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The waveforms of attosecond pulses produced by high-harmonic generation carry information on the

electronic structure and dynamics in atomic and molecular systems. Current methods for the temporal

characterization of such pulses have limited sensitivity and impose significant experimental complexity.

We propose a new linear and all-optical method inspired by widely used multidimensional phase retrieval

algorithms. Our new scheme is based on the spectral measurement of two attosecond sources and their

interference. As an example, we focus on the case of spectral polarization measurements of attosecond

pulses, relying on their most fundamental property—being well confined in time. We demonstrate this

method numerically by reconstructing the temporal profiles of attosecond pulses generated from aligned

CO2 molecules.

DOI: 10.1103/PhysRevLett.107.133902 PACS numbers: 42.30.Rx, 78.47.D�

Optical and extreme ultraviolet (XUV) pulses with
durations significantly below one picosecond cannot be
directly characterized in the time domain, since there are
no suitable photodetectors. Therefore they are usually
characterized in the frequency domain by measuring both
the spectral amplitude and spectral phase of the pulse. The
former may be determined straightforwardly by means of a
spectrometer. The latter requires either a fast modulator, a
detector, or a reference pulse with which the unknown
pulse can be interfered. A modulator or gate of sufficiently
rapid response is typically synthesized by means of non-
linear optical processes [1]. In the femtosecond regime,
most measurement schemes are based on nonlinear light
matter interactions. By exploiting media having a non-
linear response, various successful schemes have been
developed for complete characterization of femtosecond
pulses, most notably FROG [2] and SPIDER [3].

The ability to produce attosecond pulses has set new
benchmarks in time-resolved measurements. Such pulses
enable one to probe electron dynamics on the atomic time
scale. Recently, it has been demonstrated that the atto-
second production process carries information about
both electron dynamics [4] and molecular structure [5].
However, full access to the information contained in the
pulse requires its complete characterization. A direct im-
plementation of the pulse characterization schemes devel-
oped for the femtosecond regime is challenging, due to the
low signal levels and the absence of appropriate nonlinear
media in the XUV.

Several characterization schemes have been developed
for the attosecond XUV domain [6–11]. However, time-
resolved measurement of attosecond pulses remains a
major challenge. For example, certain important

attosecond-scale processes such as plasma mirrors [12]
and field-enhancement high harmonic generation (HHG)
[13] have not yet been fully characterized.
In this Letter we propose a new approach for measuring

attosecond pulses, which, in contrast with other methods,
relies only on linear spectral measurements of the radiation
generated by several sources. The key new feature of the
method that enables this approach is the explicit utilization
of a temporal support constraint in the retrieval algorithm.
The fact that the pulse is limited in duration allows a
unique solution to be extracted. To illustrate the approach,
we consider the two polarization components of the atto-
second pulse as two independent sources. We show that the
spectral measurement of the two polarizations together
with their relative phases, obtained by means of spectral
interference, is sufficient to retrieve the spectral phase of
each component individually. We numerically test the
method on attosecond pulses calculated for aligned CO2

molecules [14], in which the polarization varies nontri-
vially with frequency. We establish excellent reconstruc-
tions even for pulses that do not exactly satisfy the finite
duration assumption, but rather have a sufficiently rapid
decay.
Phase retrieval problems are common in many branches

of physics, including astronomy [15], NMR [16], ultrafast
optics [2], crystallography [17], and lensless imaging
[18–20]. In each of these cases, the measured signal spec-
trum, together with some assumption on the signal itself,
allows one to retrieve the phase without directly measuring
it. In our case, the assumed property is that the pulse has a
limited, but not necessarily known, ‘‘time window’’ in
which the intensity is nonzero, usually referred to as com-
pact support. Generic compact support phase retrieval
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problems are known to have many solutions in the one-
dimensional (1D) case, but usually a unique solution for
higher dimensions [21]. As our measurements are of a one-
dimensional Fourier transform, the compact support as-
sumption is not enough to reconstruct the spectral phase.
This is solved by measuring the relative phase between two
(or more) spectra. Such a measurement enables a vectorial
1D phase retrieval problem. If the two components of the
vector are nondegenerate (in a sense to be defined later on),
then the problem has a unique solution for the spectral
phase, up to a phase linear in frequency (i.e., an arbitrary
delay that is not physically significant). It is useful to
consider how the temporal support constraint enables a
unique inversion of the data. We first develop a formal
approach that illustrates this, and then describe a simpler
inversion algorithm.

Consider the electric field spectrum Eð!Þ of a pulse
with a finite duration T, sampled at frequencies !j ¼
2�j=T for j ¼ 1; . . . ; N. The spectrum can be written as

Eð!Þ ¼ P
t ÊðtÞe�i!t ¼ P

t ÊðtÞzt, where z ¼ e�i!.
According to the fundamental theorem of algebra, we
can write EðzÞ ¼ P

tEðtÞzt ¼
Q

jðz� zjÞ where zj are the

N roots of the polynomial EðzÞ. A linear measurement of
the spectrum measures jEð!Þj2, which at the sampled
points jzj ¼ 1 can be shown to equal

jEðzÞj2 ¼
Q

zj
ð�zÞN

Y
j

ðz� zjÞðz� zj
�1Þ; (1)

where zj is the complex conjugate of zj. Without any prior

knowledge about the pulse, the spectral phase is, by defi-
nition, unrecoverable. This is because the polynomial rep-
resenting the spectrum is undersampled: Eð!Þ corresponds
to a polynomial of degree N in z, but jEð!Þj2 corresponds
to a polynomial of degree 2N in z. Therefore, the N
samples of jEðzÞj2 are insufficient to unambiguously de-

termine ÊðtÞ. If, however, a compact support constraint is

assumed, meaning ÊðtÞ ¼ 0 for, say, the N=2 samples in
the range T=2 � t � T, the degree of jEðzÞj2 is at most N.
Therefore, it is well sampled and the N roots of the poly-
nomial (zj and zj

�1) are uniquely determined. This also

agrees with the Nyquist criterion for sampling compact
supported pulses. The compact support constraint, never-
theless, does not remove all the ambiguities. In order to
retrieve the pulse EðzÞ, only one root from each pair of

roots, zj and zj
�1, should be chosen. As there are 2N=2

possibilities to choose one root from each pair of jEðzÞj2,
there still exist 2N=2 different pulses, all having both the
measured spectrum and the correct compact support. This
ambiguity in the 1D phase retrieval problem is well known
[21]. Hence, additional information is required to un-
equivocally determine the ‘‘correct’’ choice.

The phase ambiguity can be overcome by using two (or
more) spectra which we refer to as ‘‘components,’’ and
the relative phase between them. We will denote such

measurements as ‘‘vectorial.’’ As an example of a vectorial
measurement, appropriate for the attosecond domain, we
use polarization: when attosecond pulses are generated
from an anisotropic media, such as aligned molecules by
means of high-harmonic generation, nontrivial frequency-
dependent polarization is expected [22]. Other examples
are discussed in the Supplemental Material [23]. For the
two component spectra, jExð!Þj2 and jEyð!Þj2 with the

same time domain compact support, we can find the N
roots fzxgj, fzygj corresponding to Eq. (1) and their com-

plex conjugates. Without the relative phase, these are two
independent 1D phase retrieval problems, each having
many solutions. However, a complete polarization mea-
surement, consisting of both the spectra of two orthogonal
polarizations as well as the interference spectrum between
them, provides sufficient information to eliminate the

ambiguities. Noting that Ex;yð!Þ ¼ jEx;yð!Þjei�x;yð!Þ, the
vectorial measurements allow us to establish jExð!Þj2,
jEyð!Þj2, and Exð!ÞEyð!Þ ¼ jExjjEyjeið�x��yÞ. These

quantities are represented by the factored polynomials

jExðzÞj2 ¼
Q

zxj
ð�zÞN

Y
j

ðz� zxjÞðz� zxj
�1Þ (2)

jEyðzÞj2 ¼
Q

zyj

ð�zÞN
Y
j

ðz� zyjÞðz� zyj
�1Þ (3)

ExðzÞEyðzÞ ¼
Q

zyj
ð�zÞN

Y
j

ðz� zxjÞðz� zyj
�1Þ (4)

The essential point is that from these equations the ‘‘which
root’’ ambiguities of both components can be resolved: the
correct roots for ExðzÞ are those that are common to

jExðzÞj2 and ExðzÞEyðzÞ, and similarly for EyðzÞ. In

Fig. 1, we show an example of the method for a simple
pulse. The time domain signals are shown in the inset. In
the main figure, the roots generated by Eqs. (2) and (3) are
shown as dots and crosses in the complex plane (the black
line is the unit circle). As expected, the roots come in pairs:
for example, the roots marked by A and B are related by
zA ¼ zB

�1. The one-dimensional phase retrieval problem
requires one to choose the correct root from each pair. In
the vectorial case, this can be done using the roots gener-
ated by Eq. (4): these roots are marked by green squares.
As seen in Fig. 1, each square coincides with only one of
the roots, thus identifying the correct root of each pair. In
the above example, A, rather thanB, is the correct root, as it
coincides with a root of Eq. (4).
Clearly, if jExðzÞj2 and jEyðzÞj2 have m common zeros,

there is still an ambiguity among 2m different pulse shapes.
We will call such cases degenerate. In the absence of noise,
the set of pulses which share common zeros is very small,
unless they have been manipulated in a common manner to

PRL 107, 133902 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

23 SEPTEMBER 2011

133902-2



introduce them. Nevertheless, common zeros do arise
when both pulses are passed through the same linear
phase-only filter. The pulses then share a component of
common spectral phase, leading to degeneracy. In this case
the pulse fields cannot be retrieved by the above method
(see Supplemental Material [23]). Further, most experi-
mental data will have some noise, which creates uncer-
tainty around the roots and, hence, might generate a
degeneracy. As we show in the Supplemental Material
[23], by sampling large enough bandwidth the uncertainty
around the zeros gets smaller with respect to the distance
between them; hence, degeneracy should not be
commonplace.

Another consideration is that most physical pulses do
not have exact compact support, but rather a sharp decay
outside some temporal region. Our method is applicable
even in such cases, as we now show by means of an
alternative solution method. The compact support con-
straints can be expressed as a set of nonlinear equations
for the spectral phase �x;yð!Þ, which are the only un-

knowns in the problem. These equations, however, can

be viewed as a linear set of equations for Xð!Þ ¼ ei�xð!Þ.
To see this, we write ÊxðtÞ and ÊyðtÞ by using inverse

discrete Fourier transform, as

Ê xðtÞ ¼
X
!

Exð!Þei!t ¼ X
!

jExð!Þjei!tXð!Þ; (5)

Ê yðtÞ ¼
X
!

jEyð!Þjei!teið�yð!Þ��xð!ÞÞXð!Þ: (6)

Applying the compact support assumption gives

Ê x

�
t ¼ 1; . . . ;

N

2

�
¼ Êy

�
t ¼ 1; . . . ;

N

2

�
¼ 0: (7)

Using Eq. (7) in Eqs. (5) and (6) gives a set of N linear
homogenous equations for the N unknowns Xð!Þ.
Exploiting the arbitrariness of the absolute phase, one
can set Xð!1Þ ¼ 1 and obtain an overdetermined set of
inhomogeneous equations for the unknown phases Xð!Þ,
which for nondegenerate problems have a unique solution.
By solving these equations, one can solve the phase prob-
lem provided Xð!Þ is a phase-only function, that is,
jXð!Þj ¼ 1 for all !. This has two important consequen-
ces: (1) In cases where the solution to Eq. (7) is far from
yielding a unimodular complex number, the compact sup-
port assumption is either wrong (as the case of assuming
compact support smaller than the true one) or there is a
degeneracy (as, for example, when the compact support
domain is chosen smaller than the true one). As we later
show, this gives us the means to search for the correct
compact support without assuming it beforehand. (2) Since
the problem boils down to solving linear equations, the
sensitivity to noise is linear in the noise amplitude.
Our proposed algorithm seeks a domain of compact

support choosing that which is most consistent with the
above conditions as our constraint. For each assumed
domain of support, T, we resample the spectral information
at discrete frequencies with spacing � ¼ 2�=T, changing
the number of sampled frequencies N. We then use Eq. (7)
in Eqs. (5) and (6) to find Xð!Þ. For each T we calculate
how far Xð!Þ are from being unimodular complex, by
calculating the relative change in the pulse’s energy
when using Xð!Þ (which might not be unimodular) as the
spectral phase:
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FIG. 1 (color online). An example for our reconstruction
procedure for two artificially generated pulses with the same
compact support. The blue dots, red crosses, and green squares
are the roots, in the complex plane, of jExðzÞj2,jEyðzÞj2, and
ExðzÞEyðzÞ, respectively. A time domain plot of the two polar-

izations is shown in the inset.
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FIG. 2 (color online). (a) Two time domain polarization com-
ponents of the attosecond pulse generated from CO2 molecules
at an alignment of 58� (between the molecule symmetry axis and
the IR polarization) and IR laser intensity of 0.07 a.u. at 800 nm.
(b) ErrðTÞ [defined in Eq. (8)] as a function of assumed compact
supports.
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Err ðTÞ ¼
P

! jEð!Þj2jð1� jXð!ÞjÞj2P
! jEð!Þj2 (8)

ErrðTÞ is the standard metric used in the Gerschberg-
Saxton algorithm [15] for compact support phase retrieval
problems. We then choose the value of T that minimizes
ErrðTÞ as the compact support domain and the argument of
the corresponding Xð!Þ as the pulse’s phase. We demon-
strate our method by reconstructing simulated attosecond
pulses generated from aligned CO2 molecules (for HHG
simulation details, see [14]). The simulated attosecond
pulses do not have compact support, but exhibit a sharp
Gaussian decay (see Fig. 2, where the two original pulse
polarizations are plotted in a logarithmic scale). Figure 3
shows the temporal profiles of the two polarizations of the
simulated pulse and their reconstruction. As can be seen,
their agreement is excellent. The errors are typically of the
order of ErrðTÞ � 0:05. A plot of ErrðTÞ is given in Fig. 2.
For too small T the solution is far from being unimodular
as the compact support assumption cannot be fulfilled. For
too large T there are many solutions which correspond to
lateral shifts. Hence, the system is degenerate, and the
arbitrary solution found by the algorithm is not necessarily
unimodular.

There are many experimental ways to implement the
method developed here. So far we have discussed the
spectrally dependent polarization components of HHG
which can be measured, using an XUV polarizer, up to a
sign ambiguity of the phase difference. The sign ambiguity

can be resolved by means of a wave plate. For many cases
this is not needed as by continuity the ambiguity is the
same for all !, which means an overall time direction
ambiguity. Other options to use the same idea (see
Supplemental Material [23]) are to generate two XUV
pulses from different sources, either spatially [4,24] or by
using mixed gases [25]. By measuring the spectrum of each
source alone and the interference between them, one can
use our method to reconstruct the spectral phase. The
spatial case can be generalized to spatiotemporal measure-
ments by lateral shearing interferometry [26].
To conclude, we have proposed and demonstrated a

novel characterization method for attosecond pulses using
a vectorial phase retrieval algorithm. Our method presents
a new class of solutions of phase retrieval problems, ap-
plicable to many other fields, such as lensless imaging and
optical spectroscopy. The main strength of the method lies
in the fact that it removes the requirement for a nonlinear
interaction or photoionization to resolve attosecond pro-
cesses. Extending our approach to characterize more
complex electron dynamics proposes a new scheme of
time-resolved measurements where attosecond-scale phe-
nomena can be observed using linear, time-stationary,
apparatus.
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phase, dash-dotted green) pulses, for the two polarizations of the
HHG pulse generated from the CO2 molecule at an alignment of
58� (between themolecule symmetry axis and the IRpolarization)
and IR laser intensity of 0.07 a.u. at 800 nm. The spectral
resolution of the data was 3:9� 1014 Hz. The lower figure shows
the radiation in the IR polarization, and the upper shows the
perpendicular polarization. The assumed pulse duration T which
minimizes ErrðTÞ is 415 attoseconds (from t ¼ 0 to t ¼ 415),
which corresponds to downsampling from N ¼ 769 to N ¼ 250.

PRL 107, 133902 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

23 SEPTEMBER 2011

133902-4

http://dx.doi.org/10.1364/OL.19.000287
http://dx.doi.org/10.1063/1.1148286
http://dx.doi.org/10.1007/978-3-540-39849-3_6
http://dx.doi.org/10.1038/nature08253
http://dx.doi.org/10.1038/nature03183
http://dx.doi.org/10.1103/PhysRevA.71.011401
http://dx.doi.org/10.1103/PhysRevA.71.011401
http://dx.doi.org/10.1103/PhysRevLett.97.263901
http://dx.doi.org/10.1126/science.1090277
http://dx.doi.org/10.1038/35107000
http://dx.doi.org/10.1103/PhysRevLett.94.033905
http://dx.doi.org/10.1038/nature03108
http://dx.doi.org/10.1038/nature03108
http://dx.doi.org/10.1038/nphys595
http://dx.doi.org/10.1038/nature07012
http://dx.doi.org/10.1103/PhysRevLett.102.063601


[15] J. Dainty and J. R. Fienup, Image Recovery—Theory and
Aplication (Academic Press, London, 1987).

[16] P. McDonald and A. Lonergana, Physica (Amsterdam)
176B, 173 (1992).

[17] J. Miao, T. Ishikawa, Q. Shen, and T. Earnest, Annu. Rev.
Phys. Chem. 59, 387 (2008).

[18] R. L. Sandberg et al., Phys. Rev. Lett. 99, 098103
(2007).

[19] H. N. Chapman et al., Nature Phys. 2, 839 (2006).
[20] K. S. Raines et al., Nature (London) 463, 214 (2009).

[21] Y. Bruck and L. Sodin, Opt. Commun. 30, 304 (1979).
[22] J. Levesque et al., Phys. Rev. Lett. 99, 243001 (2007).
[23] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.107.133902 for fur-
ther information about the limitations of the proposed
method.

[24] X. Zhou et al., Phys. Rev. Lett. 100, 073902 (2008).
[25] T. Kanai, E. J. Takahashi, Y. Nabekawa, and K.

Midorikawa, Phys. Rev. Lett. 98, 153904 (2007).
[26] D. R. Austin et al., Opt. Lett. 36, 1746 (2011).

PRL 107, 133902 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

23 SEPTEMBER 2011

133902-5

http://dx.doi.org/10.1016/0921-4526(92)90002-A
http://dx.doi.org/10.1016/0921-4526(92)90002-A
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093642
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093642
http://dx.doi.org/10.1103/PhysRevLett.99.098103
http://dx.doi.org/10.1103/PhysRevLett.99.098103
http://dx.doi.org/10.1038/nphys461
http://dx.doi.org/10.1038/nature08705
http://dx.doi.org/10.1016/0030-4018(79)90358-4
http://dx.doi.org/10.1103/PhysRevLett.99.243001
http://link.aps.org/supplemental/10.1103/PhysRevLett.107.133902
http://link.aps.org/supplemental/10.1103/PhysRevLett.107.133902
http://dx.doi.org/10.1103/PhysRevLett.100.073902
http://dx.doi.org/10.1103/PhysRevLett.98.153904
http://dx.doi.org/10.1364/OL.36.001746

