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Abstract. We consider the arrival process of infinitely many identical independent diffusion
processes from an infinite bath to an absorbing boundary. Previous results on this problem were
confined to independent Brownian particles arriving at an absorbing sphere. The present paper
extends these results to general diffusion processes, without any symmetries and without resorting
to explicit expressions for solutions to the relevant equations. It is shown that for general absorbing
boundaries and force fields, the steady stream of arrivals is Poissonian with rate equal to the total
flux on the absorbing boundary, as calculated from the continuum theory of diffusion with transport.
The considered arrival problem arises in the theory of Langevin simulations of ions in electrolytic
solutions. In a Langevin simulation ions enter and exit the simulation region, and it is necessary to
compute the probability laws for their entrance times into the simulation. While the simulated ions
inside the small simulation region interact with each other and with the far field of the surrounding
bath and the applied voltage, the physical chemistry continuum description of the surrounding bath
implies independent diffusion in a mean field. Under these conditions the result of this paper applies
to the stream of new ions that arrive from the continuum bath into the discrete simulation region.
The recirculation problem, of ions that have already visited and exited the simulation region, as well
as the integration of these results into a simulation of interacting ions will be studied in separate
papers.
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1. Introduction. The study of the arrival process of diffusing particles from a
continuum to an absorbing boundary started at the earliest stages of the probabilistic
theory of diffusion. In 1917, Smoluchowski [1] (see also [2], [3]) calculated the flux on
an absorbing sphere immersed in an infinite bath of independent Brownian particles
with fixed concentration at infinity and applied his result to the theory of coagulation
of colloids. The time to the arrival of the first Brownian particle from an equilibrated
continuum bath to an absorbing sphere was shown by Bordewijk in 1975 [4] to be
exponentially distributed with rate equal to the Smoluchowski flux. That result was
applied to the theory of defect relaxation in dielectrics. Obviously, the existence of a
stationary flux, which represents the average number of absorbed particles per unit
time, does not imply in general that the first arrival time or any other interarrival
times are exponentially distributed. The flux and the exponential rate coincide only
for Poisson processes [5], [6]. The proof that all interarrival times of free Brownian
particles at the absorbing sphere are identically exponentially distributed, thus ren-
dering the absorption process Poissonian with rate equal to the Smoluchowski flux,
was given by Nadler in 1994 [7]. All of these results concern problems with spherical
symmetry and rely on explicit known solutions of the relevant equations.
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The probabilistic characterization of the arrival process of particles into an absorb-
ing boundary also has important applications, apart from its mathematical interest
and history. This problem arises, for example, in the simulation of discrete particles
in a finite region of a continuum bath. A common approach in these simulations is
to define a relatively small finite simulation region, start with an initial configura-
tion of the required (average) number of particles inside the simulation region, and
move the particles according to their dynamics. The two most common treatments
of the boundaries of the simulation region are to define them as reflecting or periodic
boundaries [8]. In both treatments of the boundaries, the total number of particles
inside the simulation region is fixed at all times. Thus, all fluctuations in the number
of particles inside the simulation region are lost, and all physical phenomena related
to these fluctuations may not be recovered correctly by the simulation. Of course,
if the simulation region is large enough, then in a small subregion of the simulation
fluctuations in the number of particles do exist, but then the simulation itself might
be infeasible in terms of computer resources due to the large number of simulated
particles in the larger region. A different approach, as described in [7], [9], is to sim-
ulate the motion of particles in only a small region, but also on the one hand to let
the particles exit the simulation region and be absorbed by the continuum bath, and
on the other hand let particles from the continuum bath enter the simulation region.
In such a simulation scheme, the total number of particles inside the simulation re-
gion is not fixed, but rather fluctuates in time. The exact absorption and injection
mechanisms between the continuum bath and the discrete simulation region should
of course mimic as much as possible the situation in the real physical system and
maintain the correct average number of particles in the simulation region. To carry
out such a simulation it is necessary to compute the statistics of these mechanisms, in
particular the arrival times of particles from the continuum bath into the simulation
region. Arrivals of particles into the simulation region can be divided into two types:
(i) arrivals of “new” particles, which have not visited the simulation region so far
and (ii) arrivals of “returning” particles, which have already visited and exited the
simulation region. In this paper we study arrival process (i). The more complicated
process (ii) will be studied in a separate paper. The integration of processes (i) and
(ii) into a simulation of interacting ions in solution will be done in still another paper.

In this paper, we generalize the results obtained so far to general diffusion pro-
cesses and general boundaries without any symmetries and without explicit solutions
to the relevant equations. We consider an infinite three-dimensional bath of indepen-
dent noninteracting Brownian particles diffusing in the presence of a general force field
and an absorbing boundary with general geometry. The main result of this paper is
that the steady state absorption stream at an absorbing boundary of particles diffus-
ing independently in a force field is Poissonian with rate equal to the total absorption
flux. The significance of this result for simulations of ions in solution is that the
arrival process of new particles into the simulation is memoryless when the assump-
tions of independent diffusion are satisfied outside the simulation region. This means
that the interarrival times of new particles into the simulation region are independent
identically distributed (i.i.d.) random variables and can be easily generated without
the need to store the history of previous arrival times.

It is a common practice in physical chemistry to describe ionic solutions by an
electrochemical potential. This means that the motions of ions in solution are assumed
to be independent diffusion processes in a mean force field. To compensate for the lost
interionic interactions an activity factor is introduced [10]. Thus, our assumptions are
satisfied in regions that can be described by independent diffusion (usually outside
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the simulation region).
The paper is organized as follows. In section 2 the flux in a one-dimensional prob-

lem is computed, and in section 3 we show that the first arrival time is exponentially
distributed with a rate that equals the calculated flux. The first arrival time in a gen-
eral three-dimensional setting is formulated and solved in section 4. The probability
law of all subsequent interarrival times is calculated in section 5. Finally, a summary
and discussion are given in section 6.

2. The stationary flux at an absorbing boundary in one dimension. We
begin with a simplified one-dimensional model of a continuum bath and an absorbing
boundary. In this section we calculate the continuum flux into the absorbing boundary,
and in the next section we show that the distribution of the first arrival time at the
same boundary is exponential with a rate that equals the continuum flux.

Consider a continuum bath located on the x-axis at x > 0, with an absorbing
boundary at x = 0. The bath is composed of an infinite number of independent
noninteracting Brownian particles with average density ρ as x → ∞, diffusing in a
potential field U(x). We assume that U ′(x) → a > 0 as x → ∞, so that the steady
state average density of particles is uniform at infinity.

In this setting, the motion of each particle is governed by the one-dimensional
Langevin equation

ẋ = −dU

dx
+
√

2ẇ,(2.1)

where w (t) is standard Brownian motion.
We assume the existence of a stationary concentration of bath particles, denoted

p(x). By assumption, the motions of different bath particles are independent, so the
stationary concentration p(x) satisfies the Nernst–Planck equation

d

dx

[
dp

dx
+ p

dU

dx

]
= 0,(2.2)

with the boundary conditions

p(0) = 0, and p(x) → ρ as x → ∞.(2.3)

First, we modify the problem to that of a finite bath in the region [0, L], with the
boundary conditions

p(0) = 0, p (L) = ρ.

The solution of the modified problem, denoted pL(x), is given by

pL (x) = ρ

e−U(x)

∫ x

0

eU(s) ds

e−U(L)

∫ L

0

eU(s) ds

.(2.4)

The steady state density of the infinite system p (x), whenever it exists, is given as
the limit

p (x) = lim
L→∞

pL (x) .(2.5)
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Under the given assumptions concerning the existence of a steady state density, the
following limit exists:

0 < a−1 = lim
L→∞

∫ L

0

eU(s)−U(L)ds < ∞.(2.6)

In this case, combining (2.6) with (2.5) and (2.4) gives

p(x) = ρ a e−U(x)

∫ x

0

eU(s)ds.(2.7)

The continuum flux at the absorbing boundary is

J = − dp (x)

dx

∣∣∣∣
x=0

= −ρa.(2.8)

Note that the flux is negative as particles are flowing out of the bath, thus “decreasing”
the number of bath particles.

In the next section we prove that when a steady state exists, the first arrival time
from the continuum to the absorbing boundary is exponentially distributed, with a
rate equal to the above flux (in absolute value), λ = ρa = |J |. The proof that all
subsequent interarrival times are also exponentially distributed with the same rate is
postponed until section 5.

3. The probability law of the first arrival time. Before computing arrival
times from an infinite continuum bath, we need a definition of a steady state infinite
bath with an infinite number of discrete particles. We define an observation, or a
measurement of the first arrival time from a steady state infinite bath, as follows.
Following [4], at the start of observation, at time t = 0, we consider only the finite
number of particles initially distributed in the interval [0, L] of the infinite bath and
compute the first arrival time of these particles. The first arrival time from the infinite
bath is defined as the limit of the above arrival time when we let the length of the
interval and the number of particles tend to infinity.

We denote by N(L) the number of particles initially located in the interval [0, L]
and denote by τ(L) the first arrival time from this system. By definition, the time
τ(L) is the minimum of the arrival times of all the N(L) particles. Since the bath
is in steady state and all diffusing particles are independent, the initial locations
at time t = 0 of the N(L) particles inside the finite region [0, L], denoted xi(0)
(i = 1, . . . , N(L)), are i.i.d. random variables, distributed according to the steady
state density p(x) from (2.7) but normalized to the region [0, L],

Pr
{
xi ∈ [x, x + dx]

}
=

p(x) dx∫ L

0

p(s) ds

.(3.1)

By definition of the steady state particle concentration p(x), it follows that the average
number of particles inside the region [0, L], denoted E[N(L)], is given by

E
[
N(L)

]
=

∫ L

0

p(x) dx.(3.2)

As is well known [6], N(L), the total number of particles inside the region [0, L], is a
Poisson random variable whose average is E[N(L)], as computed above in (3.2), and
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its probability distribution function is

Pr
{
N(L) = k

}
=

E[N(L)]
k

k!
e−E

[
N(L)

]
.(3.3)

To summarize so far, in our approximation scheme we consider only the finite number
of particles in the infinite bath, initially confined to the interval [0, L]. This number
of particles N(L) follows the Poisson distribution (3.3), and the initial locations of
the particles are i.i.d. random variables distributed according to (3.1).

Our purpose is to compute the probability law of the minimal arrival time to
the origin of these N(L) particles, sum over all possible values of N(L) multiplied by
their respective probabilities, and then take the limit as L → ∞. Since the motions
of different particles are independent of each other, for a bath with k particles

Pr
{
τ(L) > t |N(L) = k

}
=
[

Pr
{
τ1 > t

}]k
,(3.4)

where τ1 denotes the first passage time (FPT) to the origin of a single particle initially
distributed inside the region [0, L]. Combining (3.4) and (3.3), the FPT from the
infinite bath, denoted τ , is given by

Pr
{
τ > t

}
= lim

L→∞

∞∑
k=0

Pr
{
τ(L) > t |N(L) = k

}
Pr
{
N(L) = k

}

= lim
L→∞

∞∑
k=0

[
Pr
{
τ1 > t

}]kE[N(L)]
k

k!
e−E

[
N(L)

]

= lim
L→∞

exp
{
− E

[
N(L)

](
1 − Pr{τ1 > t}

)}
.(3.5)

We denote by

G(x, t) = Pr {τ1 > t |x (0) = x}
the probability that a particle that starts out at x has not been absorbed by time t.
It satisfies the partial differential equation [11]

∂G

∂t
=

∂2G

∂x2
− U ′(x)

∂G

∂x
for x > 0,(3.6)

with the boundary condition

G (0, t) = 0

and the initial condition

G (x, 0) = 1 for x > 0.

According to (3.1) and (3.2), the FPT of a single particle is given by

Pr {τ1 > t} =

∫ L

0

Pr
{
xi = x

}
G(x, t)dx

=

∫ L

0

pL (x)G (x, t) dx

E
[
N(L)

] .(3.7)
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Inserting (3.7) and (3.2) into (3.5) gives

Pr
{
τ > t

}
= exp

{
−
∫ ∞

0

p(x)
[
1 −G(x, t)

]
dx

}
.(3.8)

Using the abbreviation

F (t) =

∫ ∞

0

p(x)
[
1 −G(x, t)

]
dx,

we differentiate F (t) with respect to t, interchange the order of integration (with
respect to x) and differentiation, and use (3.6) to obtain

dF

dt
= −

∫ ∞

0

p(x)

[
−U ′(x)

∂G

∂x
+
∂2G

∂x2

]
dx

= −
∫ ∞

0

p(x)eU(x) ∂

∂x

[
e−U(x) ∂G

∂x

]
dx.(3.9)

Two integrations by parts yield the identity

dF

dt
= − p(x)

∂G

∂x

∣∣∣∣
∞

0

+ Ge−U d

dx

(
eUp(x)

)∣∣∣∣
∞

0

−
∫ ∞

0

G(x)
d

dx

[
e−U d

dx

(
eUp(x)

)]
dx.

Note that the integral vanishes due to (2.2). In addition, all contributions from the
lower limit x = 0 vanish as both G(0, t) = 0 and p(0) = 0. Thus, we are left only with
the contributions from the upper limit x = ∞,

dF

dt
= lim

L→∞

{
−p(L)

∂G

∂x

∣∣∣∣∣
x=L

+ G (L, t)

[
U ′(L)p (L) +

dp

dx

∣∣∣∣
x=L

]}
.(3.10)

We separately estimate each term on the right-hand side of (3.10), starting with
the last term. It follows from (2.2) and (2.8) that for all values of x

U ′ (x) p (x) +
dp(x)

dx
= −J.

Next, we consider the first term on the right-hand side of (3.10). The boundary
condition (2.3) implies that

lim
L→∞

p(L) = ρ.

To compute the limit in (3.10) it remains to determine the asymptotic behavior of
G(x, t) and its spatial derivative, as x → ∞. Obviously, by definition, for every fixed
t, G(x, t) is a monotone increasing function of x because it takes longer to reach
the origin from a farther point. Similarly, it is obvious that the time to reach the
origin from the point x = L increases to infinity with L, so that for any finite t the
probability of arriving at the origin from L after time t converges to 1 as L → ∞.
That is,

lim
L→∞

G(L, t) = 1.
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Since G(x, t) is a smooth function of x, it follows that

lim
L→∞

∂G

∂x

∣∣∣∣
x=L

= 0.

Thus, the first term on the right-hand side of (3.10) vanishes, and we obtain the result

dF

dt
= −J.(3.11)

Since F (0) = 0, one integration of (3.11) gives F (t) = −Jt. Inserting this result into
(3.8) gives

Pr {τ > t} = exp {Jt} ,(3.12)

which means that τ , the first arrival time from the continuum into the absorbing
boundary, is exponentially distributed with rate λ = −J . Note that the probability
law of the first arrival time from a steady state bath into the absorbing boundary
depends on the profile of the potential U(x) through only a single constant, the con-
tinuum flux J .

4. The first arrival time for steady state three-dimensional diffusion.
To obtain an analogous result in three dimensions, we consider independently diffusing
particles outside an arbitrary bounded domain Ω with a smooth boundary ∂Ω (see
Figure 4.1). The particles in this three-dimensional bath are subjected to a potential
field −∇U (r) such that a steady state density p(r) exists in the bath R3 − Ω. It
satisfies the differential equation

Lp(r) = ∇ ·
(
∇p(r) + p(r)∇U(r)

)
= −∇ · J (r) = 0, r ∈ R3 − Ω,(4.1)

where J (r) is the flux density vector.
We assume that ∇U(r) vanishes fast enough as |r| → ∞, so that the stationary

density is uniform at infinity (see the appendix for details). We assume that a part
of ∂Ω, denoted ∂Ω1, is absorbing, and the remaining part, ∂Ω − ∂Ω1, is reflecting.

R

Ω

Ω
R

Fig. 4.1. The domain Ω and its complement in the sphere ΩR.
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Thus, the boundary conditions for the steady state density are an average density ρ
at infinity,

lim
|r|→∞

p (r) = ρ,(4.2)

absorption on ∂Ω1,

p(r)

∣∣∣∣
∂Ω1

= 0,

and no flux boundary conditions on the reflecting part of the boundary, ∂Ω − ∂Ω1,

J · ν
∣∣∣∣
∂Ω− ∂Ω1

= − (∇p + p∇U) · ν
∣∣∣∣
∂Ω− ∂Ω1

= 0,

where ν is the unit outer normal at the boundary.
As in the previous section, we start our analysis from a large ball of radius R

denoted ΩR, centered at the origin, such that Ω ⊂ ΩR (see Figure 4.1). We place in
ΩR − Ω a finite number of particles N(R), initially located according to the steady
state density p(r) normalized to the ball ΩR,

Pr
{

ri ∈ r + dr
}

=
p(r) dr∫

ΩR−Ω

p(y)dy

.

As in the one-dimensional case, the total number of particles N(R) is a Poisson
distributed random variable with average

E
[
N(R)

]
=

∫
ΩR−Ω

p (y) dy.

In analogy to (3.5) for the one-dimensional case, the first arrival time from the con-
tinuum bath into the absorbing boundary ∂Ω1 is given by

Pr
{
τ > t

}
= lim

R→∞
exp

{
− E[N(R)]

(
1 − Pr

{
τ1 > t

})}
,(4.3)

where τ1 denotes the first arrival time of a single particle from the ball ΩR to the
absorbing boundary.

We follow the same steps of computation as in the one-dimensional case. We
denote by

G(r, t) = Pr
{
τ1 > t | r (0) = r

}
the probability that a diffusing particle will arrive at ∂Ω1 after time t, starting from
an initial position r at time t = 0. Then G (r, t) satisfies the evolution equation [11]

∂G (r, t)

∂t
= L∗G (r, t) = ∇ · ∇G (r, t) −∇G (r, t) · ∇U,(4.4)

where L∗ is the backward operator (the formal adjoint to L in (4.1)). The boundary
conditions for G(r, t) are

G (r, t)

∣∣∣∣∣
∂Ω1

= 0,

∇G(r, t) · ν
∣∣∣∣∣
∂Ω−∂Ω1

= 0,
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and the initial condition is

G (r, 0) = 1 for r ∈ R3 − Ω.

The quantity of interest, the probability law of τ1, is given by

Pr
{
τ1 > t

}
=

∫
ΩR−Ω

p (r)G (r, t) dr∫
ΩR−Ω

p(r) dr

.(4.5)

Repeating the same steps as in the one-dimensional computation leads to the formula

Pr
{
τ > t

}
= lim

R→∞
exp

{
−
∫

ΩR−Ω

p(r)
[
1 −G(r, t)

]
dr

}

= lim
R→∞

exp
{
FR(t)

}
.(4.6)

Differentiating FR(t) with respect to t and using (4.4) gives

dFR

dt
=

∫
ΩR−Ω

p(r)L∗G(r, t) dr.

Since Lp(r) = 0, we can equivalently write

dFR

dt
=

∫
ΩR−Ω

[
pL∗G−GLp

]
dr.(4.7)

Inserting the expressions for the operators L and L∗ from (4.1) and (4.4), respectively,
into (4.7) yields∫

ΩR−Ω

[
pL∗G−GLp

]
dr =

∫
ΩR−Ω

[
p∆G−G∆p

]
dr −

∫
ΩR−Ω

∇ ·
[
Gp∇U

]
dr.

Applying Green’s second identity to the first integral and the divergence theorem to
the second integral, we obtain

dFR

dt
=

∮
∂[ΩR−Ω]

[p∇G−G∇p−Gp∇U ] · dS

=

∮
∂[ΩR−Ω]

[p∇G + J G] · dS,(4.8)

where dS is a surface differential multiplied by a unit vector in the direction normal
to the surface.

Consider first the contribution from the boundary ∂Ω. On the absorbing bound-
ary ∂Ω1, both G(r, t) and p(r) vanish, so there is no contribution to the surface
integral from this region. On the remaining part, ∂Ω− ∂Ω1, the boundary conditions
are ∇G = 0 and J = 0, so once again there is zero contribution to the surface integral.
Thus, we retain only the contribution from the far boundary ∂ΩR. On this boundary,
at any finite time t,

lim
R→∞

G(r, t)

∣∣∣∣
|r|=R

= 1, lim
R→∞

∇G(r, t)

∣∣∣∣
|r|=R

= 0,(4.9)
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and the convergence is exponentially fast (see the appendix). Thus, combining (4.9)
with (4.8), the contribution from the boundary ∂ΩR can be approximated by

dFR

dt
=

∫
∂ΩR

J (r) · dS + o (1) for R � 1.(4.10)

Recall from (4.1) that ∇ · J (r) = 0. Thus, using the divergence theorem,

0 =

∫
ΩR−Ω

∇ · J (r) dr =

∮
∂ΩR

J · dS −
∮
∂Ω

J · dS,

or equivalently, ∮
∂ΩR

J · dS =

∮
∂Ω

J · dS = J,(4.11)

where J denotes the total continuum flux on the boundary ∂Ω. Combining (4.11) and
(4.10) and integrating with respect to t gives

lim
R→∞

FR(t) = Jt.(4.12)

Equations (4.12) and (4.6) mean that the first arrival time from the bath to the
absorbing boundary is exponentially distributed with a rate that equals the continuum
flux predicted from the steady state solution of the Nernst–Planck equation. Note
that the total flux J is negative due to the fact that particles are exiting the bath and
entering the absorbing boundary of Ω.

5. The next arrival times. So far, we have shown that the first arrival time
of a particle from the continuum bath to the absorbing boundary is exponentially
distributed. Now, we follow the analysis of [7] to show that all interarrival times are
exponentially distributed with the same rate.

As above, we first consider a bath with N(R) particles initially distributed in
ΩR − Ω, calculate the PDF of the second arrival time, and then let R → ∞. We
denote by t1(R) and t2(R) the first and second arrival times into ∂Ω1 from the finite
system, and by t1 and t2 the corresponding arrival times from the infinite continuum
bath. Obviously, for t > s

Pr
{
t2 > t | t1 = s

}
= lim

R→∞
Pr
{
t2(R) > t | t1(R) = s

}
.

For a bath with a finite number of particles, we have

Pr
{
t2(R) > t | t1(R) = s

}

=

∞∑
k=1

Pr
{
{t2(R) > t | t1(R) = s}

∣∣∣N(R) = k
}

Pr
{
N(R) = k

}

=

∞∑
k=1

Pr
{
t2(R) > t ∩ t1(R) = s |N(R) = k

}
Pr
{
t1(R) = s |N(R) = k

} Pr
{
N(R) = k

}
.

Since all diffusing particles are independent,

Pr
{
t2(R) > t ∩ t1(R) = s |N(R) = k

}
=

(
k
1

)
Pr
{
τ1 = s

}
Pr
{
τ1 > t

}k−1
,
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which means that there are k possibilities from which to choose the specific particle
that arrives first, at time s, and then all remaining k − 1 particles must arrive later
than time t. Similarly,

Pr
{
t1(R) = s |N(R) = k

}
=

(
k
1

)
Pr
{
τ1 = s

}
Pr
{
τ1 > s

}k−1
.

Combining the last three equations gives

Pr
{
t2(R) > t | t1(R) = s

}
=

∞∑
k=1

Pr
{
τ1 > t

}k−1

Pr
{
τ1 > s

}k−1
Pr{N(R) = k}.(5.1)

Inserting the Poisson distribution of N(R) into (5.1) simplifies the right-hand side to

Pr
{
t2(R) > t | t1(R) = s

}
=

Pr{τ1 > s}
Pr{τ1 > t}

∞∑
k=1

(
E[N(R)] Pr

{
τ1 > t

}
Pr
{
τ1 > s

}
)k

e−E[N(R)]

k!

=
Pr{τ1 > s}
Pr{τ1 > t} e

−E[N(R)]

(
exp

{
E[N(R)] Pr{τ1 > t}

Pr{τ1 > s}
}
− 1

)
.(5.2)

According to (4.6) and (4.3) we have

FR(t) = E[N(R)] Pr{τ1 < t},
which further simplifies the right-hand side of (5.2) to

Pr
{
τ1 > s

}
Pr
{
τ1 > t

} {exp

(
FR(s) − FR(t)

Pr{τ1 > s}
)
− exp

(
− E[N(R)]

)}
.(5.3)

We now take the limit as R → ∞. According to (4.5), the distribution of the FPT of
a single particle is

lim
R→∞

Pr
{
τ1 > t

}
= lim

R→∞

∫
ΩR−Ω

p(r)G(r, t) dr∫
ΩR−Ω

p(r)

.

According to (4.9), for any finite time t, as |r| → ∞, G(r, t) → 1. Also, according to
(4.2), p(r) → ρ as |r| → ∞. Therefore,

lim
R→∞

Pr
{
τ1 > t

}
= 1.

Obviously, for R → ∞, E[N(R)] → ∞, so the last term in (5.3) vanishes. Finally,
according to (4.12), FR(t) → Jt as R → ∞. Therefore,

Pr
{
t2 > t | t1 = s

}
= exp (J(t− s)) .

That is, the interarrival time between the first and second particle depends only on
the elapsed time t− s since the first arrival at time s, and is independent of the first
arrival time s. Moreover, this interarrival time is exponentially distributed with the
same rate λ = −J , which is equal to the Smoluchowski flux.

In a similar manner, one can show that all interarrival times are exponentially
distributed, rendering the arrivals a memoryless Poisson process.
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6. Summary and discussion. Diffusion of independent (noninteracting) par-
ticles is an approximation widely used to describe the motion of ions in solution. Such
an approximation represents a coarse-grained description of the effective motion of
ions. It is used in the physical chemistry of electrolytic solutions, where solutions
are described in terms of an electrochemical potential and interactions are replaced
by an activity coefficient. In this approximation, ionic concentrations satisfy the
Nernst–Planck equation, that is, Fickian diffusion and transport in a mean field. The
underlying microscopic (Einsteinian) scenario for this description is the Brownian
motion of noninteracting individual particles that interact only with a nonfluctuating
mean field.

In simulations of ions in solution [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], especially in the context of molecular biophysics [24], [25], [26], a small
scale simulation has to be connected to the surrounding continuum. The interactions
between the ions inside the simulation volume and their interactions with the far
field of the surrounding continuum can be taken into account inside the simulation
volume. Ions have to be introduced into the simulation volume and removed from
it in a fashion consistent with their motion in the continuum. The exchange of ions
between the discrete simulation volume and the surrounding continuum is a sorely
missed link in the theory of ionic simulations. The exchange law is often assumed
rather than computed from the assumed physical laws governing ions in solution [27],
[28], [29], [30].

Two ionic species can be distinguished in a simulation of a discrete volume sur-
rounded by a continuum: (i) the species of ions that have not been in the simulation
so far and (ii) the species of ions that have left the simulation into the continuum. The
latter recirculate in and out of the simulation at random times. In this paper, we have
considered species (i) of ions that enter the simulation for the first time. They arrive
at the simulation from a continuum, where they are described by physical chemistry
as independent (noninteracting) Brownian particles that interact only with a mean
field. Once they reach the simulation volume for the first time their species change
to type (ii). This means that they are absorbed permanently in the boundary of the
simulation volume (as ions of species (i)). When they re-emerge from the simulation
volume they are no longer of species (i) but rather are permanently of species (ii).
Thus the boundary of the simulation volume is absorbing for the diffusion process of
species (i) in the continuum.

In this paper, we have established that the absorption stream of species (i) is
Poissonian with rate equal to the absorption flux calculated from classical continuum
diffusion theory. That is, the interarrival times of ions of species (i) to the absorbing
boundary are i.i.d. exponential random variables. This result means that the process
of introducing new ions into the simulation has no memory, and thus no record of
previous arrivals has to be kept. This property simplifies considerably the time course
of the simulation.

Yet another application of our results is to ionic permeation through protein chan-
nels. In barrier models of ionic permeation through protein channels [31], transitions
between the possible states of an ion inside and outside the channel are assumed
Markovian. This implies that times between transitions have to be exponentially dis-
tributed. Our result shows that the transition times from the continuum into the
channel are indeed exponentially distributed. The transitions times inside a chan-
nel are in general not exponential because there are usually no high barriers for the
diffusive motion of the ion to overcome.
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Realistic simulations of ionic permeation in protein channels, be it molecular dy-
namics or Langevin dynamics, must connect the simulation volume to the surrounding
continuum because both ends of biological membrane channels are connected to salt
water baths. The present computation, though not a full description of such a simu-
lation, is the first step toward the development of these simulations. Further steps in
this development will be described in separate papers.

Appendix. We consider a smooth field ∇U (r) in R3 such that

|r| |∇U (r)| = O (1) as |r| → ∞.(A.1)

We denote by G (r, t) the solution of the initial boundary value problem

∂G (r, t)

∂t
= ∆G (r, t) −∇U (r) · ∇G (r , t)

in R3 − Ω, where Ω is a smooth bounded domain in R3. We assume that G (r, t)
satisfies a homogeneous boundary condition on ∂Ω, that is, an absorbing condition
on a portion ∂Ω1 of ∂Ω and a reflecting condition on ∂Ω− ∂Ω1. The initial condition
for G (r, t) is

G (r, 0) = 1.

We show that for each fixed t

G (r, t) → 1 as |r| → ∞,

with convergence at an exponential rate. First, we write

G (r, t) =

∫
R3−Ω

P (y, t | r) dy,

where P (y, t | r) is the solution of the adjoint problem

∂P (y, t | r)

∂t
= ∆yP (y, t | r) + ∇y · [∇yU (y)P (y, t | r)

]
(A.2)

in R3 − Ω, with the mixed absorbing and no flux boundary conditions on ∂Ω1 and
∂Ω − ∂Ω1, respectively. The initial condition for P (y, t | r) is

P (y, 0 | r) = δ(y − r).

For large r, we introduce the scaling y = Rη, r = Rξ, t = R2τ , U (y) = V (η),
and P (y, t | r) = Q (η, τ | ξ). Then (A.2) takes the form

∂Q (η, τ | ξ)

∂τ
= ∆ηQ (η, τ | ξ) + ∇η · [∇ηV (η)Q (η, τ | ξ)

]
with the initial condition

Q (η, 0 | ξ) =
1

R3
δ(η − ξ).

For large R the domain Ω shrinks to nearly a point at the origin. For fixed t and large
R the scaled time τ becomes small. According to (A.1), we have

∇ηV (η) = O (1) as R → ∞.
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It follows from [32] that for small τ

Q (η, τ | ξ) ∼ 1

R3 (4πτ)
3/2

exp

{
−|η − ξ|2

4τ

}
.

Scaling back to the original variables, we find that for large |r|

P (y, t | r) ∼ 1

(4πt)
3/2

exp

{
−|y − r|2

4t

}
.

Writing

G (r, t) =

∫
R3−Ω

P (y, t | r) dy

∼ 1

(4πt)
3/2

∫
R3

exp

{
−|y − r|2

4t

}
dy − 1

(4πt)
3/2

∫
Ω

exp

{
−|y − r|2

4t

}
dy

= 1 − 1

(4πt)
3/2

∫
Ω

exp

{
−|y − r|2

4t

}
dy,

we estimate ∫
Ω

exp

{
−|y − r|2

4t

}
dy ≤ |Ω| exp

{
−|dist (Ω, r)|2

4t

}
,

where dist(Ω, r) denotes the distance from the point r to Ω. This now proves the as-
sertion.
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