)

were fully labeled, identifying the best-performing classifier would
still be prone to errors, because the estimated balanced accuracy
has itself an error of O(1/v/S).

Unsupervised ensemble learning. Next, for the same set of simu-
lations we compared the balanced accuracy of majority voting
and of SML. We also considered the predictions of these two
metalearners as starting points for iterative EM calculation of
the MLE (iMLE). As shown in Fig. 1, SML was significantly
more accurate than majority voting. Furthermore, applying an
EM procedure with SML as an initial guess provided relatively
small improvements in the balanced accuracy. Majority voting, in
contrast, was less robust. Moreover, in the presence of a cartel,
computing the MLE with majority voting as its starting point
exhibited a multimodal behavior, sometimes converging to a lo-
cal maxima with a relatively low balanced accuracy.

A more detailed study of the sensitivity of SML and majority
voting and their respective iMLE solutions versus the size of
a malicious cartel with 7, =0.5 is shown in SI Appendix, Fig. S5.
As expected, the average balanced accuracy of all methods
decreases as a function of the cartel’s fraction r, and once the
cartel’s fraction is too large all approaches fail. In our simu-
lations, both SML and iMLE initialized with SML were far more
robust to the size of the cartel than either majority voting or
iMLE initialized with majority voting. With a cartel size of 20%),
SML was still able to construct a nearly perfect predictor, whereas
the balanced accuracy of majority voting and iMLE initialized with
majority voting were both far from 1. Interestingly, in our simu-
lations, iMLE using SML as starting condition showed no signif-
icant improvement relative to the average balanced accuracy of
SML itself.

Real Datasets. We applied our spectral approaches to 17 different
datasets of moderate and large sizes from medical, biological,
engineering, financial, and sociological applications. Our en-
semble of predictions was composed of 33 machine-learning
methods available in the software package Weka (25) (Materials
and Methods). We split each dataset into a labeled part and an
unlabeled part, the latter serving as the test data D used to
evaluate our methods. To mirror our problem setting, each
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algorithm had access and was trained on different subsets of the
labeled data (SI Appendix).

Fig. 2 and SI Appendix, Figs. S6-S8 show the results of dif-
ferent metaclassifiers on these datasets. Let us now interpret
these results and explain the apparent differences in balanced
accuracy between different approaches, in light of our theoretical
analysis in the previous section.

In datasets where our assumptions are approximately satisfied,
we expect SML, iMLE initialized with SML, and iMLE initial-
ized with majority voting to exhibit similar performances. This is
the case in the ACS data (Fig. 2, Left), and in all datasets in S/
Appendix, Fig. S6. We verified that in these datasets Eq. 3 indeed
holds approximately (SI Appendix, Table S3). In addition, in all
these datasets, the corresponding sample covariance matrix of
the 33 classifiers was almost rank-one with 4; (R)/Trace(R) > 0.8.

SI Appendix, Fig. S7 and Fig. 2, Center correspond to datasets
where the median performance of the classifiers was only slightly
above 0.5, with some classifiers having poor, even worse than
random balanced accuracy. Interestingly, in these datasets, the
covariance matrix between classifiers was far from being rank-
one (similar to the case when cartels were present). The relative
amount of variance captured by the first two leading eigenvalues
M/>_4 and A,/ A was, on average, 51.4% and 15.0%, re-
spectively. In these datasets, SML seems to offer a clear ad-
vantage: Initializing iMLE with SML rather than with majority
voting avoids the poor outcomes observed in the NYSE, AMEX,
and PNS datasets.

Finally, the datasets in ST Appendix, Fig. S8 and in Fig. 2, Right
are characterized by very sparse (ENRON) or high-dimensional
(LASTFM) feature spaces X. In these datasets, some instances
were highly clustered in feature space, whereas others were iso-
lated. Thus, in these datasets many classifiers made identical errors.

Remarkably, even in these cases, iMLE initialized with SML
had an equal or higher median balanced accuracy than iMLE
initialized with majority voting. This was consistent across all
datasets, indicating that the SML prediction provided a better
starting point for iMLE than majority voting.
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predictors did not satisfy the conditional independence as-
sumption. In all cases iMLE starting from SML had equal or
higher balanced accuracy than iMLE starting from majority
voting. The boxplots represent the distribution of balanced
accuracies over 30 independent runs.
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Summary and Discussion

In this paper we presented a spectral-based statistical analysis for
the problems of unsupervised ranking and combining of multiple
predictors. Our analysis revealed that under standard indepen-
dence assumptions the off-diagonal of the classifiers covari-
ance matrix corresponds to a rank-one matrix, whose eigenvector
entries are proportional to the classifiers balanced accuracies.
Our work gives a computationally efficient and asymptotically
consistent solution to the classical problem posed by Dawid and
Skene (15) in 1979, for which to the best of our knowledge only
nonconvex iterative likelihood maximization solutions have
been proposed (18, 26-29).

Our work not only provides a principled spectral approach for
unsupervised ensemble learning (such as our SML), but also
raises several interesting questions for future research. First, our
proposed spectral-based SML has inherent limitations: It may be
suboptimal for finite samples, in particular when one classifier is
significantly better than all others. Furthermore, most of our
analysis was asymptotic in the limit of an infinitely large unla-
beled test set, and assuming perfect conditional independence
between classifier errors. A theoretical study of the effects of a
finite test set and of approximate independence between classi-
fiers on the accuracy of the leading eigenvector is of interest. This
is particularly relevant in the crowdsourcing setting, where only
few entries in the prediction matrix f;(x;) are observed. Although
an estimated covariance matrix can be computed using the joint
observations for each pair of classifiers, other approaches that
directly fit a low-rank matrix may be more suitable.

Second, a natural extension of the present work is to multiclass
or regression problems where the response is categorical or
continuous, instead of binary. We expect that in these settings
the covariance matrix of independent classifiers or regressors is
still approximately low-rank. Methods similar to ours may im-
prove the quality of existing algorithms.
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Third, the quality of predictions may also be improved by
taking into consideration instance difficulty, discussed, for ex-
ample, in refs. 18 and 23. These studies assume that some
instances are harder to classify correctly, independent of the
classifier used, and propose different models for this instance
difficulty. In our context, both very easy examples (on which all
classifiers agree) and very difficult ones (on which classifier
predictions are as a good as random) are not useful for ranking
the different classifiers. Hence, modifying our approach to in-
corporate instance difficulty is a topic for future research.

Finally, our work also provides insights on the effects of
a malicious cartel. The study of spectral approaches to identify
cartels and their target, as well as to ignore their contributions, is
of interest owing to its many potential applications, such as
electoral committees and decision making in trading.

Materials and Methods

Datasets and Classifiers. We used 17 datasets for binary classification prob-
lems from science, engineering, data mining, and finance (S/ Appendix, Table
S1). The classifiers used are described in ref. 30 or are implemented in the
Weka suite (25) (S/ Appendix, Table S2).

Statistical Analysis and Visualization. Statistical analysis and visualization were
performed using MATLAB (2012a; The MathWorks) and R (www.R-project.
org). Additional information is provided in S/ Appendix.
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