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HIGH DIMENSIONAL SPARSE COVARIANCE ESTIMATION:
ACCURATE THRESHOLDS FOR THE MAXIMAL DIAGONAL ENTRY

AND FOR THE LARGEST CORRELATION COEFFICIENT

By Aharon Birnbaum∗ and Boaz Nadler†
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The maxima of many independent, or weakly dependent, random
variables, and their corresponding thresholds for given right tail prob-
abilities are classical and well studied problems. In this paper we focus
on two specific cases of interest related to estimation and hypothe-
sis testing of high dimensional sparse covariance matrices. These are
the distribution of the maximal diagonal entry of a sample covariance
matrix and the largest off-diagonal correlation coefficient, both under
the assumption of an identity population covariance. In both cases, as
sample size and dimension tend to infinity, upon centering and scal-
ing, there is asymptotic convergence to a Gumbel distribution. We
show, however, that this convergence is slow and that finite sample
distributions may be quite far from these asymptotic ones. Applying
a perturbation approach, we identify the leading error terms, and
derive more accurate distributions and corresponding thresholds. For
non-Gaussian data, these depend explicitly on higher order moments
via appropriate Edgeworth expansions. As a side result, we also de-
rive sharp bounds for the left and right tail probabilities of a single
χ2

n random variable, which may be of independent interest.

1. Introduction. Many contemporary applications require analysis of high dimensional
data, often with a relatively small number of samples, see [15] for a recent review. Prototyp-
ical examples include hypothesis testing, inference on, and estimation of a p × p population
covariance matrix Σ, or of its leading eigenvectors, given a sample covariance matrix S com-
puted from only n samples [4, 17]. Another example is screening for pairs of highly correlated
variables, see [11]. In the high-dimension small-sample setting (known as the “large p, small
n” scenario), considerable work has been devoted to various models of sparsity, to the develop-
ment of thresholding schemes, and derivation of corresponding minimax rates of convergence,
see for example [1, 5, 8, 18, 20, 25] and references therein. There are also works on estimation
of a sparse inverse covariance matrix, though we shall not consider those in the present paper.

Assuming sparsity of either the population covariance matrix or of its leading eigenvectors,
the two main thresholding schemes that have been proposed are: i) variable selection by
thresholding the diagonal of the sample covariance matrix, and ii) screening highly dependent
pairs of variables by thresholding the off-diagonal entries of sample covariance or correlation
matrices. Similar schemes have been suggested for various hypothesis testing problems and
for detection of sparse signals in noise.

On the theoretical front, for sparse covariance estimation, assuming that the underlying
distribution satisfies appropriate tail conditions, several of the works cited above suggested
thresholds of the form C

√
(ln p)/n. Using relatively crude tail bounds, it can be proved that

under various sparsity models such thresholds attain asymptotic consistency and in certain
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cases even achieve the minimax rates as n, p → ∞. With respect to the largest off-diagonal
entry of a sample correlation matrix, several works studied its limiting distribution as p, n →
∞, assuming independence of all p coordinates, with an identity population covariance matrix,
see [13, 6, 23, 35]. Beyond their theoretical interest, these results can be used to identify highly
correlated pairs in high dimensional data and to reject hypotheses of variable independence.
Indeed, such thresholding schemes have been proposed for detection of sparse signals in several
practical applications. For example, Noh and Solo [28] proposed a thresholding scheme to
detect signals in fMRI data, while Johnson and Potter [14] use a similar approach for outlier
detection in a passive microwave sensing application. For a discussion of the importance of
accurate thresholds in fMRI studies, see for example [24].

Given the above asymptotic results, an interesting practical question is their accuracy and
relevance for typical applications, where the dimension and sample size are of course finite,
with the latter parameter potentially rather small (n = O(10 − 100), with p = O(n) or
even p � n). In this paper we focus on the hypothesis testing aspect of these problems:
the determination of accurate thresholds for given false alarm rates, and in particular their
dependence on the finite sample size and dimension, as well as on the underlying distributions.
To set the corresponding thresholds for detection of sparse structures in data, we consider the
null hypothesis that the observed data Xi = (Xi1, . . . , Xip) contains no structure at all, with all
its p coordinates being independent and having the same distribution. Under this assumption,
the diagonal entries of the sample covariance matrix S are all i.i.d. random variables. Similarly,
the off-diagonal entries of the correlation matrix R are also all identically distributed, though
they are weakly dependent. Hence, determination of appropriate thresholds for given type-
I error probabilities amounts to the study of the maxima of many independent, or weakly
dependent, random variables.

As is well known in extreme value theory, the convergence of the maxima to the limit-
ing distribution may be very slow. In this paper we show that this is also the case for our
two random variables of interest, the maxima of the diagonal of S and the largest pairwise
correlation coefficient, albeit in a non-trivial way. The main difference between the classical
theory of extreme values [19] and our setting, is that in the former the distribution of the p
random variables is fixed and p → ∞, whereas our setting involves two parameters p and n
with the distribution of the underlying variables depending on the sample size n. To study the
maxima of p such random variables, thus requires a careful analysis of various terms involving
both of these parameters. In particular, we first point out that in the “large p – small n” set-
ting, the standard approach of analyzing the relevant distributions in the joint limit as both
p, n → ∞ may give quite inaccurate results. The reason is that the leading asymptotic error
terms, as both p, n → ∞, typically of order O(ln ln p/ ln p), are not the leading cause of error
for finite and small values of n. The key point of our analysis, is that in the non-asymptotic
“large p– small n” setting, the main source of inaccuracy of the limiting extreme value dis-
tributions is in different terms, of order O((ln p)3/2/

√
n) or O((ln p)2/n), depending on the

variable of interest. Since these terms are asymptotically negligible compared to ln ln p/ ln p,
by studying the asymptotic limit p, n → ∞ with dimension growing at most polynomially
with sample size, these error terms are not considered, even though in practice they can be
O(1). By explicitly taking these higher order terms into account, we derive modified distri-
butions and corresponding thresholds, which are far more accurate for practical sample size
and dimensionality.

In our analysis, we consider both Gaussian and non-Gaussian distributions. In the Gaussian
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case, we perform a delicate analysis of the known χ2 distribution for the diagonal of the
covariance matrix and of the distribution of Pearson’s correlation coefficient for independent
bi-variate Gaussians. In the course of this analysis we also derive sharp bounds for the left
and right tail probabilities of a χ2

n random variable, which may be of independent interest.
In the Gaussian case, we identify the correction terms as the leading order terms in the

Edgeworth expansion of these distributions. Hence, in the non-Gaussian case, we study the
corresponding Edgeworth expansions of the relevant distributions. The resulting modified
thresholds thus depend explicitly on the higher order moments of the underlying distributions,
and highlight the importance of Edgeworth expansions in high dimensional settings.

From a statistical perspective, our results allow determination of quite accurate non-
asymptotic thresholds for a variety of hypothesis testing problems, as outlined above. In the
context of high dimensional sparse linear regression [9], they allow to set appropriate thresh-
olds for screening which predictor variables are highly correlated with a response variable.

However, our approach may have a broader applicability, as similar settings involving two
parameters n, p with p � 1, occur frequently in many other high dimensional problems. In the
context of tail inequalities for the maxima of p variables, it is known that behavior may change
from double exponential to exponential, see for example [34]. In cases where accurate distri-
butional results are needed, our perturbation technique, considering the leading order terms
as a function of the finite values of both p and n may thus be applicable. A notable example
is detection of significant bi-clusters or ANOVA-fit submatrices in high dimensional rectan-
gular matrices [33]. Our analysis has also implications to estimation of sparse eigenvectors in
principal component analysis [5], but these will be discussed in a separate publication.

The paper is organized as follows. In section 2 we present the problem formulation, a review
of previous work and our main results. The outline of the proofs appears in sections 3 and
4, with more technical details postponed to the appendix. Section 5 contains simulations
illustrating the accuracy of our modified distributions and thresholds.

2. Problem Setup and Main Results. For i = 1, . . . , n+1, let Xi = (Xi1, Xi2, . . . , Xip)T ,
be (n+1) i.i.d. p-dimensional column vectors, with an unknown population covariance matrix
Σ. The (unbiased) p × p sample covariance matrix S is given by

(1) S =
1
n

n+1∑

i=1

(xi − x̄)(xi − x̄)T

where x̄ is the sample mean, whereas the (i, j)-th entry of the sample correlation matrix R is

(2) Rij =
Sij√
SiiSjj

.

As mentioned in the introduction, in several modern applications, thresholding the matrices
S or R are common tasks for covariance estimation, detection of sparse structures and for
testing hypotheses of variable independence. The focus in this paper is on the determination
of non-asymptotic accurate thresholds for these tasks for given false alarm probabilities, which
depend both on the finite sample size n and dimension p, and on the underlying distribution.

Given the assumption that the structure to be discovered is sparse, in our analysis of the
corresponding thresholds we consider the “null hypothesis” of no structure, i.e., we assume
that all Xij are i.i.d. from some underlying distribution p(x) with a sufficient number of finite
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moments. Without loss of generality, we assume that E[Xij ] = 0, and E[X2
ij ] = 1, so the

population covariance matrix is the identity matrix, Σ = I. For future use, we denote the
higher order moments by μk = E[Xk

ij ].

2.1. Diagonal Thresholding. Let us first consider the maxima of the diagonal entries of
the sample covariance matrix, which we denote by Ynp,

(3) Ynp = max
1≤i≤p

Sii.

Under the null hypothesis of no structure in the data, the diagonal entries Sii are all indepen-
dent. Furthermore, as n → ∞ and under suitable moment conditions on p(x), from the CLT,
each Sii converges in distribution to a Gaussian random variable. Due to the independence
of all Sii, the theory of extreme values then states that as p → ∞ the maxima, after proper
centering and scaling, converges to a Gumbel distribution [19]. When the underlying data
Xi are multivariate Gaussian N(0, 1), each Sii follows a χ2

n/n distribution. Approximating
each diagonal entry by a N(1, 2/n) random variable, standard results on the maxima of p
independent Gaussians imply that the threshold z(p, α) which satisfies

(4) Pr

[

Ynp > 1 +

√
2
n

z(p, α)

]

= α

is asymptotically given by

(5) z2(p, α) = 2 ln p − ln ln p − ln 4π − 2 ln | ln(1 − α)| + O

(
ln ln p

ln p

)

.

As can be verified numerically, Eqs. (4) and (5) are quite accurate for the maxima of p � 1
i.i.d. Gaussian r.v.’s. The key difference in our setting is that the distribution of each of the
p r.v. Sii is only approximately Gaussian and depends on a second parameter n. Due to the
slow convergence of the χ2

n/n distribution to a N(1, 2/n) Gaussian distribution, Eq. (5) may

thus be a poor approximation to the required threshold. That is, the scaling
√

2
nz(p, α) in

Eq. (4) may not be sufficiently accurate, with the required threshold having a non-negligible
dependence on n, z = z(n, p, α). To illustrate this point, and motivate our work, consider the
plots in Fig. 1. In the three panels from left to right, we compare the empirical density of
Ynp to the Gaussian threshold of Eq. (5), for (n, p) = (100, 1000), (1000, 500) and (1000, 100),
respectively. Note that in the left panel with n � p, the distribution of Ynp is very far from
the limiting Gumbel distribution corresponding to maxima of purely Gaussian r.v.’s. Even in
the other panels, where n = 2p or n = 10p, the fit is not very accurate.

Our first result elucidates on the reason for this discrepancy. We show that for a given
right tail probability α, the Gaussian approximation involves neglecting a higher order term
O(z3/

√
n) in the relevant equation for setting the threshold z(n, p, α). Since to leading order

z ∼ (ln p)1/2, asymptotically as p, n → ∞ with p
n = c for example, this term not only vanishes

but is also significantly smaller than the next order correction term not present in Eq.(5), of
O(ln ln p/ ln p). However, for this term to be negligible for finite p, n, we need z3/2/

√
n � 1.

Fig. 2(a) shows the slow decay of this term as n → ∞ with p = c ∙ n, for various values of
c. Even if n = 5p (c = 0.2), for this higher order term to be smaller than < 0.01, requires a
sample size n = O(106). This example illustrates that problems involving asymptotics with
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Fig 1. Empirical density of Ynp (blue circles) compared to the asymptotic Gumbel distribution corresponding
to the maxima of p Gaussians (solid red), and to our suggested correction, Eq. (6) (dashed black curve).

two or more small or large parameters (p, n in our case), need to be studied with extreme
care. This is a well known issue in the applied mathematics literature, see [3].

Based on this observation, we suggest a modified threshold that takes this O(z3/
√

n) term
into account. In the Gaussian case this modified threshold can be computed explicitly using
the known distribution of a χ2

n random variable, as follows:

Theorem 2.1. Let {Sii}
p
i=1 be p i.i.d. random variables Sii ∼ χ2

n/n, and let Ynp denote

their maxima. Let t = 1 +
√

2
nzH , where zH = zH(n, p, α) is given by

(6) zH(n, p, α) = z(p, α)

(

1 +
1
3

√
2
n

z(p, α)3

1 + z(p, α)2

)

and z(p, α) is the Gaussian threshold from Eq.(5). Then, for parameter values (n, p) such that

(ln p)3/2 �
√

n � (ln p)5/2

ln ln p ,

(7) Pr [Ynp < t] = (1 − α)

(

1 + O

(
ln(1 − α)

ln p

)

+ O

(
| ln(1 − α)|2

p

))

.

As shown in Figure 1, the modified expression of Eq.(6) yields a much better fit to the
empirical density of Ynp for several values of (n, p). In particular, the fit is very accurate in
the right tail, the most relevant region for calculation of the threshold zH . The broad range
of values of (n, p) where Eq. (6) is the leading correction term is illustrated in Figure 2(b).

To clarify the origin of the correction term in Eq. (6) we describe the first steps in the
calculation of zH . Since Sii are i.i.d. we look for a threshold t = t(α) s.t.

Pr[Ynp < t] = (1 − Pr[S11 > t])p = 1 − α.

To this end, we should plug into this equation some expression for Pr[S11 > t]. Since S11 ∼
χ2

n/n we use the following approximation (taken from lemma 3.1 below)

Pr[S11 > 1 + ε] ≈
e−

n
2 (ε−ln(1+ε))

√
πn(ε + 2

n)
.
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Fig 2. (a) The ratio z(p,α)3/2
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as a function of sample size n with α = 0.05 and p = c ∙n for various values of c.

(b) Following the conditions of Theorem 2.1, the top and bottom solid curves are (ln p)5/(ln ln p)2 and (ln p)3,
respectively whereas the diagonal dashed curve is n = p. For sample size n significantly above the top curve
(which in particular implies n � p for p ≤ 20000), the Gaussian approximation (Eq. (5)) is reasonably accurate
with all correction terms being negligible. Between the two curves finite n corrections are non-negligible. Below
the bottom curve, p is exponential in n, and a different asymptotic approximation is needed.

Replacing ln(1 + ε) by its Taylor expansion, and making a change of variables ε =
√

2
nz gives

Pr
[

S11 > 1 +
√

2
nz

]

≈
e−z2/2

√
2πz

∙
e−

n
2

∑∞
k=3

(−
√

2
n

z)k/k)

1 +
√

2
n

1
z

.(8)

Let us compare this expression with the tail behavior for a Gaussian r.v., whereby for z � 1

Pr [N(0, 1) > z] =
e−z2/2

√
2πz

(

1 + O

(
1
z

))

.

Thus approximating χ2
n
n by N(1, 2

n), implicitly implies replacing the second term in Eq.(8) by
unity. In particular for this approximation to be accurate, the next order term must be small√

2
nz(p, α)3 � 1. However, as discussed above (and illustrated in Fig. 2(a)), this term is in

fact O(1) for practical finite values of (n, p) which explains the poor accuracy of Eq. (5) as a
threshold for the maxima of many χ2

n r.v.’s.
In summary, even though as n → ∞ each diagonal entry Sii converges to a Gaussian distri-

bution, for finite values of n, p the Gaussian approximation may not be sufficiently accurate
and a more careful analysis is required. When the observed data Xij ∼ N(0, 1), the leading

correction term follows from an explicit analysis of the tail of a χ2
n

n r.v., and in fact involves
its Edgeworth expansion as n → ∞. In the general case, there is no explicit expression for
the distribution of the sample variance. In analogy to the χ2

n/n case, we propose a modified
threshold that takes into account the first term in the Edgeworth expansion of the sample
variance. This gives the following proposition:
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Proposition 2.1. Let S be the sample covariance matrix of an (n + 1) × p matrix X,
whose entries Xij are all i.i.d. from some density p(x) with zero mean, unit variance, and

finite 8-th moments. Further assume that lim sup‖t‖→∞

∣
∣
∣E
[
ei(t1X11+t2X2

11)
]∣∣
∣ < 1. Let

(9) zE(n, p, α) = z(p, α)

(

1 +
κ

6σ3

1
√

n

z(p, α)3

1 + z(p, α)2

)

where z(p, α) is the Gaussian threshold from Eq.(5), and

σ2 = μ4 − 1(10)

κ = μ6 − 3μ4 + 6μ2
3 + 2.(11)

Then, for parameter values (n, p) such that (ln p)3/2 �
√

n � (ln p)5/2

ln ln p ,

(12) Pr
[

Ynp < 1 +
σ
√

n
zE(n, p, α)

]

≈ 1 − α.

Note that for a Gaussian distribution, σ2 = 2, κ = 8, and we recover Eq. (6) of Theorem
2.1. Figure 3 compares the empirical density of Ynp for several underlying distributions, to
the limiting Gumbel density and to the density corresponding to Eq.(12). While our proposed
threshold Eq.(9) is more accurate than the Gaussian threshold, its accuracy varies for different
distributions. In contrast to the Gaussian case where Eq. (7) contained explicit error bounds,
the errors involved in Eq. (12) are related to the accuracy of Edgeworth expansions. Deriving
sharp (non-uniform and location dependent) bounds on the error of Edgeworth expansions is
an interesting research topic beyond the scope of this article.

2.2. Largest Correlation Coefficient. Next, we consider the largest correlation coefficient,
namely the maximal off-diagonal entry, in absolute value, of the sample correlation matrix,

(13) Ln = max
i<j

|Rij |.

The random variable Ln was suggested as a statistic for testing independence of p variates
of a population, see [23, 26]. Related random variables, such as the maxima of individual
rows of the correlation matrix R were recently suggested for screening interesting variables in
large-scale correlation studies, see [11, 32]. Similarly, in the context of ultrahigh dimensional
regression, screening variables based on their correlation with a response was studied by Fan
and Lv [9]. Finally, the distribution of Ln plays a role in compressed sensing, since Ln is the
coherence of the design matrix X, see [6].

The limiting distribution of Ln, in the joint limit n, p → ∞ has been studied in several
works. In [13], Jiang showed that if n/p → γ ∈ (0,∞) and E[Xr] < ∞ for some r > 30, then

(14) nL2
n − 4 ln p + ln ln p → exp

(
−e−y/2/

√
8π
)

.

Since then, several works showed that Eq.(14) continues to hold both with weaker moment
conditions, as well as when the dimension is allowed to increase polynomially with sample
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Fig 3. Comparison of the empirical density of Ynp (blue circles) to the asymptotic Gumbel density of the
maxima of p i.i.d. Gaussians, Eq. (5) (solid red), and to our suggested correction, Eq. (6) (dashed black curve).

size, see [6, 22] and additional references therein. When dimension increases exponentially
with sample size, there is a phase transition in the limiting distribution, see [7].

As in the case of the maxima of the diagonal entries of S, a key question is the accuracy
of Eq.(14) for finite p, n, and in particular when n � p. Moreover, the parameter p has a
different role here, as we now consider the maxima of p(p − 1)/2 weakly dependent random
variables, instead of only p variables as in the previous section. That is, even a modest value
of p leads to the maxima of many random variables. In general, as already mentioned above,
the convergence to limiting extreme value distributions is known to be slow. Indeed, in [23],
the authors showed that the convergence rate in Eq. (14) is very slow, of O(ln ln n/ ln n).
Then, assuming that p, n → ∞ with c1n

β < p < c2n
β for some β > 0, and assuming

some appropriate regularity conditions on the underlying distribution, Liu et. al. derived
the following improved approximation (Thm. 1.2 in [23]), with a universal correction term
independent of the underlying distribution,

(15) Pr
[
nL2

n − 4 ln p + ln ln p < y
]
≈ exp

(

−
p(p − 1)

2
Pr
[
χ2

1 > 4 ln p − ln ln p + y
])

.
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density, Eq. (14), (solid red curve), the correction by Liu, Lin and Shao (LLS) [23], Eq. (15), (dashed-dot
black), and to our suggested correction, Eq. (17) (dashed purple curve). The left panel is for (p, n) = (64, 256),
the center panel is a zoom into the right tail region, whereas the right panel is for (p, n) = (256, 64).

Liu et. al. further showed that asymptotically, Eq. (15) has a smaller error, O
(
(ln n)5/2/

√
n
)
.

In this paper we are interested in accurate approximations to the right tail probabilities of
Ln. To motivate our work, consider the plots in Figure 4, which compare the empirical density
of nL2

n −4 ln p+ln ln p to the limiting distribution (14) and to its correction (15) as suggested
by [23], both for (n, p) = (256, 64) as well as for (n, p) = (64, 256), with underlying N(0, 1)
observations. As seen from these plots, neither (14) nor (15) provide accurate approximations
to the required distributions, even though the latter is slightly better.

As we show below, and similar to the analysis of the random variable Ynp, the source for this
non-negligible error is in a term of asymptotically smaller order O((ln p)2/n), which was not
considered in these previous works. In the Gaussian case, this term can be computed explicitly,
using the known distribution of a single Pearson’s correlation coefficient for independent bi-
variate Gaussian observations. Taking this term into account yields the following result:

Theorem 2.2. Let R be the correlation matrix of an (n + 1)× p matrix X, whose entries
Xij are all i.i.d. N(0, 1). Let

(16) w(y) = 2 ln(p(p − 1)) − ln ln(p(p − 1)) + ln 2 + y.

Then, as p, n → ∞, with p/n → c
(17)

Pr
[

L2
n <

w(y)
n − 2

]

= exp

(

−
e−y/2

√
8π

∙ A(w(y), n, p)

)[

1 + O

(
1
n

,
1

√
n(ln p)3/2

)

e−y/2
]

+ O
(
e−y)

where

(18) A(w, n, p) = e−w2/4(n−2)
(

1 −
n − 2

n

1
w

)√
2 ln(p(p − 1))

w
.

As illustrated in Fig. 4, Eq. (17) provides a much better fit to the empirical density of Ln

than the asymptotic Gumbel distribution of Eq. (14), in particular at the right tail, which is
the most relevant part for threshold calculation.
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It is instructive to compare the difference between Eq. (17) and the limiting expression (14).
Note that the latter follows from the former under the approximation A(w, n, p) ≈ 1. For the
limiting expression to be accurate, a necessary condition is thus that w2/4n � 1. Since for
large p, to leading order w = 4 ln p(1 + o(1)), for this term to be negligible in practice, say
w2/4n = 0.1, the required condition is n ≥ 40(ln p)2. Even at a moderately small dimension of
p = 10, for the asymptotic distribution to be accurate requires n & 200 samples. Our analysis
thus illustrates that even with Gaussian observations, for practical values of (n, p) the limiting
formula (14) may be quite far from the empirical one for the largest correlation coefficient,
and as far as testing is concerned, may lead to rather inaccurate thresholds.

Let us provide a different point of view on the expression A(w, n, p). As n → ∞, each indi-
vidual correlation coefficient Rij converges in distribution to a Gaussian N(0, 1/

√
n) random

variable. The term exp(−w2/4(n−2)) appearing in A(w, n, p) is nothing but the leading order
correction term in the Edgeworth expansion of the sample correlation coefficient, correspond-
ing to independent bi-variate Gaussian observations. When the underlying random variables
Xij are non-Gaussian, an explicit expression for the density of the sample correlation coeffi-
cient is in general unknown. In analogy to the Gaussian case, we thus propose to approximate
the probability Pr[|Rij | > t] by its leading Edgeworth expansion.

Proposition 2.2. Let R be the correlation matrix of an (n + 1) × p matrix X, whose
entries Xij are all i.i.d. from some density p(x) with zero mean, unit variance, finite 8-th
moments. Then,

(19) Pr
[
nL2

n < w
]
≈ exp

(

−
p(p − 1)

2

√
2
π

1
√

w
e−w/2

(
1 + 1

nE(w)
)
)

where

(20) E(w) =
α2

3

72
w(w2 − 10w + 15) +

α4

24
w(w − 3)

and the coefficients α3 and α4 are given by

α3 = μ2
3(21)

α4 = −6 + (μ4 − 3)2.(22)

As discussed above, E(w)/n is the leading term in the Edgeworth expansion of a single
correlation coefficient. It depends on both the third and fourth moments of the underlying
distribution. In fact, for a non-symmetric distribution with μ3 6= 0, the correction involves not
only a O((ln p)2/n) term, but also a term O((ln p)3/n), which asymptotically is even larger.

The top left panel of Fig. 5 shows the empirical density of Ln with Gaussian, uniform or
χ2

7 distributions, for (n, p) = (128, 128). Each of the remaining panels compares the right tail
region to Eq. (19). At these parameter values, the Edgeworth expansion is quite accurate for
the Gaussian and uniform distribution, but not for the χ2

7 distribution which is asymmetric
around its mean and has slower tail decay.

This example illustrates that the two-term Edgeworth expansion has limited applicability,
in particular for p � n. The reason is that the Edgeworth expansion may not be accurate for
values of the correlation coefficient several standard deviations away from zero, which are the
relevant ones when p � n. Furthermore, the Edgeworth expansion may even give negative
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densities for small sample sizes. While beyond the scope of this paper, one option to remedy
this may be to apply some monotonic transformation that prevents negative densities without
losing the asymptotic accuracy of the Edgeworth expansion, see for example [30].

Finally, the following proposition provides approximate expressions for the threshold of the
largest correlation coefficient. Its proof, based on algebraic manipulations of Eqs. (17) and
(19), is similar to that made in deriving the thresholds for the maximal diagonal entry of the
sample variance, and is hence omitted.

Proposition 2.3. Let R be the correlation matrix of an (n + 1) × p matrix X, whose
entries Xij are all i.i.d. from some density p(x) with zero mean, unit variance, finite 8-th
moments. Let

(23) w(n, p, α) = w0(n, p, α)(1 + δ)

where

(24) w0(n, p, α) = 2 ln(p(p − 1)) − ln ln(p(p − 1)) − ln 4π − 2 ln | ln(1 − α)|

and

(25) δ =






− w2
0

2(n−2)

(
1 + w0 + w2

0
n−2

)−1
Xij ∼ N(0, 1)

2E(w)
n−1

(
1 + w0 −

E(w)
n−1

)−1
otherwise

.

Then for parameter values (n, p) such that (ln p)2 � n � (ln p)3

ln ln p

(26) Pr
[
(n − 2)L2

n < w(n, p, α)
]
≈ 1 − α

For the case of Gaussian observations, similar to the analysis in Theorem 2.1, the error in
Eq. (26) can be bounded explicitly. This error is O(ln(1 − α) ln ln p

ln p ) + O(ln2(1 − α)).

3. Largest Diagonal Entry of the Sample Covariance Matrix. In this section we
prove Theorem 2.1 and Proposition 2.1. Recall that under the null hypothesis of no structure
the variables Xij are assumed to be all i.i.d. Hence their sample variances Sii are also i.i.d.
and the exact equation for the threshold t as a function of the false alarm rate α is

(27) 1 − α = Pr[Ynp < t] = (1 − Pr[S11 > t])p .

To simplify notation we denote At = Pr[S11 > t]. Note that in fact At depends also on n since
the distribution of Sii depends on n. Taking logarithms on both sides of Eq. (27) gives

(28) ln(1 − α) = p ln(1 − At).

Since our interest is in right tail probabilities of the maxima Ynp where p is also large, we may
assume that At � 1 and use the Taylor approximation ln(1 − At) = At + O(A2

t ). Thus,

(29) ln(1 − α) = −p(At + O(A2
t )) ≈ −pAt.

An approximate threshold t = t(α) can be found by inverting Eq.(29), namely t(α) =
A−1(ln(1 − α)1

p). The proof proceeds as follows: First we derive an explicit expression for
At as function of n and t. Next, we plug this expression into Eq. (29) and solve for t, care-
fully analyzing the different error terms for finite p, n. We finish with an analysis of the error
incurred by the approximations performed in the various steps of the derivation.
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Fig 5. Empirical density of U = nL2
n − 4 ln p + ln ln p for various underlying distributions (Gaussian, uniform,

and χ2
7), and comparison to the corresponding Edgeworth expansion (EW).

3.1. Gaussian case. In the multivariate Gaussian case, where Xi = (Xi1, . . . , Xip)T ∼
N(0, Ip), each Sii follows a χ2

n/n distribution. The following lemma gives non asymptotic
bounds for the left and right tails of the χ2

n distribution. This lemma may be of independent
interest, as χ2

n random variables appear in many statistical applications. In our case it provides
an approximate yet accurate explicit expression for At = Pr[S11 > t].

Lemma 3.1. Let Wn be a random variable with a χ2
n distribution. The following bounds

hold for all n ≥ 2 and for all ε > 0,

Pr
[
Wn

n
> 1 + ε

]

≤
1

√
πn

1

ε + 2
n

exp
(
−n

2 (ε − ln(1 + ε))
)

(30)

Pr
[
Wn

n
< 1 − ε

]

≤
1

√
πn

1 − e−
n
2 (ε− 2

n)

ε − 2
n

exp
(

n
2 (ε + ln(1 − ε))

)
(31)

In addition, if ε ≥
√

2
nz for some z > 1 then the following lower bound also holds

Pr
[
Wn

n
> 1 + ε

]

≥
1

√
πn

1

ε + 2
n

exp
(
−n

2 (ε − ln(1 + ε))
)
(

1 −
1
z2

−
1
n

)

.(32)

Remark 1: For ε < 2
n it might seem that Eq. (31) gives a negative bound. However, this is

not the case since the numerator and the denominator in the term 1−e
−n

2 (ε− 2
n)

ε− 2
n

have equal
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sign for all ε. Additionally, there is no singularity at ε = 2
n since as ε → 2

n both the numerator
and the denominator vanish and the limit is well defined.
Remark 2: Several works derived χ2

n bounds via various approximations to the exponential
terms exp(−n

2 (ε− ln(1+ ε)) and exp
(

n
2 (ε + ln(1 − ε))

)
. For example, [17] and [21] proved that

Pr
[
Wn

n
> 1 + ε

]

≤ exp
(
−n

4 (
√

1 + 2ε − 1)2
)

(33)

Pr
[
Wn

n
< 1 − ε

]

≤ exp

(

−
nε2

4

)

.(34)

Such bounds were mostly used to analyze minimax rates or prove consistency results. They
are not sharp enough to determine accurate thresholds, which is the goal of this paper.
Remark 3: Lemma 3.1 slightly improves on the results in [16] as follows. Let ε = s

√
2/n,

and σn =
√

2n. For 0 < s <
√

n
8 combining Eq. (47) of [16],

ln(1 + ε) − ε ≤
−ε2/2

1 + 2ε/3
0 ≤ ε ≤

1
2

with our Eq. (30) gives that

(35) Pr [Wn − n > sσn] ≤
1

√
2π

1

s +
√

2
n

exp

(

−
s2/2

1 + 4s/3σn

)

which is slightly sharper than Eq. (43) in [16] as it has a smaller pre-exponential factor.
Furthermore, from Eq.(35) it follows that Eq. (44) in [16], namely that for 0 < s < n1/6

(36) Pr [Wn − n > sσn] ≤
1
s
e−s2/2

holds for any n ≥ 2, and not only for n ≥ 16, as stated in [16].
We now return to our goal of deriving an explicit expression for the threshold t. We note

that Eq.(30) and (32) imply that as n → ∞ with t = 1 + ε, and ε =
√

2
nz with z ≥ z0 > 1,

(37) At = Pr
[
Wn

n
> 1 + ε

]

=
exp

(
−n

2 (ε − ln(1 + ε))
)

√
πn(ε + 2

n)

(

1 + O

(
1
z2
0

,
1
n

))

.

Plugging Eq.(37) into Eq.(29) gives

(38) − p
exp

(
−n

2 (ε − ln(1 + ε))
)

√
πn(ε + 2

n)

(

1 + O

(
1
z2
0

,
1
n

))

= ln(1 − α).

As described in section A.2 of the appendix, algebraic manipulations of Eq.(38) yield the

following equation for z =
√

n
2 ε

(39) z2 −
2
3

√
2
n

z3 + ln z2 + O

(
z4

n
,

1
√

nz
,

1
z2
0

,
1
n

)

= 2 ln p − ln 2π − 2 ln | ln(1 − α)|.

Eq. (39) is an approximate transcendental equation for the required z. We look for the asymp-
totic solution for z(α, p, n), under the assumption that n, p � 1. It is common in extreme value
theory to take only the first three terms in an asymptotic expansion. These are given by:
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Lemma 3.2. As p, n → ∞, with (ln p)3/2 �
√

n, the first three terms in the asymptotic
solution of Eq. (39) are

(40) z2
χ(α, p) = 2 ln p − ln ln p − ln 4π − 2 ln | ln(1 − α)| + o(1)

Remark: Note that the condition (ln p)3/2 �
√

n holds for p = O(n) as well as for p = O(nβ)
for any finite β > 0. However the condition does not hold if p = O(enc).

Lemma 3.2 shows that the first terms in the asymptotic expansion for the threshold z for
the χ2

n case are identical to those of Eq.(5), which corresponds to the Gaussian case. As shown
in Figure 1 this might be quite inaccurate for finite values of p, n which hints that the o(1)
terms in Eq. (40) may be non-negligible. To elucidate the source of this inaccuracy we plug
the value of zχ back into the original equation (39) and obtain that the residual is:

(41)
2
3

√
2
n

z3
χ + O

(
1
z2
0

,
1
n

)

.

Note that for a fixed 0 < α < 1 (and bounded away from 1), as p → ∞, zχ ∼
√

2 ln p and z0 =
√

ln p. Therefore, the assumption
√

n � (ln p)5/2

ln ln p implies that z3
√

n
= O

(
(ln p)3/2

√
n

)
� O

(
1

ln p , 1
n

)
.

Hence the first term in Eq. (41) is the leading residual error. Moreover, it is significantly larger

than the errors incurred in the derivation of Eq.(39). Additionally, while (ln p)3/2
√

n
is negligible

in the limit n, p → ∞ its convergence to zero is very slow. As shown in Figure 2(a), for the

condition (ln p)3/2
√

n
< 0.1 to hold requires n ≥ 105 for a wide range of values of p/n. Hence we

should not neglect this term for practical finite values of n, p.
To derive a more accurate threshold for finite values of n and p we return once more to

Eq. (39). This time, we view the term 2
3

√
2
nz3 as a perturbation and look for a solution of the

form z = zχ(1 + γ) where zχ is the asymptotic solution from Eq. (40) and γ = γ(n, p) = o(1).
Plugging this expansion into Eq. (39) gives the following leading order equation for γ

2γz2
χ + 2 ln(1 + γ) −

2
3

√
2
n

z3
χ + ln

(
1 − ln ln p+ln 4π+2 ln | ln(1−α)|

2 ln p

)
= 0.

Since γ = o(1) we approximate ln(1 + γ) = γ + O(γ2) to get

2γ(1 + z2
χ) =

2
3

√
2
n

z3
χ − ln

(
1 − ln ln p+ln 4π+2 ln | ln(1−α)|

2 ln p

)

The first term in the r.h.s. is of order O
(

(ln p)3/2
√

n

)
while the second term is O

(
ln ln p
ln p

)
. Hence,

if
√

n � ln(p)5/2

ln ln p , the leading term in the r.h.s. is the first one and the leading solution for γ is

(42) γ =
1
3

√
2
n

z3
χ

1 + z2
χ

.

This value of γ gives the threshold zH of Eq. (6). If we plug zH back into Eq.(39) we get that

the leading error term is now O
(

1
z2
0

)
= O

(
1

(ln p)2

)
which also appears in the original equation.
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To finish the proof of Theorem 2.1 we analyze the errors incurred by using the threshold
zH . This analysis is done by going ”backward” in the derivation of zH and collecting the error

terms in the various steps. Since εH =
√

2
nzH is the solution of Eq.(38) and zH >

√
ln p,

(43) − p
exp

(
−n

2 (εH − ln(1 + εH))
)

√
πn(εH + 2

n)

(

1 + O

(
1

ln p
,
1
n

))

= ln(1 − α).

Recall that by our assumption ln p � n. Thus, the error term in the last equation is O( 1
ln p).

By Eq.(37) we have that

(44) AtH

(

1 + O

(
1

ln p

))

=
exp

(
−n

2 (εH − ln(1 + εH))
)

√
πn(εH + 2

n)
.

Thus from the last two equations we have that

(45) − pAtH = ln(1 − α)
(

1 + O

(
1

ln p

))

We use once more the Taylor approximation p ln(1 − AtH ) = −pAtH + O(pA2
tH

) to get

(46) p ln(1 − AtH ) = ln(1 − α)
(

1 + O

(
1

ln p

))

+ O(pA2
tH

).

Exponentiating this equation and approximating ex = 1 + x + O(x2) gives

Pr

[

Ynp < 1 +

√
2
n

zH

]

= (1 − AtH )p = (1 − α)
(

1 + O

(
ln(1 − α)

ln p

)

+ O(pA2
tH

)
)

Using the approximation pA ≈ | ln(1 − α)| (see Eq. (45)) gives Eq. (7).
�

3.2. Non-Gaussian case. To prove Proposition 2.1, which considers non-Gaussian obser-
vations, we first derive an explicit approximate expression for Pr[Sii > t], that depends on
the higher order moments of the underlying distribution p(x) of the observations.

Lemma 3.3. Let X1, . . . , Xn+1 be n + 1 i.i.d. scalar random variables with some den-
sity p(x) that has zero mean, unit variance, and finite 8-th moments. Further assume that

lim sup‖t‖→∞

∣
∣
∣E
[
ei(t1X11+t2X2

11)
]∣∣
∣ < 1. Then, as n → ∞, the Edgeworth expansion of the dis-

tribution of the unbiased sample variance estimator S = 1
n

∑
(xi − x̄)2 is

(47) Pr
[

S > 1 +
σ
√

n
z

]

= 1 − Φ(z) +
φ(z)
√

n

κ

6σ3
(z2 − 1) + O

(
1
n

)

where Φ(z) is the c.d.f. of a N(0, 1) Gaussian r.v., φ(z) = e−z2/2
√

2π
is its density, and

σ2 = μ4 − 1(48)

κ = μ6 − 3μ4 + 6μ2
3 + 2.(49)
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Lemma 3.3 is proven in appendix A.4. Plugging Eq.(47) into Eq.(29) and approximating
Φ(z) ≈ 1 − φ(z)

z yields the following approximate equation for the threshold z(n, p, α)

(50) − p
e−z2/2

√
2πz

(

1 +
κ

6σ3

z
√

n
(z2 − 1)

)

= ln(1 − α).

Taking logarithms and approximating ln(1 + cz(z2 − 1)) ≈ cz3 gives the following equation:

(51) z2 −
κ

6σ3

2
√

n
z3 + ln z2 = 2 ln p − ln 2π − 2 ln | ln(1 − α)|.

The only difference between Eq. (51) and Eq.(39) for the Gaussian case, is in the coefficient
of the z3

√
n

term. Solving Eq. (51) in the same way as we solved Eq. (39) gives Eq. (9).

4. Largest Correlation Coefficient. In this section we prove Theorem 2.2 and Propo-
sition 2.2, regarding the distribution of the largest off-diagonal correlation coefficient. The
first step is to derive an approximate relation between Pr[maxi<j |Rij | < t] and the much
simpler event Pr[|R12| < t]. In contrast to the largest diagonal entry of S, where under the
null hypothesis all p variables Sii are independent, here the situation is a bit more complicated
as the entries of R are weakly dependent.

One option to derive such a result is to employ the powerful Chen-Stein method, see [23].
Here, however, we show that for right tail probabilities, one may obtain similar results by
simpler and more direct moment bounding methods. To this end, let pn(t) denote the density
of a single correlation coefficient, computed from n samples, and let

(52) A = A(n, t) = Pr [|Rij | > t] =
∫ −t

−1
pn(r)dt +

∫ 1

t
pn(r)dt.

A key quantity that captures the dependence between some of these correlation coefficients is

A2 = Pr [|Rij | > t ∩ |Rik| > t] .

This quantity is related to a similar measure of dependence between correlation coefficients,
recently analyzed in [11, 32], and also appears in the error bounds of the Chen-Stein method
[23]. In terms of these quantities, we have the following claim.

Claim 4.1. Let s = p(p−1)/2 be the total number of distinct correlation coefficients. Under
the null hypothesis that all p variables are independent, the following inequalities between
Pr[Ln < t] and A(n, t) hold for any p, n, t,

(53) 1 − sA ≤ Pr[Ln < t] ≤ 1 − sA +
1
2
(sA)2 −

1
2
sA2 + s(p − 2)(A2 − A2).

Note that for a Gaussian distribution, A2 = A2. While for general underlying distributions
A2 6= A2, as n → ∞ any two pairs of correlation coefficients each converges to a Gaussian
distribution and they become asymptotically independent. Hence, as n → ∞ for any fixed
t we have that A2 → A2. Some bounds on a quantity similar to A2 appear in [23]. A more
detailed study of the rate of this convergence is beyond the scope of this paper.
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Next, using the Taylor expansion exp(−sA) = 1 − sA + O
(
(sA)2

)
, we may approximate

Eq. (53) as

(54) Pr
[

max
i<j

|Rij | < t

]

+ O((sA)2) = exp(−sA) = exp
(

−
p(p − 1)

2
Pr [|Rij | > t]

)

.

Eq. (54) is nothing but the Poisson approximation arising from the Chen-Stein method. Claim
4.1 gives somewhat different (typically larger but in some cases smaller) error bounds on the
quality of this approximation, compared to those obtained by the Chen-Stein method. As we
shall see below, the key to accurate thresholds is an accurate expression for A = Pr[|Rij | > t,
rather than controlling the error in Eq. (54) above.

4.1. Gaussian Case. Given the analysis above, we now derive an approximate expression
for Pr[|Rij | > t]. We first consider the Gaussian case, in which the distribution of a single
Pearson’s correlation coefficient is known explicitly (see [27], p. 147, Eq. 5)

pn(r) = Cn(1 − r2)n/2−2(55)

with

Cn =
Γ(n−1

2 )

π1/2 Γ(n−2
2 )

.

Performing integration by parts

Pr [|Rij | > t] = 2
∫ 1

t
p(r)dr =

2Cn

n − 2

∫ 1

t

(−(1 − r2)(n−2)/2)′

r
dr

=
2Cn

n − 2
(1 − t2)(n−2)/2

t

[

1 −
1
n

(1 − t2)
t2

+ O

(
1
n2

1
t3

)]

(56)

Next, for t =
√

w/(n − 2) we have that

(57) (1 − t2)(n−2)/2 = e−w/2−w2/4(n−2)(1 + o(1/n)).

Furthermore, from the asymptotics of the Gamma function,

(58) Cn =
1
√

π

√
n − 2

2
(1 + O(1/n)) .

Combining Eqs. (56), (57) and (58) gives
(59)

Pr
[

|Rij | >

√
w

n − 2

]

=

√
2
π

1
√

w
e−w/2−w2/4(n−2)

(

1 −
n − 2

n

1
w

+ O

(
1
n

)

+ O

(
1

√
nw3/2

))

.

Plugging Eq. (59) into the r.h.s. of Eq. (54) and choosing w as in Theorem 2.2 gives the
first term in the r.h.s. of Eq.(17). The source of the additional error term in Eq. (17) is in the
error term of Eq. (54). Plugging the definition of w into this error term gives:

(60) (sA)2 =
(

p(p − 1)
2

)2
(

1
p(p − 1)

√
ln(p(p − 1))

√
2

1
√

w
e−

y
2 + o(1)

)2

= O
(
e−y) .
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4.2. Non-Gaussian case. To prove Proposition 2.2, we first derive an approximate expres-
sion for Pr[|R12| > t] when the (n+1)×p variables Xij are i.i.d. but not necessarily Gaussian.

Lemma 4.2. Let X1, X2 be two i.i.d. random variables with the same distribution as a
random variable X. Assume that E[X] = 0,E[X2] = 1 and that X has finite 8-th moments.
Then, as n → ∞, the Edgeworth expansion of the sample correlation coefficient R12 from
n + 1 samples is
(61)

Pr
[

|R12| >
x
√

n

]

= 2(1 − Φ(x)) +
2φ(x)

n

(
α2

3

72
x(x4 − 10x2 + 15) +

α4

24
x(x2 − 3)

)

+ o(1/n)

where Φ(z) and φ(z) are the distribution and density functions of a N(0, 1) r.v., and

α3 = μ2
3(62)

α4 = −6 + (μ4 − 3)2.(63)

The proof of the lemma appears in appendix A.6. Combining the lemma with the relation
(54) proves Proposition 2.2.

5. Simulation Results. We study the accuracy of our modified threshold for the sample
variance in a series of simulations with several values of p, n and α. For Gaussian observations,
we compare the accuracy of the threshold of the limiting Gumbel distribution, tG = 1 +√

2
nz(p, α), and our proposed threshold, tH = 1+

√
2
nzH(n, p, α), where z(p, α) and zH(n, p, α)

are given by (5) and (6), to empirical results based on 106 simulations. As Table 1 shows, the
threshold tH is much more accurate than the asymptotic Gumbel threshold tG.

Similarly, for non-Gaussian distributions, we compare the accuracy of the asymptotic Gum-
bel threshold tG = 1+ σ√

n
z(p, α), with σ given by Eq. (10), to the proposed Edgeworth-based

threshold tE = 1 + σ√
n
zE(n, p, α), where zE is given in Eq. (9). Table 2 shows that indeed the

Edgeworth threshold is more accurate. However, its accuracy is not as good as that of the tH
threshold for the Gaussian case, due to higher order error terms in the Edgeworth expansion,
that depend on the specific distribution.

n = 100, p = 1000 n = 1000, p = 500 n = 1000, p = 100

α Pr[Ynp > tG] Pr[Ynp > tH ] Pr[Ynp > tG] Pr[Ynp > tH ] Pr[Ynp > tG] Pr[Ynp > tH ]

5% 27.9% 4.7% 8.5% 4.4% 6.5% 4.3%

2% 14.9% 1.8% 3.4% 1.7% 2.5% 1.6%

1% 9.0% 0.9% 1.6% 0.8% 1.1% 0.8%

0.1% 1.47% 0.09% 0.11% 0.07% 0.07% 0.07%

Table 1
For each value of α in the left column, we compare the accuracy of the Gaussian and χ2

n high order thresholds.

Acknowledgments. We thank Alfred Hero, Bala Rajaratnam, Tiefeng Jiang, Tony Cai and
Haruhiko Ogasawara for interesting discussions regarding various aspects of this work.

APPENDIX A: PROOFS

A.1. Bounds on χ2
n Tail Probabilities. To prove lemma 3.1 we recall that the density

of a χ2
n random variable is

fn(x) = Cn ∙ ehn(x)
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Uniform Exponential

α Pr[Ynp > tG] Pr[Ynp > tE ] Pr[Ynp > tG] Pr[Ynp > tE ]

5% 7.1% 4.8% 62.8% 8.7%

2% 3.0% 1.8% 50.2% 4.5%

1% 1.5% 0.9% 42.1% 2.8%

0.1% 0.18% 0.08% 23.23% 0.68%

t7 χ2
7

α Pr[Ynp > tG] Pr[Ynp > tE ] Pr[Ynp > tG] Pr[Ynp > tE ]

5% 60.4% 8.4% 42.5% 6.9%

2% 49.7% 5.6% 29.6% 3.2%

1% 43.0% 4.3% 22.4% 1.8%

0.1% 27.63% 2.09% 9.07% 0.32%

Table 2
For each value of α in the left column we compare the accuracy of the Gaussian and Edgeworth thresholds for

different distributions with n = 100 and p = 200.

where Cn = 1
2n/2Γ(

n
2 )

and hn(x) = −x
2 + (n

2 − 1) ln x. For simplicity from now on we omit the

subscript n and write h(x) = hn(x).We wish to bound integrals of the form

Cn

∫ b

a
eh(x)dx

where the endpoints (a, b) depend on whether our interest is in left tail or right tail probabil-
ities. Note that h′(x) = 1

2(n−2
x − 1) and that for all n ≥ 2

d2h

dx2
= −(n

2 − 1) 1
x2 ≤ 0.

Hence, for any x0 > 0

h(x) ≤ g(x) = h(x0) +
dh

dx

∣
∣
∣
∣
∣
x0

(x − x0).

To simplify our notation we denote h0 = h(x0), h′
0 = h′(x0) and h′′

0 = h′′(x0). For any a, b

(64) Cn

∫ b

a
eg(x)dx = Cneh0

∫ b

a
eh′

0(x−x0)dx =
Cneh0

h′
0

eh′
0(x−x0)

∣
∣
∣
∣

b

a

.

In our proof we will use the above equation with x0 = n(1 ± ε). Plugging this value into the
different terms in the right hand side of (64) gives that

eh0 = e−
n(1±ε)

2
+(n

2
−1) ln(1±ε)+(n

2
−1) ln n =

n
n
2

n(1 ± ε)
∙ e−

n
2
(1±ε−ln(1±ε))

and
eh0

h′
0

=
n

n
2

n(1 ± ε)
∙
e−

n
2
(1±ε−ln(1±ε))

1
2

(
n−2

n(1±ε) − 1
) =

n
n
2

n
2

∙
e−

n
2
(1±ε−ln(1±ε))

(
∓ε − 2

n

) .
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Recall that for any x ∈ R, ln Γ(x) ≥ (x − 1
2) ln x − x + ln

√
2π. Thus,

Cneh0

h′
0

=

(
n
2

)n
2

n
2 Γ(n

2 )
∙
e−

n
2
(1±ε−ln(1±ε))

(
∓ε − 2

n

)

≤

(
n
2

)n
2
−1

√
2π
(

n
2

)n
2
− 1

2 e−
n
2

∙
e−

n
2
(1±ε−ln(1±ε))

(
∓ε − 2

n

) =
e−

n
2
(±ε−ln(1±ε))

√
πn
(
∓ε − 2

n

) .(65)

Combining equations (64) and (65) gives that

(66) Cn

∫ b

a
eg(x)dx ≤

e−
n
2
(±ε−ln(1±ε))

√
πn(∓ε − 2

n)
∙ eh′(n(1±ε))(x−n(1±ε))

∣
∣
∣
∣

b

a

.

With these preparations, Eq. (30) directly follows from Eq. (66) with x0 = n(1 + ε),

(67) Pr
[
Wn

n
> 1 + ε

]

≤ Cn

∫ ∞

n(1+ε)
eg(x)dx ≤

e−
n
2
(ε−ln(1+ε))

√
πn(ε + 2

n)
.

Similarly, Eq. (31) follows from Eq. (66) with x0 = n(1 − ε)

(68) Pr
[
Wn

n
< 1 − ε

]

≤ Cn

∫ n(1−ε)

0
eg(x)dx ≤

e
n
2
(ε+ln(1−ε))

√
πn(ε − 2

n)
∙
(
1 − e1−nε

2

)
.

The last step is to prove the lower bound (32). To this end, note that for n > 2 and x > 0

d3h

dx3
= 2

(
n
2 − 1

)
1
x3 > 0.

Therefore for any x0 > 0 and x > x0

h(x) ≥ g̃(x) = h0 + h′
0(x − x0) + h′′

0

(x − x0)2

2
.

Next, using the inequality ebx ≥ 1 + bx and the identity
∫

eaxx2dx = eax(a2x2 − 2ax + 2)/a3

gives that

Pr[Wn > x0] ≥ Cn

∫ ∞

x0

eg̃(x)dx = Cneh0

∫ ∞

x0

eh′
0(x−x0)+h′′

0
(x−x0)2

2 dx

≥ Cneh0

∫ ∞

x0

eh′
0(x−x0)

(

1 + h′′
0

(x − x0)2

2

)

dx

= Cneh0

(
1

|h′
0|

−
h′′

0

h′
0
3

)

=
Cneh0

|h′
0|

(

1 −
|h′′

0|

h′
0
2

)

(69)

To conclude the proof we need an upper bound on Γ(z), which appears in the denominator
of Cn. The following auxiliary lemma, proven below, provides such a bound:

Lemma A.1. Let Γ(z) =
∫∞
o tz−1e−tdt be the Gamma function. Then for z ∈ R,

(70) Γ(z) ≤
√

2πzz−1/2e−z
(

1 +
1
2z

)

.
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Choosing x0 = n(1 + ε) and using the bound (70) on Γ(x0) we get

Cneh(n(1+ε))

|h′(n(1 + ε))|
=

(
n
2

)n
2

n
2 Γ(n

2 )
∙
e−

n
2
(1+ε−ln(1+ε))

(
ε + 2

n

) ≥

(
n
2

)n
2
−1

√
2π
(

n
2

)n
2
− 1

2 e−
n
2

∙
e−

n
2
(1+ε−ln(1+ε))

(
ε + 2

n

)
1

1 + 1
n

≥
e−

n
2
(ε−ln(1+ε))

√
πn
(
ε + 2

n

)
(

1 −
1
n

)

.(71)

Assuming that ε ≥
√

2
nz for some z > 1 we get that

|h′′
0|

h′
0
2 =

(n
2 − 1) 1

n2(1+ε)2

(2+nε)2

4n2(1+ε)2

=
2n − 4

(2 + nε)2
≤

1
z2

.

Inserting this inequality into (69) proves Eq. (32). �

A.1.1. Proof of Lemma A.1. We start from the following upper bound on the Gamma
function given by [2].

Γ(z) ≤
√

2π

(
z − 1

2

e

)z− 1
2

=
√

2πzz− 1
2 e−z





(
z − 1

2

z

)z− 1
2 √

e





To prove the proposition we bound the right term in the last equation. Using the fact that

ln(1 − ε) ≤ −ε and that 1/
√

1 − 1
2z ≤ 1 + 1

2z for all z > 1
2 gives that

(
z − 1

2

z

)z− 1
2

=
(

1 −
1
2z

)z− 1
2

= ez ln(1− 1
2z ) ∙

1
√

1 − 1
2z

≤ e−
1
2 ∙
(

1 +
1
2z

)

Combining the above two equations proves (70).

A.2. Derivation of Eq. (39). Taking logarithms on both sides of Eq. (38) and making

a change of variable ε =
√

2
nz yields

ln p−n
2

(√
2
nz − ln

(

1 +
√

2
nz

))

−1
2 ln 2π−ln z−ln

(

1 +
√

2
n

1
z

)

+ln
(

1 − O

(
1
z2
0

,
1
n

))

= ln | ln(1−α)|.

Replacing
√

2
nz − ln(1 +

√
2
nz) with its Taylor expansion gives Eq. (39), up to a factor of −2,

−
z2

2
+

√
2
n

z3

3
− ln z + O

(
z4

n
,

1
√

nz
,

1
z2
0

,
1
n

)

= − ln p +
1
2

ln 2π + ln | ln(1 − α)|.

A.3. Proof of Lemma 3.2. The leading order term in the r.h.s of (39) is 2 ln p, so the
solution has the form of z2 = 2 ln p ∙ (1 + δ) where δ = o(1). Plugging this solution into the
Eq. (39) and dividing by ln p gives

2δ −
8
3

√
ln p

n
(1 + δ)3/2 +

ln ln p

ln p
+

ln(1 + δ)
ln p

=
− ln 4π − 2 ln | ln(1 − α)|

ln p
.
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The assumption of the lemma that (ln p)3/2 �
√

n, implies that the leading order term now

is − ln ln p
2 ln p . Thus δ = − ln ln p

2 ln p + δ2 where δ2 = o
(

ln ln p
2 ln p

)
. The equation for δ2 is

2δ2 −
8
3

√
ln p

n
(1 + δ)3/2 +

ln(1 + δ)
ln p

=
− ln 4π − 2 ln | ln(1 − α)|

ln p
.

This gives δ2 = − ln 4π−2 ln | ln(1−α)|
2 ln p and the expression for z2 is:

z2 = 2 ln p − ln ln p − ln 4π − 2 ln | ln(1 − α)|

which proves the lemma. �

A.4. Edgeworth Expansion for the Sample Variance. Our proof of lemma 3.3 is
based on the work of [12] on the Edgeworth expansion for the sample variance. Let Z denote
some random variable with zero mean, unit variance, and finite 8-th moments. Further assume
that lim sup‖t‖→∞

∣
∣
∣E
[
ei(t1Z+t2Z2)

]∣∣
∣ < 1. Let S denote the unbiased sample variance computed

from n + 1 i.i.d. samples of Z. Define the random variable

(72) y =
√

n(S − 1).

The asymptotic variance σ2 and skewness κ of y are defined as

E[(y − E[y])2] = E[y2] = σ2 + O(n−1)(73)

E[(y − E[y])3] = E[y3] = n−1/2κ + O(n−3/2).(74)

From Eq.(3.3) of [12] we have that asymptotically in n:

(75) Pr
[
y

σ
≤ z

]

= Φ(z) −
φ(z)
√

n

κ

6σ3
(z2 − 1) + O

(
n−1

)

where Φ(x) and φ(x) are the distribution and density functions of a N(0, 1) r.v.. The Edge-
worth expansion for a specific distribution follows from the following claim, proven below:

Claim A.2. For any distribution with zero mean and unit variance it holds that

σ2 = μ4 − 1(76)

κ = μ6 − 3(μ4 + 2μ2
3) + 2(77)

Lemma 3.3 follows from Eq.(75) together with claim A.2. �

Remark: A similar derivation for the Edgeworth expansion of the biased sample variance
can be found in [10].
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A.4.1. Proof of Claim A.2. To compute the explicit value of σ we first calculate the ex-
pected value of S2. It can be easily verified that
(78)

S2 =

(
1
n

(
n+1∑

i=1

x2
i − (n + 1)x̄2

))2

=
1
n2





(
n+1∑

i=1

x2
i

)2

− 2(n + 1)x̄2
n+1∑

i=1

x2
i + (n + 1)2x̄4





The first term in Eq.(78) is
(∑

i x2
i

)2 =
∑

i x4
i +

∑
i 6=j x2

i x
2
j and its expected value is

(79) E





(
n+1∑

i=1

x2
i

)2


 = (n + 1)E
[
x4
]
+ (n + 1)nE

[
x2
]
E
[
x2
]

= (n + 1)(μ4 + n).

To compute the mean value of the second term in Eq.(78) we first calculate

(80) x̄2 =
1

(n + 1)2

(∑
xi

)2
=

1
(n + 1)2




∑

i

x2
i +

∑

i 6=j

xixj





Hence, the second term is equal to

(81) x̄2
∑

x2
i =

1
(n + 1)2




∑

i

x4
i +

∑

i 6=j

x2
i x

2
j + 2

∑

i 6=j

x3
i xj +

∑

i 6=j 6=k

x2
i xjxk





and its expected value is

(82) E
[
x̄2
∑

x2
i

]
=

(n + 1)μ4 + (n + 1)n
(n + 1)2

=
μ4 + n

n + 1
.

The following formula will be helpful for evaluation of the last term in (78)

(83)




∑

i 6=j

xixj





2

= 2
∑

i 6=j

x2
i x

2
j + 4

∑

i 6=j 6=k

x2
i xjxk +

∑

i 6=j 6=k 6=l

xixjxkxl.

For the last term in (78), we have
(84)
(n + 1)4x̄4 =

(∑

i

x2
i +

∑

i 6=j

xixj
)2 =

∑

i

x4
i +

∑

i 6=j

x2
i x

2
j + 2

(
2
∑

i 6=j

x3
i xj +

∑

i 6=j 6=k

x2
i xjxk

)
+
(∑

i 6=j

xixj
)2

=
∑

i

x4
i + 3

∑

i 6=j

x2
i x

2
j + 4

∑

i 6=j

x3
i xj + 6

∑

i 6=j 6=k

x2
i xjxk +

∑

i 6=j 6=k 6=l

xixjxkxl

Hence its mean is

(85) E[x̄4] =
1

(n + 1)4
((n + 1)μ4 + 3(n + 1)n) =

μ4 + 3n

(n + 1)3
.

Combining (79) with (82) and (85) yields

E
[
S2
]

=
1
n2

(

(n + 1)(μ4 + n) − 2(μ4 + n) +
μ4 + 3n

n + 1

)

=
n − 1 + 1

n+1

n2
∙ μ4 +

n − 1 + 3
n+1

n
(86)
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We now compute the explicit expression for σ
(87)

E[y2] = (n+1)
(
E[S2 − 2S + 1]

)
= (n+1)

(
n − 1 + 1

n+1

n2
∙ μ4 +

n − 1 + 3
n+1

n
− 1

)

= μ4−1+
2
n

therefore, Eq.(48) follows. Next, to compute κ we also need the explicit expression for E[S3].
(88)

S3 =
1
n3





(
∑

i

x2
i

)3

− 3

(
∑

i

x2
i

)2

(n + 1)x̄2 + 3

(
∑

i

x2
i

)
(
(n + 1)x̄2

)2
− (n + 1)3x̄6





We analyze each term in the r.h.s. separately. The mean of the first term is
(89)

E





(
∑

i

x2
i

)3


 = E




∑

i

x6
i + 3

∑

i 6=j

x4
i x

2
j +

∑

i 6=j 6=k

x2
i x

2
jx

2
k.



 = (n+1)μ6+3(n+1)nμ4+(n+1)n(n−1).

The second term in Eq. (88) is

(
∑

i

x2
i

)2

x̄2 =
1

(n + 1)2




∑

i

x4
i +

∑

i 6=j

x2
i x

2
j








∑

i

x2
i +

∑

i 6=j

xixj





=
1

(n + 1)2




∑

i

x6
i +

∑

i 6=j

x4
i x

2
j +

∑

i

x4
i

∑

j 6=k

xjxk + 2
∑

i 6=j

x4
i x

2
j +

∑

i 6=j 6=k

x2
i x

2
jx

2
k

+ 2
∑

i 6=j

x3
i x

3
j +

∑

i 6=j 6=k

(x3
i x

2
jxk + x2

i x
3
jxk) +

∑

i 6=j 6=k 6=l

x2
i x

2
jxkxl



 .

Its expected value is
(90)

E





(
∑

i

x2
i

)2

x̄2



 =
1

(n + 1)2

(
(n + 1)μ6 + 3(n + 1)nμ4 + 2(n + 1)nμ2

3 + (n + 1)n(n − 1)
)

For the third term in Eq.(88) we use Eq.(84), and obtain that

(
∑

i

x2
i

)
(
x̄2
)2

=
∑

i x2
i

(n + 1)4




∑

i

x4
i + 3

∑

i 6=j

x2
i x

2
j + 4

∑

i 6=j

x3
i xj + 6

∑

i 6=j 6=k

x2
i xjxk +

∑

i 6=j 6=k 6=l

xixjxkxl





=
1

(n + 1)4




∑

i

x6
i +

∑

i 6=j

x2
i x

4
j + 6

∑

i 6=j

x4
i x

2
j + 3

∑

i 6=j 6=k

x2
i x

2
jx

2
k

+ 4
∑

i 6=j

(x5
i xj + x3

i x
3
j ) + 4

∑

i 6=j 6=k

x2
i x

3
jxk + 6

∑

i,j 6=k 6=l

x2
i x

2
jxkxl +

∑

i,j 6=k 6=l 6=m

x2
i xjxkxlxm





Its expected value is
(91)

E

[(
∑

i

x2
i

)
(
x̄2
)2
]

=
1

(n + 1)4

(
(n + 1)μ6 + 7(n + 1)nμ4 + 4(n + 1)nμ2

3 + 3(n + 1)n(n − 1)
)
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Finally, the last term in (88) involves x̄6.
(92)

x̄6 = 1
(n+1)6

(∑
i x2

i +
∑

i 6=j xixj

)3

= 1
(n+1)6

(
(∑

i x2
i

)3 + 3
(∑

i x2
i

)2 (∑
i 6=j xixj

)
+ 3

(∑
i x2

i

) (∑
i 6=j xixj

)2
+
(∑

i 6=j xixj

)3
)

The mean of the first term in Eq.(92) is given by Eq. (89). The second term is
(93)
(∑

i x2
i

)2 (∑
i 6=j xixj

)
=
(∑

i

x4
i +

∑

i 6=j

x2
i x

2
j

)(∑

i 6=j

xixj

)

= 2
∑

i 6=j

x5
i xj +

∑

i 6=j 6=k

x4
i xjxk + 2

∑

i 6=j

x3
i x

3
j +4

∑

i 6=j 6=k

x3
i x

2
jxk +

∑

i 6=j 6=k 6=l

x2
i x

2
jxkxl

Its expected value is

(94) E




(∑

i

x2
i

)2(∑

i 6=j

xixj
)


 = 2(n + 1)nμ2
3.

The third term in Eq.(92) is

(
∑

i

x2
i

)


∑

i 6=j

xixj





2

=

(
∑

i

x2
i

)

2
∑

i 6=j

x2
i x

2
j + 2

∑

i 6=j 6=k

x2
i xjxk +

∑

i 6=j 6=k 6=l

xixjxkxl





= 4
∑

i 6=j

x4
i x

2
j + 2

∑

i 6=j 6=k

x2
i x

2
jx

2
k +

(
∑

i

x2
i

)

2
∑

i 6=j 6=k

x2
i xjxk +

∑

i 6=j 6=k 6=l

xixjxkxl





and its mean is equal to

(95) E






(
∑

i

x2
i

)


∑

i 6=j

xixj





2



 = 4(n + 1)nμ4 + 2(n + 1)n(n − 1).

The last term in Eq.(92) is
(96)
(∑

i 6=j

xixj

)3
=
∑

i 6=j

x3
i x

3
j + 3

∑

i 6=j 6=k

(x3
i x

2
jxk + x2

i x
3
jxk) + 8

∑

i 6=j 6=k

x2
i x

2
jx

2
k + 3

∑

i 6=j 6=k 6=l

x2
i x

2
jxkxl + . . .

The dots in the last equation represent additional terms that are not of our interest since
their expected value is zero. Hence,

(97) E




(∑

i 6=j

xixj

)3



 = (n + 1)nμ2
3 + 8(n + 1)n(n − 1)

and the expected value of the last term in (92) is

(98) E
[
x̄6
]

=
1

(n + 1)6

(
(n + 1)μ6 + 15(n + 1)nμ4 + 7(n + 1)nμ2

3 + 15(n + 1)n(n − 1)
)
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Finally we have that

E
[
S3
]

=
n − 2 + 3

n+1 − 1
(n+1)2

n3
∙ μ6 +

3(n + 1) − 9 + 15
n+1 − 15

(n+1)2

n2
∙ μ4(99)

+
−6 + 12

n+1 − 7
(n+1)2

n2
∙ μ2

3 +
(n − 1)(n − 2 + 6

n+1 − 15
(n+1)2

)

n2
.

Now we are ready to compute the explicit expression for κ:

E[y3] = (n + 1)
√

n + 1 ∙ E
[
S3 − 3S2 + 3S − 1

]
= (n + 1)

√
n + 1 ∙ E

[
S3 − 3S2 + 2

]

=
(n + 1)2

√
n + 1

n3
μ6 −

3(n + 1)
√

n + 1
n2

μ4 −
6(n + 1)

√
n + 1

n2
∙ μ2

3 +
2(n + 1)

√
n + 1

n2
+ O(n− 3

2 )

Therefore Eq.(49) follows. �

A.5. Proof of claim 4.1. Our proof of Eq. (53), is similar to [26], which considered only
Gaussian observations. We introduce the following s = p(p − 1)/2 random variables,

(100) wij(t) =

{
1 |Rij | > t
0 otherwise

and define

(101) T =
∑

i<j

wij .

Then by definition we have that

Pr[Ln < t] = Pr[T = 0] = p0.

The main idea is thus deriving bounds on the r.h.s. of the last equation using the first and
second moments of T , which is equivalent to an inclusion-exclusion principle. Our starting
point is the definition of the mean of T ,

E[T ] =
∞∑

j=0

j Pr[T = j] = p1 + 2p2 + . . .

from which it immediately follows that

E[T ] ≥ p1 + p2 + . . . = 1 − p0.

On the other hand, E[T ] = sE[wij ] = sA. Hence

(102) p0 ≥ 1 − sA.

Next, we wish to find an upper bound on p0 = Pr[Ln < t]. To this end, we consider the
random variable T 2. By definition, we have that
(103)

E[T 2] = E




∑

i<j

wi,j

∑

k<l

wk,l



 = E




∑

i<j

w2
ij



+ E




∑

disjoint i,j,k,l

wijwkl



+ E




∑

i 6=j,k 6=(i,j)

wijwik




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The total number of disjoint indexes with i 6= j 6= k 6= l is s(p− 2)(p− 3)/2. Note that under
the null hypothesis, when the indexes i, j, k, l are all disjoint, the random variables wij and
wkl are independent. Hence, simple calculations show that

E[T 2] = sA + s
(p − 2)(p − 3)

2
A2 + s

(

s −
(p − 2)(p − 3)

2
− 1

)

A2

= sA + s(s − 1)A2 + 2s(p − 2)(A2 − A2)(104)

where A2 = E[wijwik] = Pr [|Ri,j | > t ∩ |Ri,k| > t] . Next, note that there exist positive coef-
ficients cj such that

1
2

[
3E[T ] − E[T 2]

]
= p1 + p2 −

∞∑

j=3

cjpj ≤ p1 + p2 + p3 + . . . = 1 − p0

Inserting the expressions for E[T ] and E[T 2] gives

(105) p0 ≤ 1 − sA +
1
2
s2A2 −

1
2
sA2 + s(p − 2)(A2 − A2).

�

A.6. Edgeworth Expansion for the correlation coefficient. To prove lemma 4.2
we follow closely the notation and results of Ogasawara [29]. It is worth mentioning that in
fact [29] considered the more general case where X1 and X2 may have different distributions,
as well as a non-zero population correlation ρ12. In our analysis, we consider the case where
X1 and X2 are equally distributed and independent, which in particular implies that they are
uncorrelated, ρ12 = 0. Furthermore, w.l.g. we may assume that X1 has zero mean and unit
variance, as these do not affect the sample correlation coefficient. This leads to a considerable
simplification in the expression for the Edgeworth expansion of the correlation coefficient.

The starting point is Eq. 2.5 in [29], which gives the asymptotic expansion for the distri-
bution of a single correlation coefficient, in terms of coefficients α1,α2, α3, α4 and Δα2, which
are all rather complicated expressions of the moments of the underlying distribution of X.

Pr

[
R12
√

α2
<

t
√

n

]

= Φ(t) −
1
√

n

{

α1 +
α3

6
(t2 − 1)

}

φ(t)

−
tφ(t)

n

{

(Δα2 + α2
1)

1
2α2

+ (
α4

24
+

α1α3

6
)
t2 − 3

α2
2

+
α2

3

72α2
2

(t4 − 10t2 + 15)

}

+o(1/n).(106)

First, note that since we are interested in Pr[|R12| > t/
√

n ], the leading correction term, of
the form f(t)/

√
n, has no contribution, as f(t) is an even function of t. Next, as discussed near

Eq. (5.6) in [29], and following the results of Pitman [31], when X1 and X2 are independent,
the bias and variance of R12 are asymptotically robust. Namely, the values of α1, α2, Δα2 are
equal to those in the Gaussian case,

α2 = α2,G = 1, α1 = α1,G = 0, Δα2 = 0.

Therefore, Eq. (61) readily follows. To conclude the proof of the lemma, it remains to deter-
mine the values of the two coefficients α3 and α4.
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Expressions for α3, α4 appear in [29], and depend on various quantities which we analyze
below. As we consider a single correlation coefficient, we study the expressions in [29] with a
dimension p = 2, so in the formulas below, all indices a, b, c, . . . take values in {1, 2}.

To study the values of α3, α4, we first introduce the following notation. Let Σ = (σab) be
the 2 × 2 population covariance matrix of the two random variables X1, X2, and denote by
θ = ρ12 = σ12/

√
σ11σ22 their population correlation coefficient. Further, denote by θ̂ = r12

their sample correlation coefficient. As in [29], we introduce the following additional notation:
σ = (σ11, σ12, σ22), with higher order moments defined as follows,

σab...f = E[XaXb ∙ ∙ ∙Xf ].

We also denote by Ω a 3 × 3 matrix with entries Ωab,cd = σabcd − σabσcd. The expressions for
α3 and α4 also depend on cumulants of various orders. The first few are given by

κab = σab, κabc = σabc, κabcd = σabcd − σabσcd − σacσbd − σadσbc.

where a, b, c, d ∈ {1, 2}. However, since p = 2, many of these cumulants vanish. For example,
κ1212 = σ1212 − σ11σ22 = 0. The only potentially non-zero 4th order cumulants are

(107) κ1111 = κ2222 = E[X4] − 3.

Similarly, other than κ11111 and κ22222 which do not appear in our expressions, κabcde = 0 for
all other values of abcde. The relevant 6th order cumulant is

κ112222 = σ112222 − σ11σ2222 − 6σ22σ1122 + 2 ∙ 3σ11σ
2
22 = 0.(108)

Similarly, the only relevant 8-th order cumulant also vanishes,

κ12121212 = σ12121212 − 12σ11σ112222 − σ1111σ2222 − 18σ1122σ1122

+2(3σ1111σ
2
22 + 3σ2222σ

2
11 + 36σ1122σ11σ22) − 6 ∙ 9σ2

11σ
2
22

= E[X4]2 − 12E[X4] − E[X4]2 − 18 + 12E[X4] + 72 − 54 = 0.(109)

The formula below for α4 also depends on M -functions defined as follows: For pairs of
indices, we have M(ab, cd) = κabcd + κacκbd + κadκbc. Therefore,

(110)
M(11, 12) = 0, M(11, 22) = 0,
M(12, 12) = 1, M(11, 11) = E[X4] − 1.

Eq. 3.13 in [29] contains the expression for M(ab, cd, ef ). Below are those relevant to us,

M(12, 12, 12) = σ121212 = E[X3]2

M(11, 12, 12) = σ111122 − σ1212σ11 = E[X4] − 1.(111)

With the above auxiliary results at hand, we now consider the expression for α3, Eq. 3.2 in [29].
This formula depends on Ω and on first and second order derivatives ∂θ/∂σab and ∂2θ/∂σabσcd.
However, when the two random variables X1 and X2 are independent and equally distributed,
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many terms vanish and the resulting expression simplifies considerably. In particular, at a
correlation coefficient ρ12 = 0, or equivalently σ12 = 0, we have that (see Eq. 4.1 in [29])

∂θ

∂σ

∣
∣
∣
∣
∣
σ12=0

= (0, 1, 0)T(112)

∂2θ

∂σ∂σ′

∣
∣
∣
∣
∣
σ12=0

=






0 −1/2 0
−1/2 0 −1/2

0 −1/2 0




 .(113)

Thus, inserting Eq. (112) and Eq. (113) into Eq. 3.2 in [29] simplifies to

α3 =
(

∂θ

dσ12

)3

E[X3]2 + 3
∂θ

∂σ′Ω
∂2θ

∂σ∂σ′Ω
∂θ

∂σ
(114)

Note that

Ω
∂θ

∂σ
= (Ω11,12, Ω11,22, Ω22,12)

T

However, when X1 and X2 are independent, all of these entries vanish, since

Ω11,22 = E[X2
1X2

2 ] − σ2
1σ

2
2 = 0

Ω11,12 = E[X3
1X2] − E[X2

1 ]E[X1X2] = 0

Ω22,12 = E[X3
2X1] − E[X2

2 ]E[X1X2] = 0.

Therefore, the second term in Eq. (114) vanishes, and we obtain Eq. (62).
Next, we consider the formula for α4, given by Eq. (3.11) in [29]. First, recall that for a 6= b,

∂θ/∂σab = 1, whereas ∂θ/∂σaa = ∂θ/∂σbb = 0. Hence, in the outer summation for the first
four lines in Eq. (3.1) only the single term with a > b, c > d, e > f, g > h remains. That is,

α4 = κ12121212 +
24∑

κacκbdefgh +
32∑

κaceκbdfgh

+
8∑

κacegκbdfh +
24∑

κabegκcdfh +
96∑

κacκbeκdfgh +
48∑

κacκegκbdfh

+
96∑

κacκbegκdfh +
48∑

κbcκdeκfgκha −
6∑

κabcdM(ef, gh)

+
∑

a≥b

∑

c≥d

∑

e≥f

∑

g≥h

∑

j≥k

2
∂θ2

∂σab∂σcd

∂θ

∂σef

∂θ

∂σgh

∂θ

∂σjk

10∑
M(ab, cd)M(ef, gh, jk)

+
∑

a≥b

∑

c≥d

∑

e≥f

∑

g≥h

∑

j>k,l>m

(
3
2

∂2θ
∂σabσcd

∂θ2

∂σef ∂σgh
+ 2

3
∂3θ

∂σab∂σcd∂σef

∂θ
∂σgh

)
×

∂θ

∂σjk

∂θ

∂σlm

15∑
M(ab, cd)M(ef, gh)M(jk, lm)

−
(
4α1α3 + 6α2Δα2 + 6α2α

2
1

)
.(115)

We now separately analyze each of the terms in the equation above. First, according to Eq.
(109), κ12121212 = 0. Next, consider the first sum,

∑24 κacκbdefgh. It contains 24 terms, which
account for the 8 choices for the index a multiplied by 6 choices for c and divided by 2 as
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the order does not matter. Given a choice of an index a, for κac not to vanish, we must have
c = a. Suppose a = 1, then the multiplying factor is κ112222, which according to Eq. (108)
vanishes. Hence, all terms in the first sum are zero.

We proceed to the second sum,
∑32 κaceκbdfgh. For a term to be non-zero, we must have

ace = 111 or ace = 222, but then the multiplying term is either κ12222 or κ21111 both of which
vanish. Hence, the second sum also yields no contribution. In the third sum with 8 terms, we
finally encounter a non-zero term, κ1111κ2222, hence this sum equals (E[X4] − 3)2. Both the
4th and 5th sums vanish, as all their terms contain 4th order cumulants of the form κ12∗∗,
which are all zero. In the 6th sum with 48 terms, all but six terms vanish, three terms of the
form κ1111 and another three of the form κ2222, so overall this sum contributes 6(E[X4] − 3).

The 7th sum vanishes, since the only potentially non-zero contribution is from terms of
the form κ111κ222, but then the remaining factor is κ12 = 0. Next, consider the 8th sum,
∑48 κbcκdeκfgκha. For each of the 8 possible choices for b, only 3 choices for c give a non-zero
κ11 or κ22. Then, there are two valid choices for e = d. This has to be divided by 23, to
account for the order in the first three pairs, so overall we have 6 terms each contributing a
value of 1. The 9th sum vanishes as all its 6 terms contain the factor κ1212.

Next we consider sum on the 4th row in Eq. (115). Here for the first order derivatives such
as ∂θ/∂σef not to vanish, we must have e 6= f, g 6= h, j 6= k. For second derivatives to be
non-zero, either a = b, c 6= d, or a 6= b, c = d, which gives an overall of 4 choices. For each
such choice, out of the 10 arrangements for M(ab, cd)M(ef, gh, jk), a non-zero contribution
is obtained only when the equal pair is in the triplet M(∙, ∙, ∙), which occurs in 6 out of the 10
terms, and gives E[X4] − 1. So the overall contribution of this sum is 2(−1/2) ∙ 6(E[X4] − 1),
multiplied by the 4 choices for (ab, cd), that is −24(E[X4] − 1).

Next, we open the parenthesis on the 5th row of Eq. (115), and analyze each term separately.
The first one is

3
2

∂2θ

∂σab∂σcd

∂2θ

∂σef∂σgh

∂θ

∂σjk

∂θ

∂σlm

15∑
M(ab, cd)M(ef, gh)M(jk, lm)

Here we must have j 6= k, l 6= m. As in the previous case either a = b, c 6= d or a 6= b, c = d,
for an overall of 4 choices. Suppose (ab, cd) = (11, 12). To obtain a nonzero contribution from
the M(∙, ∙) terms, we must have either (ef = 11) or (gh = 11), so 2 choices. Furthermore, the
equal pair must be in the same M -group as (ab). There are 3 = 15/5 such configurations. So,
the overall contribution from this sum is 3/2(−1/2)2 ∙ 4 ∙ 2 ∙ 3(E[X4] − 1) = 9(E[X4] − 1).

Finally we consider the second term in this sum,

2
3

∂3θ

∂σab∂σcd∂σef

∂θ

∂σgh

∂θ

∂σjk

∂θ

∂σlm

15∑
M(ab, cd)M(ef, gh)M(jk, lm)

At a correlation coefficient ρ12 = 0, the cases where the third derivative does not vanish are

∂3θ

∂σab∂σ2
aa

= 3/4,
∂3θ

∂σ12∂σ11∂σ22
= 1/4.

However, in the second case we will have only terms of the form M(11, 12) or M(11, 22) both
of which vanish. We thus focus now on the first case. There are 3 choices for which pair, out of
(ab, cd, ef ) will have different indices, and 2 choices for the equal indices (11 or 22). Suppose
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ab = 11, cd = 11. Then, there are 3 = 15/5 cases where both belong to the same M -group.
Overall, 2/3 ∙ 3 ∙ 2 ∙ 3(E[X4] − 1) ∙ 3/4 or 9(E[X4] − 1).

To conclude, we use all of the above in Eq. (115) for α4:

α4 = (E[X4] − 3)2 + 6(E[X4] − 3) + 6 − 24(E[X4] − 1) + 9(E[X4] − 1) + 9(E[X4] − 1)

= −6 + (E[X4] − 3)2.(116)

�
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