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Vectorial Phase Retrieval of 1-D Signals
Oren Raz, Nirit Dudovich, and Boaz Nadler, Member, IEEE

Abstract—Reconstruction of signals frommeasurements of their
spectral intensities, also known as the phase retrieval problem, is
of fundamental importance in many scientific fields. In this paper
we present a novel framework, denoted as vectorial phase retrieval,
for reconstruction of pairs of signals from spectral intensity mea-
surements of the two signals and of their interference. We show
that this new framework can alleviate some of the theoretical and
computational challenges associated with classical phase retrieval
from a single signal. First, we prove that for compactly supported
signals, in the absence of measurement noise, this new setup admits
a unique solution. Next, we present a statistical analysis of vectorial
phase retrieval and derive a computationally efficient algorithm to
solve it. Finally, we illustrate via simulations, that our algorithm
can accurately reconstruct signals even at considerable noise levels.

Index Terms—Convex relaxation, 1-D phase retrieval, signal
recovery from modulus Fourier measurements, statistical model
selection.

I. INTRODUCTION AND MAIN RESULTS

I N a variety of experimental setups, while the signal of in-
terest, either in the time or spatial domain, cannot be directly

measured, it is often possible to measure the absolute value of
its Fourier transform. Unfortunately, in such measurements, the
phase information, crucial for complete reconstruction of the
signal, is lost. The challenge is to estimate this phase, typically
under some assumptions on the signal of interest.
This inverse problem, known as phase retrieval, is of funda-

mental importance in a broad range of scientific fields [1], [2].
Phase retrieval applications range from X-ray crystallography
[3], nuclear magnetic resonance [4], astrophysics [5], lens-less
imaging [6]–[11] and radar [12] to characterization of ultra-
short pulses [13], [14].
Mathematically, phase retrieval poses several theoretical and

computational challenges, including questions of uniqueness,
development of efficient reconstruction algorithms and analysis
of their convergence properties. Despite decades of research,
phase retrieval is still a challenging and not yet fully resolved
problem. For example, in 1-D the phase retrieval problem is in
general ill posed, admitting multiple solutions [15]. In contrast,
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for 2-D signals with noise-free measurements, under various as-
sumptions phase retrieval has a unique solution [15], though
computing it in practice is a non-trivial task. The two main ap-
proaches, pioneered by Gerchberg and Saxton [16] and Fienup
[17] are direct solutions and iterative search. The former are
limited by the size of the images, whereas the latter by effi-
ciency and convergence [18]. Moreover, due to the non-con-
vexity of the classical phase retrieval problem, relatively little
is understood about the convergence or robustness to measure-
ment noise of current algorithms [2], [19]. For a review of phase
retrieval, we refer the reader to [1], [18], [20], [21] and refer-
ences therein.
1) Main Results: In this paper we present a novel frame-

work for the phase retrieval problem that overcomes some of
these challenges. Based upon our preliminary work [22], the key
idea underlying our approach is that in many physical systems,
one can measure not only one, but rather several signals , and
their pairwise interferences. In the simplest setting, this involves
measuring, at a finite set of frequencies, the absolute Fourier
coefficients of two signals and and of their interfer-
ences , , namely , ,

and . In this new frame-
work, denoted vectorial phase retrieval (VPR), the problem is
to retrieve the phases of the two signals from these four spectral
measurements.
Experimentally, vectorial phase retrieval can be implemented

in various physical systems. One example is when the signal of
interest has a vectorial nature, such as light polarization [22]
or spin of matter waves. Another example is spatial-temporal
coupling of signals as in lateral shearing interferometry [23].
While VPR can be realized also for 2-D images, in this paper
we focus for simplicity on the 1-D case. From a mathemat-
ical viewpoint, vectorial phase retrieval raises two fundamental
questions, which are the focus of this paper: i) uniqueness of the
solution; and ii) computationally efficient and robust to noise
vectorial phase retrieval algorithm .
Our main contributions are as follows:
1) Formulation and Uniqueness of Vectorial Phase Retrieval:
We formulate this novel framework and study its unique-
ness in the noise-free case. Specifically, we show that in
the absence of noise, VPR admits a unique solution even
in the simplest setting of only two independent 1-D signals
with finite support.

2) Statistical noise model and analysis: We present a princi-
pled approach to handle measurement noise. We propose
to retrieve the unknown phases by minimizing a carefully
constructed quadratic functional, and a simple criterion to
estimate the unknown support of the signals.

3) Direct solution: We further relax the non-convex phase
constraints to a convex optimization problem, requiring the
solution of a set of linear equations. This yields a novel
phase retrieval algorithmwhich is both computationally ef-
ficient and empirically robust to noise.
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The key point of our work is that measuring several sig-
nals and their interferences alleviates some of the computa-
tional challenges associated with classical phase retrieval. Even
in the presence of noise, the unknown phase can be estimated by
solving a set of linear equations. As such, and given the feasi-
bility of spectral interference measurements in a broad range of
applications, vectorial phase retrieval presents a promising new
approach to this long-standing problem.
2) Related Works: Several works considered modified phase

retrieval problems, based on additional measurements. For ex-
ample, [24], [25] suggested to overcome the ambiguities of 1-D
phase retrieval with additional exponential apodization mea-
surements. Another phase retrieval method based on multiple
measurements with known relations between them is the trans-
port of intensity equation [26], [27].
In holography [21] the phase is extracted from measurements

of both and , with a known ref-
erence signal. Recently, for 2-D holography, [28] showed that
reconstruction is possible even if contains a few severe
errors or has few missing values. The main differences between
holography and our method are that we do not assume a known

but rather only that it corresponds to a signal with a
finite support, and additionally we measure .
A different approach is phase retrieval from structured illu-

minations of the same object with several optical masks [29],
[30]. The problem is to recover the signal from modulus mea-
surements of many dot products . As shown in [29],
[31], this problem can be solved by convex programming via
a low rank matrix completion formulation. As proven in [32],
with high probability, this formulation is robust to measure-
ment noise, and in fact (w.h.p.) yields the unique solution in the
noise-free case, see also [33]. A different semi-definite program
approach to recover the phases from noise-free measurements
was recently derived in [34]. Lastly, [35] also studied recovery
of from measurements of when form a frame in a
Hilbert space, and derived fast algorithms to do so.
While all of these works are related to our approach, both

our measurement setup and method of solution are nonetheless
quite different. The rest of the paper is organized as follows. In
Section II we present our problem setup. Uniqueness of VPR
in the absence of noise is proven in Section III, whereas the ef-
fect of noise is studied in Section IV. In Section V we present a
novel algorithm for vectorial phase retrieval. Its empirical per-
formance is evaluated in Section VI. We conclude with a sum-
mary and discussion in Section VII.

II. PROBLEM SETUP

Notations: We denote by . For , we de-
note its complex conjugate by and by its real
and imaginary parts, respectively. For , denotes its
Hermitian transpose, whereas denotes its Euclidean norm,

. The normal distribution with mean and
variance is denoted , whereas the circularly sym-
metric complex normal distribution is . The expec-
tation of a random variable is denoted by .
1) Spectral Measurements: While phase retrieval problems

apply also to spatial signals, in what follows we consider for
simplicity only temporal signals. Let be a continuous 1-D

signal and let be its Fourier transform, decomposed into
its phase and absolute magnitude,

(1)

We assume so (1) is well defined.
As mentioned in the introduction, in many applications direct

measurement of is not feasible. Yet, it is possible to sample
, at typically equispaced frequencies ,

where is the spectral resolution of the specific measurement
system. The classical phase-retrieval problem is to reconstruct
the original signal from its spectral intensities . In
particular, if the phases are known, a standard procedure
is to compute the discrete signal values

(2)

where . In this paper, we restrict our study to the dis-
crete phase retrieval problem, and consider the reconstruction
of the signal values as the end goal1. For simplicity, we
rescale time and frequency, such that , and conse-
quently for .
2) Trivial Ambiguities: Both as well as circular time

shifts of the original signal or its reflection, all yield
the same spectral measurements. We thus say that the phase
retrieval problem has a unique solution if all its solutions are
of the above forms, which we consider as an equivalence class.
Further, we remark that in our setting the refection ambiguity is
ruled out by the additional interference measurements.
3) Signals With Limited Support: Given only , any

phase vector is a valid solution to the phase
retrieval problem. To determine a unique solution (up to trivial
ambiguities), additional assumptions are required.
Since in many physical scenarios signals have an effective

finite duration with a fast decay beyond it, a common assump-
tion is that the continuous signal has a strict compact support

. Accordingly, for the discrete signal we assume
that for all or . For 2-D
signals, this assumption typically yields a unique solution to the
phase retrieval problem [15]. In contrast, for a complex-valued
or real-valued 1-D signal with a support of length , there exist
or different solutions, respectively [15], [37]. Hence,

even though the limited support assumption significantly re-
duces the set of solutions, it is insufficient to uniquely determine
it in 1-D.
4) Vectorial Phase Retrieval: A natural question is thus

whether there are physically realizable settings and accom-
panying assumptions that yield a unique solution to the 1-D
phase retrieval problem. As we originally proposed in [22],
the key motivation underlying our work is that in various
common measurement schemes, it is possible to sample more
than just the absolute spectral intensity of a single signal.
In this paper, we consider a setting where one measures
not only the spectral intensities and , of

1Note that since and are finite, , though the two values
are close if and (in dimensionless units) [36].
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two signals and , but also, in separate experi-
ments, their interferences2

and A physical example is
short electromagnetic pulses [22], where and
correspond to two polarization components of the electric
field. Using a polarizer and a spectrometer, one can sample

and . Adding a quarter
wave-plate gives .
This novel setup, which we denote as vectorial phase re-

trieval, leads to the following problem:
Vectorial Phase Retrieval Problem: Given (possibly noisy)

measurements of , , and
at the frequencies , reconstruct the two discrete
signals and .
Extending our initial work [22], we present a detailed study

of the VPR problem. First, we show that for signals of limited
support the spectral interference data is sufficient to determine a
unique solution. Next, we study the effect of measurement noise
and derive a novel algorithm for vectorial phase retrieval and a
criterion to estimate the signal’s support.

III. VECTORIAL PHASE RETRIEVAL

First, let us clearly state our assumptions:
1) The four spectra , , and

are all sampled at the same finite number
of equidistant frequencies .

2) The two discrete signals, have exact but in
general unknown and possibly different supports of sizes
, . We assume there is a and an initial

time such that and
for all and .

3) The support size satisfies .
Remarks:
i) Recall that according to the Nyquist-Shannon theorem,
for a continuous signal of finite duration , exact
recovery from its sampled Fourier transform is
possible if and only if the sampling rate is higher than
the Nyquist rate (see, e.g., chapter 8.2 in [36]).
Since , Assumption 3 requires that the sam-
pling rate is higher than the Nyquist rate.

ii) If (e.g., sampling at twice the Nyquist rate),
then using recent results of Thakur [38], in the noise-free
case, recovery is possible3 with only three measurements,

and .
Assumptions 1–3 do not guarantee a unique solution to the

VPR problem. A trivial example is for some ,
which yields the classical 1-D problem, with many solutions.
Intuitively, for the VPR problem to have a unique solution, the
two signals and must be “independent” in some sense. As
shown in the theorem below, the following definition captures
exactly this requirement.
Definition: Two -dimensional vectors

are called spectrally independent if the two polynomials

2For simplicity, in this paper we consider spectral measurements of
and of . However, other or additional interferences of the form

are possible and can easily be incorporated in our approach.
3The reason is that from these three measurements one may compute

, which corresponds to a real-valued signal with support of size
, which may then be recovered via the methods of [38].

and have no
common roots in the complex plane .
The following theorem provides a necessary and sufficient

condition for the VPR problem to have a unique solution.
Theorem 1: Let be two discrete signals that

fulfill assumptions (1), (2) and (3). Up to trivial ambiguities
(multiplication by and a circular time shift), the noise-free
vectorial phase retrieval problem has a unique solution if and
only if and are spectrally independent.
A proof of this theorem is given in the appendix. A sketch of

this statement and its proof was first given by us in [22].
Remark: Note that almost any pair of arbitrary signals ,

are spectrally independent, hence leading to a unique solution of
the phase retrieval problem. More precisely, for fixed ,

, the set of signals with unit norm
such that , are spectrally dependent is of measure zero.

IV. VECTORIAL PHASE RETRIEVAL IN THE PRESENCE OF NOISE

In any experimental system the spectral intensities are mea-
sured with some noise, and are thus inconsistent with assump-
tion (2) of a finite support of length . Namely, there are no spec-
tral phases which, combined with the noisy spectra, result in fi-
nite support signals. Hence, the uniqueness guaranteed by The-
orem 1 is not directly applicable. In the presence of noise, vec-
torial phase retrieval becomes a statistical problem . Common
methods are maximizing the likelihood, or minimizing some
convex proxy thereof, when the likelihood is non-convex. To
this end, we first present an explicit modelling of the measure-
ment noise.

A. Noise Model

Let be the noisy measurements corresponding to
, for . While the exact relation between

these two quantities depends on the specific experimental appa-
ratus, a rather general model is that at frequency ,

where is background additive noise, is the de-
tector’s noise independent of the signal (e.g., dark counts), and

is the detector’s shot noise which is
proportional to the signal’s intensity. The detector’s noise due to
dark counts is always nonnegative, and in many practical cases
of interest has relatively small variance. Its main effect can then
be removed by a proper calibration. Hence, for simplicity, in this
paper we assume that .
Next, since all signals are measured with the same equip-

ment, we assume equal noise levels in all four measurements.
Furthermore, we assume are all independent and iden-
tically distributed (i.i.d.) complex-valued random variables,

. As for the shot noises , we assume they are
all i.i.d. with zero mean and unit variance. In particular, noises
at different frequencies are uncorrelated. This is indeed rea-
sonable in many physical realizations where different spectral
components are measured by separate detector elements, for
example, as in a spectrometer.

B. A Quadratic Functional for Vectorial Phase Retrieval

Recall that VPR has a time shift ambiguity, where both
and

yield the same values . Hence, without
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loss of generality we may assume that the two signals are
non-zero at the indices and vanish at the indices

. At this stage we assume that is known,
though later we discuss how to estimate it from the measured
data.
The standard approach to estimate and is to maxi-

mize the likelihood . Unfortunately, this is an
intractable non-convex optimization problem. For a different
set of measurements (multiple structured illuminations of a
single signal), [29] proposed a semi-definite program as a
convex relaxation of this likelihood. In principle, this approach
is also applicable in our setting. In this paper, however, we
propose an alternative approach. Instead of working with
the unknown time domain values , we consider the
unknown phases4 and .
This approach allows us to recover the phases by minimizing
an appropriate quadratic functional, namely by solving a
linear system of equations. We note that for a different set
of noise-free measurements, [34] also work directly with the
unknown phases, retrieving them via a more computationally
intensive convex programming approach.
1) Limited Support: Let be some estimators of

the phases. Then a corresponding estimate for the signal is

(3)

with a similar expression for . In particular, outside the sup-
port (which for the moment is assumed known), both
and should be small since the actual signals vanish there. For

, we thus denote these residual values by

(4)

In the ideal noise-free case, at the true phase vectors , ,
these residuals vanish exactly. In contrast, in the presence of
noise, no phase vectors give zero residuals.
If these residuals and had a zero mean

Gaussian distribution and were independent of each other and
of the unknown signals, a sensible approach would be to search
for phase vectors which minimize

(5)

where

(6)

are the variances of respectively. Lemma 2 in
the appendix shows that in the high SNR limit, the residuals

and are weakly correlated and thus minimizing (5) is
a sensible approach. Moreover, it shows that the variances of

are equal and independent of , as implied
implicitly in (6) above.
From a computational perspective, the key point is that the

residuals and are linear in the unknown phase vectors
and . Thus, (5) is a quadratic (and hence convex) function

of these variables.

4The phases are well defined only when and do not vanish.
As discussed below, our approach works also when some of them vanish exactly
or are very small.

2) Interference Information: The residuals and cap-
ture the support assumption on and . To ensure a unique
solution, we next consider the spectral interferences. In the ab-
sence of noise and suppressing the dependence on ,

(7)

(8)

Multiplying (8) by and adding (7) gives the following linear
relation between and

(9)

where suppressing the dependence on

(10)

In the noisy case we define the following residuals

(11)

where, again suppressing the dependence on

(12)

Obviously, is also linear in the phase vectors , . More-
over, at the true phase vectors, in the absence of noise,
. In the noisy case we view as an estimate of the relative
phase between and .
Lemma 3 in the appendix characterizes the statistical prop-

erties of . It shows that at low noise levels, are all
approximately independent zero mean Gaussian random vari-
ables. Thus, a suitable quadratic functional is ,
where depends on the index and
is explicitly given in (41).
Remark: If either or , then

is clearly not well defined. The quantity is then random
and very large, . While the equation for is also
random and meaningless, in this case is , so the ef-
fect of this residual is strongly discounted. Moreover, if
is very small compared to or even identically zero, then the
reconstruction of is hardly affected by the value of the esti-
mated phase . In simple words, our algorithm, described
below, is able to handle also a few small or vanishing Fourier
coefficients.
3) Quadratic Functional: So far we defined quadratic func-

tionals for the support of the two signals and for the interference.
Lemma 4 shows that at low noise levels, is weakly correlated
with and , though unfortunately the correlations depend
on the unknown signals. Neglecting these correlations, we pro-
pose the following -dependent functional by summing the
three residuals,

(13)

where are the unknown phases.
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The minimizer of this functional is our proposed solution for
the vectorial phase retrieval problem. The following theorem,
proven in the appendix, justifies using as a quality mea-
sure of a given guess for the unknown phases.
Theorem 2: Let be two spectrally independent

signals that satisfy assumptions (1)–(3). For noise-free measure-
ments, at the exact support size , up to multiplication by a
global constant, is the unique minimizer of .

V. AN ALGORITHM FOR VECTORIAL PHASE RETRIEVAL

Our proposed algorithm for VPR involves two steps. First, we
scan the possible values for the unknown support, where for
each we look for the minimizer of among all phase vec-
tors .
Second, we estimate the support , by solving an appropriate
model selection problem.

A. Finding the Minimizer of

First, assuming a support of size , our goal is to minimize
over the set of phase vectors ( for all ).

To this end, we represent explicitly as a quadratic form.
Recall that for a support size , the length of and is

, whereas is of length , independent of . Hence, the
quadratic functional can be written as

(14)

where the matrix , of size , is given by

otherwise.
(15)

Using Lagrange multipliers for the phase constraints gives
the following unconstrained minimization problem

(16)

This minimization is equivalent to the “multivariate eigenvalue
problem”, which is non-convex, but several iterative algorithms
to solve it were derived [39]–[41].
In this paper we suggest a relaxation of these constraints

that leads to a convex optimization problem. First note
that the reconstruction problem has a trivial ambiguity:

for any real . Thus, without loss of gen-
erality, we can choose the solution such that for
some specific index . Using (14), the quadratic functional
can then be written as:

(17)

where is the matrix without the column, is
the column of and is the phase vector without its

entry.
Minimizing under the constraint that
is a phase vector is still a non-convex optimization problem.

In our approach, we drop the phase constraints, and minimize
(17) without any constraints at all. This amounts to solving a
linear system of equations. Since , and are all
proportional to (see Lemmas 2 and 3 in the Ap-
pendix), so are all entries of . Hence, knowing is not needed
for minimizing .
There are several options for the index . One that worked

well in practice is to choose the column with maximal norm,
as this is the most dominant column in the matrix .
For noise free measurements corresponding to signals with

an exact support , when the true phase vector gives
, and is thus a minimizer of . The-

orem 2 ensures that this is the unique minimizer, hence in the
noise-free case our algorithm retrieves the correct solution.
In the presence of noise, for any value of the minimizer
of is not, in general, a phase vector.

Assuming a support of length , our proposed solution is thus
its following projection into a phase vector,

(18)

Remark: There are several alternative approaches to relax
the non-convex problem of minimizing over the set of
phase vectors. For example, replacing the constraints of (16)
by a single one of the form for
non-negative weights gives a convex generalized eigen-
value problem. If it reduces to the smallest eigen-
value of , whereas if for and
it recovers (17). Numerically, we found our relaxation to yield
slightly smaller errors than those of the smallest eigenvector.
A theoretical study of these relaxations is an interesting topic
beyond the scope of this manuscript. Finally, we remark that
similar relaxations appear in a different problem of angular syn-
chronization, as studied by Singer [42].

B. Estimating the Support Size

The remaining problem is to estimate the signal’s support size
. Let us first consider the noise-free case with signals , that
have an exact limited support. To estimate , we scan all pos-
sible supports, and separately optimize for each . Clearly,
at , the correct phase vector is the unique vector that gives

. Hence, .
For , no phase vector gives

for all . Hence for any phase vector , . In
particular .
For , both the original signals with support

as well as small time shifts of them, with support
are identically zero for , as long as . Thus,
even for spectrally independent signals, there are several distinct
phase vectors for which . That is, the resulting
linear system has an infinite number of solutions residing in an
affine subspace of . With probability one, the output of the
numerical algorithm minimizing is not a
phase vector. Hence, upon its projection to a phase vector via
(18), and for any .
Thus, in the noise-free case, we can recover the true support

by finding the values of for which is minimal.
Next, consider the case of noisy measurements. For sim-

plicity, we assume to be known. For any value of , there
are no phase vectors such that . Nonetheless, as the
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TABLE I
ALGORITHM FOR VECTORIAL PHASE RETRIEVAL

minimizer of is a continuous function of
the measurements, for low noise levels, at we expect
to be close to , and consequently to be close to

zero. However, since the length of the two residuals and
decreases with , estimating by may yield
an incorrect support size and suboptimal reconstruction.
From a statistical point of view, estimating the support size
in the presence of noise can be formulated as a nested model

selection problem. Since the support size affects mainly the two
residuals and , in order to estimate it we only consider
them and disregard the residual .
To motivate our proposed model selection criterion, note that

assuming a support , the length of the residual vectors is
and in particular decreases with . Moreover, according

to Lemma 2, when and are evaluated with the correct
phase vector , at low noise levels,

(19)

Similar to other model selection criteria, we construct a func-
tional with a data fit term and a penalty termwith a penalty factor
,

(20)
Our proposed is then

(21)

The penalty term in (20) depends on the constant . In light of
(19), should be at least 1. In our simulations we used ,
though our recovered is quite robust to the exact value of . A
detailed study of this model selection problem is an interesting
topic beyond the scope of this paper.
In summary, Table I describes our vectorial phase retrieval

algorithm. It assumes that the support is in some range
. In the absence of such prior information,

and . Note that when reconstructing the signals,
consistent with our assumption of a support , we set to zero all
values of beyond .

C. Computational Complexity

To analyze the computational complexity of our algorithm,
consider the solution of (17) for a given , via the set of
linear equations . Calculating

and solving the set of linear equations both
require operations. The number of times such equations
have to be solved depends on our prior knowledge of . If
it is roughly known (e.g., when it is set by the experimental
setup) then only a limited scan over (if at all) is required,
and the overall complexity is . In the worst case,

and the overall complexity is .
In comparison, the computational complexity of the SDP al-

gorithm of [34] adapted to our setup and with a known support
is either or , where is the accuracy of
the SDP. Numerically we compared aMatlab implementation of
our algorithm to that of [34] (available at the authors website).
For a relatively short signal of length , our algorithm
was not only slightly more accurate, but also about 1000 times
faster (with a running time of sec. compared to about 10
sec. for the SDP approach, both codes in Matlab running on a
standard desktop PC).

VI. SIMULATIONS

We illustrate our reconstruction algorithm by simulations on
either strictly supported signals or on exponentially decaying
signals that have no strict support, in both cases with andwithout
measurement noise. In the presence of noise, for simplicity we
assume the noise level is known.
We measure the quality of a reconstruction by a normalized

mean squared error (MSE), which is invariant to trivial ambigu-
ities of time shifts and multiplication by a global phase,

(22)

A. Reconstruction in Absence of Noise

First, we show that our algorithm is able to perfectly recover
signals with finite support from noise free spectral measure-
ments. Fig. 1(a) shows the signal of length , with
a strict support of length and its reconstruction whose
MSE is nearly zero . The second signal had the same
support and a similar reconstruction quality. Fig. 1(b) shows that

attains its minimum at the exact support length ,
with a minimal value that is about 20 orders of magnitude lower
than for .
Next, we show that our algorithm is also able to reconstruct

signals that have no strict support. To this end, consider the fol-
lowing complex valued exponentially decaying signals,

(23)

where , , , , ,
and and are determined such that .
Fig. 2 shows the absolute values of and of its recon-

struction from noiseless measurements, as well as the residual
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Fig. 1. Reconstruction of signals with finite support from noise free measure-
ments. (a) Signal and its reconstruction . (b) versus assumed support
size .

Fig. 2. Reconstruction of exponentially decaying signals from noise free mea-
surements: left panel: the absolute of the complex valued signal of (23) and
its reconstruction, (also in absolute value); right panel: the residual
versus assumed support length .

. Even though both signals do not have a strict limited sup-
port, has a clear minimum at , though its minimal
value there is much higher compared to the case of
strict limited support signals. Consequently, the reconstruction
MSE is about for both and .

B. Reconstruction in Presence of Noise

Next we show that our algorithm can accurately recover the
signals even in the presence of noise. For clarity, we present
results where only background noise is present (neglecting the
effect of shot noise). This corresponds to either a single-shot or
classical light experiment, away from the single photon regime.
We note that our algorithm performed well also in the pres-
ence of shot noise, though these results are omitted due to space
constraints.
Fig. 3 shows the reconstruction of the signal of Fig. 1,

and the residual at a noise level . This corresponds
to . At this noise level, the
estimated support size is still the correct one, .
Figs. 4(a), 4(b) show, on a logarithmic scale, MSE vs. noise

level, averaged over 250 independent noise realizations at each
noise level, for both signals with a limited support or with an
exponential decay. In addition, we compared our algorithm to
the one we previously suggested in [22], which lacked a de-
tailed statistical analysis and justification. As the figure shows,
the new algorithm performs significantly better.

Fig. 3. Reconstruction in presence of noise: left panel: and the real part
of its (complex valued) reconstruction, , at a noise level of ; right
panel: the residual .

Finally, Fig. 5 shows the estimated support size as a function
of the noise level. As expected, for exponentially decaying sig-
nals, the higher the noise level, the smaller the estimated support
size, since at high noise levels it is difficult to resolve the fine
details of signals near their tails.

C. Reconstruction Breakdown at High Noise Levels

At high noise levels, several mechanisms may lead to poor
signal reconstructions: (i) inaccurate estimation of the support,
(ii) inaccurate phase estimation, and (iii) use of the noisy

to reconstruct the signal. To check which of these
mechanisms is the dominant one, we present in Fig. 4(c) the
MSE of four different methods vs. noise level: (i) our algorithm
with its estimated support, (ii) our algorithm with the exact
support, (iii) reconstruction with the estimated phase but
with the noise-free spectra , (iv) reconstruction with the
exact phase but with the noisy spectra .
First, note that the need to estimate introduces a negligible

error. Our model selection criterion estimates the support quite
well, and prior information about the exact support hardly im-
proves our reconstruction.
Second, for low noise levels, most of the error is due to in-

accuracies in the phase estimation. In contrast, at high noise
levels, the main source of error is the noise in the measured am-
plitudes—even in case of successful phase reconstruction, the
noise in would still lead to a large error in .
These results suggest several possible future improvements.

For example, one option is to denoise the noisy amplitude mea-
surements prior to signal reconstruction. Another is to jointly
estimate both the phase and the underlying amplitudes.

D. Numerical Stability to Noise

For simplicity we now study the stability to noise for sig-
nals with a strict support of known length . Our algorithm
boils down to a minimization problem which by our convex
relaxation reduces to solving a set of linear equations. In the
noise-free case this solution coincides with the eigenvector of
smallest eigenvalue of . Measurement noise perturbs
all entries in and hence also the solution. To leading order,
its stability to noise depends primarily on the spectral gap to the
next smallest eigenvalue .
We illustrate this dependency in Fig. 6(a). For this figure, we

generated 1000 pairs of complex valued random signals ,
of length with support length and with i.i.d.

entries. Next, we normalized each signal to unit norm
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Fig. 4. Reconstruction error versus noise level: (a),(b) comparison of current algorithm with the one proposed in [22], and (c) comparison with several oracles.
(a) Compact support signals. (b) Exponentially decaying signals. (c) Error of several oracle algorithms.

Fig. 5. versus noise level, for supported signals (left) and for signals with
exponential decay (right).

Fig. 6. Reconstruction stability to noise: (a) reconstruction MSE versus
and (b) prob. density of .

and computed . Finally, we measured the averagedMSE
over 50 noise realizations at . Fig. 6(a) compares the
reconstructed MSE to . As can be seen, the spectral gap
bounds the MSE.
Note that the spectral gap depends on the specific signals

and . A simple corollary of Thm. 2 is that the spectral gap
is zero if and only if the two signals are spectrally dependent.
Fig. 6(b) shows the probability density function of esti-
mated from pairs of random signals generated as described
above. It suggests that the probability of an extremely small
value of (and hence potentially unstable reconstruction) is
very low. A detailed study of our algorithm stability to noise is
an interesting question for future research.

VII. SUMMARY AND DISCUSSION

In this paper we presented a novel framework, along with ac-
companying theory and an efficient algorithm, for reconstruc-
tion of 1-D signals frommodulus measurements of their Fourier
coefficients, and of the Fourier coefficients of their interfer-
ences. Our work is a first step, which raises several theoretical
and practical questions.
On the theoretical front, three open questions of interest are

i) a theoretical guarantee of stability to noise; ii) a Cramer-Rao
lower bound on the possible reconstruction error in VPR; and
iii) an expression for the breakdown point—the noise level at
which vectorial phase retrieval is not feasible from an informa-
tion point of view.
On the computational front, our algorithm may be improved

in several ways. For example, our relaxation of the phase con-
straints may be replaced by solving (non-convex) multivariate
eigenvalue problems. Similarly, it might be possible to improve
the reconstruction by taking into account additional knowledge
about the signals, such as their sparsity in a given basis, or ex-
plicit knowledge, from physical considerations, about the form
of their time decay. Also, the speed of our algorithm may be
improved via multiscale methods.
Finally, while in this paper we focused on the 1-D case, vecto-

rial phase retrieval can be extended to 2-D images, hence intro-
ducing a new class of computationally efficient imaging phase
retrieval methods.

APPENDIX I

Proof of Theorem 1: To prove uniqueness of the noise-
free VPR problem it is useful to first review the ambiguity of
standard phase retrieval for a single 1-D signal .
Following [15], we make a change of variables ,

known as the -transform. In the new variable , the discrete
FT, , is simply a polynomial of degree at most ,

We decompose this polynomial into its roots,

(24)

where is some normalization constant.
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The spectral measurements can thus be written as

(25)

For and it holds that5

Hence, for all , and specifically at the measurement
points,

(26)

is nothing but a polynomial of degree at most .
With no prior knowledge about the signal, the spectral phase

is unrecoverable: We have only observations of a
polynomial of degree . If, however, has a support of length

, meaning for all , then has degree
at most . The observations
uniquely determine its roots . Nevertheless,
the limited support constraint does not fully remove the ambi-
guity. To recover , only one root from each pair, and ,
should be chosen. This is the well known ambiguity of the 1-D
phase retrieval [15], with different valid solutions.
Now let us analyze the uniqueness of the VPR problem. Let

be the two signals, both with support of length ,
and let and be the roots of the two
polynomials and , respectively.
The key to uniqueness in vectorial phase retrieval lies in the

additional spectral interference measurements. These allow re-
covery of the relative phase between the Fourier coefficients of
the two signals. Indeed, suppressing the dependence on ,

Thus, in vectorial phase retrieval we also know values of
. Note that at this function is equal to a

polynomial with the following factorization,

(27)

Comparing the roots of and to those of (27),
the ambiguity of each pair of roots can be resolved: The roots of

are those that are common to and ,
and similarly for . The requirement that and are
spectrally independent allows for such a unique identification
and is thus a sufficient condition for uniqueness.
To show that spectral independence is a necessary condition,

consider , which are spectrally dependent, with and
sharing a common root . Consider the two modified

signals , which correspond to and

. Clearly , have the same support
as , as the degree of the corresponding polynomials is the
same. Their Fourier coefficients have the same amplitude, as on
the unite circle and .
Finally, the interferences between these signals agree with the
measured ones since at

and . Thus,

5For and it holds that , thus we can
ignore these roots.

these two signals solve the corresponding vectorial phase re-
trieval problem too, but are not related to by a trivial am-
biguity. Hence, the solution is not unique.

APPENDIX II
PROOF OF THEOREM 2

Proof of Theorem 2: First note that the true phase vector
is a minimizer of since . Let us assume that there
exist another minimizer, . Since
is not necessarily a phase vector, we decompose it into am-

plitude and phase, . Being a min-
imizer, as well. Thus, . The interfer-
ence equations imply that and also

.
Let and be defined as follows,

(28)

(29)

The equations for vanishing residuals and imply
that and are the Fourier Transforms of two signals ,
with a support of length . Hence, they may be decomposed

as follows,

(30)

Similarly, the FT of , can also be factored as

(31)

where as in the proof of Thm. 1, . Using
we get

(32)

or, equivalently

But by spectral independence .
Thus and . Moreover

and , meaning
and up to a global

phase.

APPENDIX III
STATISTICAL PROPERTIES OF THE RESIDUALS , ,

Low Noise Assumption: In calculating the statistical prop-
erties of the different residuals, we assume a high signal to noise
ratio, such that in (3), with high probability both

and . The latter condition implies that the shot noise,
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which typically follows a Poisson distribution, may be approx-
imated by a r.v.. We note that if at some frequency the
Fourier coefficient is comparable to the noise level or is even
identically zero, these conditions do not hold there, and the de-
velopments below are not valid. However, as discussed in the
paper, the reconstruction of the signal is quite insensitive to the
exact value of estimated phases at such frequencies. Under these
assumptions and suppressing the dependence on , we can ap-
proximate the spectral amplitudes as follows,

(33)

In other words, at the high SNR regime, we may approximate

(34)

where

(35)

Note that if both and are zero mean Gaussian then
is zero mean Gaussian as well. However, it is not independent of
the signal, due to the factor multiplying the first term
in (35) above.
For future use, we first state and prove the following auxiliary

lemma regarding the distribution of .
Lemma 1: Let be given by (35). Then, is a

Gaussian random variable with zero mean, and variance

(36)

In addition, for or .
Proof: Using (35) and the assumption that the shot noise

and signal noise are uncorrelated, we have

The assumption gives .
As for the second term, since we may

write where and are i.i.d. .

Thus, and
its variance is . Hence, (36) follows.
The fact that for or fol-

lows from our assumption that noise is uncorrelated between
different frequencies and across different experiments.

Statistical Properties of the Residuals and : Let us
first study the distribution of the residual of (4), when
evaluated at the true unknown phases, for . Combining

(3) and (4) with (34) and the assumption of a finite support gives,
up to second order noise terms

(37)

That is, at the true phases, the residual values depend
both on the noise realization and on the unknown phase vector
. The following lemma characterizes some statistical prop-

erties of this residual. Analogous results hold for the second
residual .

Lemma 2: In the limit of high SNR, the random vector
of residuals , evaluated at the exact (unknown)
phase vector satisfies the following properties:
1) .

2)

3)

Note that since the sum in property (3) is in general not
zero, the residuals and are unfortunately not
independent, and moreover their correlation depends on the
unknown phase vector . However, for a random phase vector
with where are all i.i.d. uniform on , this
(random) sum is . Hence, for with high proba-
bility, the covariance between the two residuals of , is
negligible compared to .
Neglecting these correlations yields (5).
Proof: Property (1) follows directly from the linearity of

the expectation operator,

(38)

Next, using Lemma 1 and the fact that gives

where and . Property (2) readily
follows from (36) for . Similarly, we have that

(39)

Using (36) yields property (3).
The Interference Residual : The following lemma de-

scribes some statistical properties of the interference residuals
.

Lemma 3: The random vector of residuals , evalu-
ated at the phase vectors has the following properties:
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1) Up to second order terms in the noises , can
be written as a linear combination of as follows,

(40)

where depend on the measured spectral intensities
.

2) Neglecting the second order terms in (40), are
independent zero mean Gaussian random variables, with
variance

(41)
Proof: To prove property (1), we expand to first

order in the additive noises. Combining (10), (12) and (35), sup-
pressing the dependence on and denoting quadratic terms in
by :

Since , we can replace by and
each by in the equation above. Namely,

(42)

with

(43)

and

(44)

Next, we consider the residual . Combining (42) with
(11), and suppressing the dependence on gives

Since and we obtain

(45)

Hence, (40) follows with coefficients given by

(46)

and given by (43)–(44). This proves property (1).
To prove property (2), note that by Lemma 1, are all

independent random variables. As a linear com-
bination of Gaussian i.i.d. is also Gaussian, property (2) follows.
Moreover, as are phases with unit norm and the mean of
is zero, (41) follows as well.
Correlations Between and : The following lemma

shows that is not independent of and ,
and their covariance depends on the unknown phase vectors

. However, it asserts that their correlation is small, of

.
Lemma 4: Up to second order terms in the noises,

, the covariance between and , when
evaluated at the true phase vectors , is given by

(47)
with similar formulas for and for .
Note that by this lemma and property (2) of Lemma 2, the

correlation between and or is .
Proof: Using the independence properties of , up to

second order noise terms ,

The lemma now readily follows from (36).
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