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Abstract. An important problem in simulating ions in solution is the connection of the finite
simulation region to the surrounding continuum bath. In this paper we consider this connection for
a simulation of uncharged independent Brownian particles and discuss the relevance of the results
to a simulation of charged particles (ions). We consider a simulation region surrounded by a buffer
embedded in a continuum bath. We analyze the time course of the exchange process of particles
between the simulation region and the continuum, including re-entrances of particles that left the
simulation. We partition the particle population into (i) those that have not yet visited the simulation
and (ii) those that have. While the arrival process into the simulation of population (i) is Poissonian
with known rate, that of population (ii) is more complex. We identify the ordered set of re-entrance
times of population (ii) as a superposition of an infinite number of delayed terminating renewal
processes, where the renewal periods may be infinite with positive probability. The ordered entrance
times of populations (i) and (ii) form the pooled process of injection times of particles into the
simulation. We show that while the pooled process is stationary, it is not Poissonian but rather has
infinite memory. Yet, under some conditions on the sizes of the simulation and buffer regions, it
can be approximated by a Poisson process. This seems to be the first result on the time course of a
discrete simulation of a test volume embedded in a continuum.
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1. Introduction. Computer simulations of ions in electrolytic solutions are a
widely used tool in physical chemistry and are becoming increasingly important in
molecular biophysics as well [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16]. Since it is impractical to simulate the entire continuum bath, a common
approach is to isolate a small finite region of the continuum and simulate only the
motion of ions located in this region. The requirements from such a “small” simulation
are that the averaged concentrations of the different ionic species in the simulation
volume be preserved, the electrostatic forces be correctly reproduced, and the effective
measured ionic diffusion coefficients be recovered

Of course, as simulated ions may reach the boundary of the simulation region
and nonsimulated bath ions may cross it, the simulation must be connected to the
surrounding continuum bath. This involves not only the correct computation of the
electrostatic field, including the contribution of nonsimulated bath ions, but also the
resolution of the two following issues: (i) the imposed boundary behavior on trajec-
tories of simulated ions as they reach the boundary of the simulation region and (ii)
the injection scheme (if any) of new ions into the simulation. In this paper we are
concerned with these two issues. Specifically, we study the processes of random exit,
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entrance, and re-entrance of particles between the simulation region and the contin-
uum bath. We analyze a simulation of uncharged particles and discuss the relevance of
our results to a simulation with charged particles in section 8. The computation of the
electrostatic field for a simulation of charged particles will be considered elsewhere.

The total number of simulated ions in a simulation scheme can be either fixed or
variable. In simulations with a fixed number of ions, there is no injection scheme of
new ions into the simulation, and the imposed boundary conditions on the trajectories
of simulated particles are either periodic or reflecting [15], [16]. Simulations with a
fixed number of ions, and in particular those with periodic boundary conditions, have
serious limitations which have been discussed at length in the literature [17], [18],
[19], [20], [21], [22], [23] (and references therein). In particular, density fluctuations
are absent in such simulations, and the computation of the electrostatic field is at
best problematic.

Density fluctuations are determinants of important properties of an ionic solution
[12], [13]. There have been various attempts in the literature to include density
fluctuations in simulations with a fixed number of ions. The most common method is
the introduction of a buffer region between the simulation region and the surrounding
continuum bath. The simplest approach, as described in [6], is to run a simulation with
a fixed total number of particles in the simulation and buffer region, with reflecting
boundary conditions at the outer buffer boundary. In this scheme density fluctuations
are of course present in the smaller simulation region, although it is unclear how
faithfully they reproduce the actual density fluctuations in the simulation region.
Other approaches, as reported in [2] and [8], replace the reflecting boundary conditions
at the boundary of the buffer region by “soft” boundary conditions. That is, ions are
allowed to leave the buffer region into the bath, but then they are subject to an
artificial attracting force, so that they eventually return into the buffer region. In
both references, the attracting force was designed to maintain the correct equilibrium
density in the simulation region. Once again, while the total number of particles is
kept fixed, there are fluctuations in the number of particles in the smaller simulation
region. The main problem with these approaches is that the confinement of ions to
the simulation by ad hoc artificial attracting forces (or even infinite forces, in the case
of reflecting boundaries) imposes unphysical conditions on the simulation and may
not necessarily lead to correct time dependent density fluctuations.

Simulations with a variable number of ions also use a buffer region between the
simulation and the continuum bath, but replace the reflecting or soft boundary con-
ditions at the boundary of the buffer region by stochastic boundary conditions [7],
[8], [9], [10]. These conditions introduce a random exchange mechanism of ions be-
tween the simulation and buffer regions with the aim of reproducing the equilibrium
density fluctuations. Obviously, different assumptions on the stochastic boundaries
lead to different density fluctuations in time and space inside the simulation region.
Unfortunately, the stochastic process of equilibrium density fluctuations is unknown
in the sense that the joint probability distribution of the number of particles in the
simulation volume at different times is unknown. The fluctuation theory proposed
by Smoluchowski [11] is valid only for sufficiently long time intervals between ob-
servations so that it cannot be applied to a simulation of particles in solution [29].
Yet, these fluctuations affect the physical properties of the solute [12], so proposing a
scheme that recovers the correct fluctuations is essential.

In all formulations of stochastic boundaries, the probability laws for the injection
times of new particles are assumed, rather than derived, from the laws of motion of
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ions in solution. The aim of this paper is to derive the probability laws of the entrance
and re-entrance processes of ions into a finite volume surrounded by a buffer zone as
they actually occur in the solution. To derive our results, we make standard general
assumptions of physical chemistry about the ionic motion of bath ions.

In our analysis, we consider a finite simulation region surrounded by a buffer
region embedded in a practically infinite ionic solution. We assume that all bath
ions can be described as independent uncharged Brownian particles with an effective
diffusion coefficient. This assumption is commonly used in physical chemistry, where
ionic solutions are described by an electrochemical potential [12]. This means that,
on a large enough time scale, the motions of charged interacting ions in the bath are
assumed independent noninteracting diffusion processes in a mean field, which reduce
to independent Brownian particles for a vanishing mean field.

We consider particle entrances at the boundary of the inner region and their
exits at the outer boundary of the buffer zone. In the corresponding simulation, the
motion of all particles that enter the inner region is simulated until they cross the
outer boundary of the buffer region for the first time. Their motion is simulated
once again the next time they enter the inner region, until their next exit at the
outer region, and so on. The buffer region in the simulation scheme serves as a
separator between the inner simulation region and the surrounding continuum bath,
thus avoiding instantaneous re-entrances of Brownian particles at the boundary of the
inner region,

To formulate mathematically the problem of introducing particles into the simu-
lation, we divide their entrances into two types: (i) arrivals of “new” particles, which
have not visited the simulation region so far, and (ii) arrivals of “returning” particles,
which have already visited and exited the simulation region. Obviously, the proba-
bility law of the recirculation times is different from that of the times between new
arrivals, so that particles that leave the simulation at the outer boundary of the buffer
zone cannot be returned to the bath on equal footing with particles that have not
been in the simulation so far.

In our previous paper [24], we studied the stationary arrival process (i) of new
particles. It was shown that in steady state, the interarrival times to an absorbing
boundary are exponentially distributed with rate equal to the Smoluchowski flux,
rendering the stationary arrival process Poissonian. Apart from its relevance to the
problem of connecting a simulation to the surrounding continuum, the study of the
arrival problem at an absorbing boundary has many physical applications and a long
mathematical history [25], [26].

In this paper, we study the recirculation process (ii) and its role in connecting
the simulation to the surrounding bath. We determine stationary probability laws
governing the entrance and re-entrance times of all processes (i) and (ii). At any given
time in the course of the simulation the particle to be injected next is the one whose
arrival time at the inner sphere is the shortest among all the particles not currently
in the simulation. The candidates for injection are both the new and recirculating
particles. In this paper we identify the injection process as a pooled process, that is,
a superposition of an infinite number of terminating renewal processes and determine
some of its statistical properties.

We show that the pooled process converges to a stationary steady state. However,
even though in the steady state the process is stationary, its interarrival times are not
exponential, not even independent, and have infinite memory. We calculate some of
the statistical properties of the pooled process, such as the exact pdf of the residual
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first arrival time of the pooled process in steady state, as well as the first and second
moments of the pooled process. Our main result is that under some conditions on the
size of the simulation and buffer regions, the infinite memory pooled process can be
approximated by a Poisson process. This approximation considerably simplifies the
simulation. To the best of our knowledge, this work seems to be the first result on
the time course of a discrete simulation embedded in a continuum.

The paper is organized as follows. In section 2, we formulate the simulation
scheme and identify the entrance process of particles as a pooled process. In section
3, we present a continuum model of the simulation, from which the average flux of
the pooled process is calculated. The first two moments of the pooled process are
calculated in section 4 by renewal-type considerations. In section 5, we define the
entrance times of the pooled process, and in section 6, we calculate the distribution
of the residual time till the first particle entrance and the distribution of the subse-
quent interarrival time. The main result, which asserts that short interarrival times
are exponentially distributed and the effective exponential rate is the same as that
calculated from the continuum and renewal models, is discussed in section 7. We
also present there results of a simulation of the pooled process and discuss its rate of
convergence to steady state. Section 8 contains a summary and discussion.

2. Setup of the problem. We consider the following simulation scheme: A
practically infinite ionic bath of average density ρ occupies the three dimensional
space. Inside this bath, there is a finite simulation region consisting of two concentric
spheres of radii a and r0 (a < r0), centered at the origin (see Figure 1(a)). In the
proposed simulation scheme, the motion of all particles that enter the inner sphere is
simulated until they cross the outer sphere for the first time. Their motion is simulated
once again the next time they enter the inner sphere, until their next exit at the outer
sphere, and so on (see Figure 1(b)). The region beyond the outer sphere, |r| > r0,
contains no simulated particles and is described by a continuum particle density. The
annular ring a < |r| < r0 is a buffer region that connects the inner region to the
surrounding continuum bath in |r| > r0. The buffer region is part continuum and
part discrete in the sense that the motions of only some of the particles in it are
simulated.

While we do not describe the exact electrostatic interactions between bath ions,
we follow the common practice in chemical physics [12] that describes the effective
motions of the nonsimulated bath ions as independent diffusions in a mean field.
Specifically, for a homogeneous bath with no applied potential, the mean field van-
ishes, so that exterior of the simulation region can be described as an infinite bath
of independent free Brownian particles, with average density ρ. As discussed in the
introduction, we assume that the simulation is self-consistent. This means that on a
large enough time scale the coarse grained motion of simulated ions inside the simu-
lation region can also be described as free diffusion with the same diffusion coefficient
as that assumed for the nonsimulated ions in the continuum bath. We further as-
sume that the simulation and buffer regions are large enough so that, for the purpose
of calculating the time course of the simulation, all particles, both simulated and
nonsimulated, can be described as effectively independent Brownian particles with
the above diffusion coefficient. We note that the self-consistency condition is not
trivial, and it determines important physical parameters, as discussed in [27].

We introduce the following notation. Particles that have not visited the inner
sphere so far are called blue particles, and those that have are called red particles.
The arrival process of blue particles into the simulation is process (i) and the re-
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simulation

region

buffer region

continuum bath

(a)

↑
blue particle

↓

red (simulated) particle

↑
non simulated
green particle

(b)

Fig. 1. (a) The simulation setup. (b) The simulated and nonsimulated parts of a typical particle
trajectory.

entrance of the red particles is process (ii).

As shown in [24], in steady state, blue Brownian particles arrive at an absorbing
sphere at an exponential rate. A blue particle that reaches the boundary of the inner
sphere turns red instantaneously and stays red forever. As long as it is inside the
simulation region, its dynamics change from independent Brownian motion, with its
effective diffusion coefficient in the ambient solution, to diffusive motion governed by
the Langevin equation with electrostatic interactions with the ions in the simulation
and with the far field of the ambient solution. The interactions with the nonsimulated
ions in the ambient solution outside the outer sphere are replaced by interactions with
a mean field, as mentioned above. The assumption of a self-consistent simulation
implies that for our purposes the probability distribution of the time a simulated ion
spends inside the simulation is identical to that of a free noninteracting Brownian
particle.

One way to run this simulation is as follows: Introduce blue particles at expo-
nential interarrival times. Follow the trajectory of each (now red) simulated particle
until its first exit at the boundary of the larger sphere. Now, sample a random re-
entrance time into the simulation, assuming it performs Brownian motion outside
the inner sphere, and store this re-entrance time in a table of all re-entrance times
of recirculating particles. In this scheme, the next particle to be injected into the
simulation is the one with the minimal return time between all particles registered
in the table and the next blue particle to be injected into the simulation. There are
two main difficulties with this simulation scheme. One is that the table of re-entrance
times grows indefinitely with time, because the mean recirculation time of returning
particles is infinite (see Proposition A.1 in Appendix A). The other difficulty is that
the convergence to steady state of this simulation is extremely slow, as analyzed in
section 7. This is due to the fact that as long as the table is finite, all the infinite
number of re-entrances of particles that were inside the simulation region before the
simulation actually started, and are thus not present in this table, are neglected.

This simple example shows that a mechanism to run the simulation in steady state
from its start needs to be developed. More specifically, the steady state distribution
of return times from this infinite table of recirculated particles has to be calculated.



CONNECTING DISCRETE TO CONTINUUM 855

A key point in this calculation is the well-known feature [28] that for free Brownian
motion in three dimensions there is a positive probability that a red particle that just
exited the simulation will never return to the inner sphere, so that its recirculation
time is infinite. This observation gives rise to the following renewal-type model. The
arrivals of blue particles at the inner sphere form a Poisson process [24], [29], as
mentioned above. For each arriving particle, its subsequent re-entrance times into
the simulation form an independent renewal process. The interarrival times of this
process may be infinite with positive probability, thus rendering it a terminating
renewal process [30]. The renewal processes of different particles start of course at
different times, according to their first injection times. A renewal process that starts
at a random time with one distribution and is renewed with another is called a delayed
renewal process [30]. The superposition of all the delayed renewal processes is called
the pooled process. The steady state of the pooled process is the process of introducing
new particles into the simulation, which is the concern of this paper.

3. A continuum model of the simulation. In this section we compute the
average flux of particle entrances of the pooled process (both blue and red) into the
inner simulation region from a continuum model of the above described simulation.
To this end, we represent the Brownian particles in the simulation and in the bath
as continuum densities. Since we consider free Brownian particles, all densities are
spherically symmetric and depend only on the radial distance, r = |r|, from the center
of the simulation spheres. The densities of simulated particles are defined as averages
of many different realizations of particle locations of a running simulation.

We start from the radial density of the blue particles, denoted pB(r). It satisfies
the diffusion equation outside the inner sphere [31],

∆pB(r) =
d2pB(r)

dr2
+

2

r

dpB(r)

dr
= 0 for r > a,(3.1)

with absorbing boundary conditions at the boundary of the inner sphere, where blue
particles instantaneously turn red,

pB(a) = 0.(3.2)

In addition, far away from the simulation region the blue particle density equals the
bulk density ρ,

lim
r→∞ pB(r) = ρ.(3.3)

The solution of (3.1)–(3.3) is

pB(r) =


ρ
(
1− a

r

)
for r > a,

0 for r < a.

(3.4)

Using (3.4), the continuum flux of blue particles at the inner sphere is given by

Jblue = −4πa2D
d

dr
pB(r)

∣∣∣∣
r=a

= 4πρaD,(3.5)

where ρ is the bulk concentration at infinity, and D is the diffusion coefficient of bath
particles. Equation (3.5) for the average flux of Brownian particles at an absorbing
boundary was already calculated by Smoluchowski in 1917 [25].
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Next, we consider the red particle density. According to our assumptions, the total
particle density in the bath is uniform and at all locations equals the bulk density ρ.
Since the simulation region is an arbitrary region of the bath, the steady state density
of the red particles, denoted pR(r), complements that of the blue particles to the bulk
density ρ,

pR(r) = ρ− pB(r).(3.6)

We denote by Jtotal the total flux of particle entrances at the inner sphere. The
total flux is the sum of the blue particles flux given by (3.5), and the flux of returning
red particles, which have exited the simulation through the outer sphere. Since at
any given time, only some of the red particles are simulated while others are not,
the flux of returning red particles cannot be computed from (3.6). The contribution
of red particles to the total incoming flux at the inner sphere comes only from the
nonsimulated population of red particles. To compute their contribution to the influx,
we divide the red particle population into two: simulated red particles, denoted pink
particles, and nonsimulated red particles, denoted green particles. With this notation,
the total flux at the inner sphere is given by

Jtotal = Jblue + Jgreen.(3.7)

We denote the steady state densities of the pink and green particles by pP (r) and
pG(r), respectively. Of course,

pR(r) = pP (r) + pG(r).

We now calculate the densities of the green and pink particles. Each particle that
enters the simulation region at the inner sphere, either new or returning particle,
exits it at the outer sphere at some later time with probability one. Once such a
particle crosses the outer sphere it immediately becomes green, until its next arrival
at the inner sphere, when it becomes pink again. Thus, the green particle density
has a source at the outer sphere whose strength equals the yet undetermined total
absorption flux Jtotal of both blue and returning red particles. That is, the green
particle density satisfies the diffusion equation

∆pG(r) =
d2pG(r)

dr2
+

2

r

dpG(r)

dr
= Jtotal

δ(r − r0)

4πr2
0

, for r > a,(3.8)

with absorbing boundary conditions at the inner sphere,

pG(a) = 0,(3.9)

and with the condition that pG(r) → 0 as r → ∞. The solution for the green particle
density, in terms of the yet undetermined parameter Jtotal, is given by

pG (r) =


Jtotal
4πr0

[(
1− a

r

)
−H (r − r0)

(
1− r0

r

)]
, for r > a,

0, for r < a,

where H(x) denotes the Heaviside step function. The averaged densities of the blue,
pink, and green particle populations are shown in Figure 2.
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Fig. 2. The averaged densities of the blue, pink, and green particle population.

The average influx of green particles at the inner sphere, denoted Jgreen, is thus

Jgreen = 4πr2 d

dr
pG(r)

∣∣∣∣
r=a

=
a

r0
Jtotal.(3.10)

Note that the flux of green particles into the inner sphere is smaller than its source
strength Jtotal. This is because there is a positive probability for a green particle
that starts its motion at the boundary of the outer sphere to never reach the inner
sphere. The ratio between the two fluxes is simply the probability of a free Brownian
particle to ever reach the inner sphere from the outer sphere. As shown in section 6,
this return probability, denoted p, is given by

p =
a

r0
.(3.11)

The total mean flux of particles into the simulation, denoted Λ, can now be
obtained by combining (3.5), (3.7), and (3.10),

Λ = Jtotal = Jblue + Jgreen =
λB

1− p
.(3.12)

As expected, due to the recirculating red particles, the total flux at the inner sphere is
larger than the flux of only the blue particles. For example, in a simulation scheme that
inserts only blue particles, absorbs them at the outer sphere and “forgets” about their
possible re-entrances, the average particle flux into the simulation region is smaller
than it should be. This might have serious effects on the outcome of the simulation.

Finally, note that the flux parameter Λ does not represent a physical quantity,
but is rather only a simulation parameter, that depends on the choice of the radii
a and r0 of the simulation spheres. Therefore, all physical parameters that are an
outcome of the simulation must not depend on Λ.

4. The mean and variance of the pooled process. In the previous section
the total average influx of the steady state pooled process was computed with the
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aid of a corresponding continuum model. However, the continuum model is unable
to compute other statistical properties of the pooled process, such as the distribution
of the interarrival times, or even their variance. Obviously, a simulation scheme
should attempt to preserve at least some of these quantities. In this section, we
present a statistical renewal model of the pooled process that, in principle, enables
the computation of all moments of the pooled process.

For simplicity, we consider a simulation that starts at time t = 0 with no parti-
cles initially inside the simulation region. Since we are interested in quantities for a
simulation that has reached steady state, the results are independent of these initial
conditions. We denote by NP (t) the total number of particle entrances of the pooled
process by time t. This includes all entrances of blue particles and re-entrances of
returning red particles into the simulation region by time t. We compute the first two
moments of NP (t) and note that the method presented can be applied to compute
all higher order moments as well.

Theorem 4.1. The average steady state flux of the pooled process is Λ, and its
variance per unit time is Λ(1 + p)/(1− p).

Proof. Let NB(t) denote the number of arrivals of blue particles into the sim-

ulation during the time interval [0, t], and let {ti}NB(t)
i=1 denote these arrival times.

According to [24], the interarrival times of the blue particles are independent iden-
tically distributed (i.i.d.) random variables, exponentially distributed with rate λB

that is equal to the corresponding continuum flux Jblue calculated in (3.5). Therefore,
the total number of blue arrivals by time t, denoted NB(t), is a Poisson distributed
random variable with parameter λB t. For each blue particle we denote by ξ(t − ti)
the (random) number of its re-entrances into the simulation by time t since its first
entrance at time ti. In terms of these random variables, the total number of particle
entrances of the pooled process can be written as

NP (t) =

NB(t)∑
i=1

[
1 + ξ(t− ti)

]
.(4.1)

We denote by µ1(t) and µ2(t) the first two moments of ξ(t),

µ1(t) = E [ξ(t)] , µ2(t) = E [ξ(t)]2.(4.2)

Note that ξ(∞) is the total number of re-entrances of a red particle. Since each
particle has probability p < 1 of ever returning to the simulation (see (3.11)), the
random variable ξ(∞) follows a geometric distribution with parameter p, which gives

µ1(∞) =
p

1− p
, µ2(∞) =

p

1− p
+

2p2

(1− p)2
.(4.3)

To compute the average of the pooled process, E[NP (t)], we divide the sum in
(4.1) into the first term and the sum of the NB(t)− 1 remaining terms,

NP (t) = 1 + ξ(t− t1) +

NB(t)∑
i=2

(1 + ξ(t− ti)).(4.4)

According to our assumptions, the arrival process of blue particles is Poissonian and
thus memoryless. In addition, the recirculation processes of different particles are
independent and identical, if their starting times are all shifted to an identical initial
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time. These two properties imply that given the arrival time of the first blue particle,
t1 = s, the sum in (4.4) has the same statistical properties as that of the random
variable NP (t− s). In particular,

Pr


NB(t)∑
i=2

(1 + ξ(t− ti)) = n

∣∣∣∣∣∣ t1 = s

 = Pr


NB(t)∑
i=2

[1 + ξ
(
(t− s)− (ti − s)

)
] = n


= Pr

{
NP (t− s) = n

}
.(4.5)

Thus, taking expectations in (4.4) and using the exponential distribution of t1 gives

E
[
NP (t)

]
=

∫ t

0

E
[
NP (t)

∣∣ t1 = s
]
λBe

−λBs ds

=

∫ t

0

1 + µ1(t− s) + E

NB(t)∑
i=2

[1 + ξ((t− s)− (ti − s))]

λBe
−λBs ds,

which, according to (4.5), can equivalently be written as a renewal-type integral equa-
tion,

E
[
NP (t)

]
=

∫ t

0

λBe
−λBs

{
1 + µ1(t− s) + E

[
NP (t− s)

]}
ds,(4.6)

along with the initial condition NP (0) = 0. The solution of (4.6) is given by

E[NP (t)] =

∫ t

0

λB [1 + µ1(s)] ds.(4.7)

Therefore, by l′Hôpital′s rule and using (4.3),

lim
t→∞

E
[
NP (t)

]
t

= lim
t→∞λB

[
1 + µ1(t)

]
= λB

[
1 + µ1(∞)

]
= Λ.

As expected, we recover the same total average flux of the pooled process as that
computed from the continuum model, (3.12).

Next, we consider the second moment, E[NP (t)
2
]. Before computing the expec-

tation, we write [NP (t)]2 as

[NP (t)]2 =

NB(t)∑
i=1

[1 + 2ξ(t− ti) + ξ2(t− ti)] + 2

NB(t)∑
i=1

[1 + ξ(t− ti)]

NB(t)∑
j=i+1

[1 + ξ(t− tj)]

= H(t) + 2G(t),

where

H(t) =

NB(t)∑
i=1

[1 + 2ξ(t− ti) + ξ2(t− ti)],

G(t) =

NB(t)∑
i=1

[1 + ξ(t− ti)]

NB(t)∑
j=i+1

[1 + ξ(t− tj)].
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The expectations of H(t) and G(t) also satisfy integral equations,

E [H(t)] =

∫ t

0

λBe
−λBs

{
1 + 2µ1(t− s) + µ2(t− s) + E [H(t− s)]

}
ds,

E [G(t)] =

∫ t

0

λBe
−λBs

{(
1 + µ1(t− s)

)
E
[
NP (t− s)

]
+ E [G(t− s)]

}
ds.

The solutions of these equations are

E
[
H(t)

]
=

∫ t

0

λB

[
1 + 2µ1(s) + µ2(s)

]
ds,

E
[
G(t)

]
=

∫ t

0

λB

[
1 + µ1(s)

]
E

[
NP (s)

]
ds.

The long time behavior of the variance of NP (t) is found from the identity

lim
t→∞

Var[NP (t)]

t
= lim

t→∞
E
{
[NP (t)]2

}− {
ENP (t)

}2

t

= lim
t→∞

E[H(t)] + 2E[G(t)]− {
E[NP (t)]

}2

t
.

Inserting the expressions for all quantities, and applying l′Hôpital′s rule, gives

lim
t→∞

Var[NP (t)]

t
= Λ

[
1 + 2

(
p

1− p

)]
= Λ

1 + p

1− p
.(4.8)

Note that all moments of the pooled process are independent of the exact distri-
bution of the recirculation time. Rather, they depend only on the return probability
p.

Equation (4.8) clearly shows that the pooled process NP (t) is not Poissonian,
since the variance per unit time of a Poisson process equals its average rate Λ. The
variance of NP (t) is larger by a factor (1 + p)/(1 − p), a phenomenon due to the
possible re-entrances of exiting particles. In approximating the pooled process by a
Poisson process with the same rate, this factor is lost.

5. The entrance times of the pooled process. In the previous section we
calculated the first two moments of the pooled process. We now study the actual
distribution of the interarrival times of the pooled process, that is, the PDF of the time
between the consecutive introductions of particles into the simulation. As discussed
above, these entrance times are the ordered union of both entrance times of new blue
particles and re-entrance times of red recirculating particles.

Recall that the consecutive arrival times of blue particles were denoted tj . We
denote their interarrival times by τ j = tj − tj−1 with the convention that t0 = 0. As
shown in [24], the arrival process of blue particles is Poissonian with rate λB given by
(3.5). Therefore, τ j are i.i.d. exponential random variables with a common PDF

Pr{τ j ≤ t} = FB(t) = 1− exp(−λBt).(5.1)

Next, we consider the recirculation process of red particles. We introduce the
following notation for the successive exit and re-entrance times of a red particle. The
first entrance time to the inner sphere is denoted by tj1 ≡ tj . Its first exit time from
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the simulation at the outer sphere is denoted θj1, its next re-entrance time tj2, and so

on. Thus tj1 < θj1 < tj2 < θj2 < . . . .
The times tjn are the consecutive re-entrance times of the jth particle into the

simulation. We denote T j
1 = tj1 and set T j

n = tjn − tjn−1 for n > 1. The times T j
n

for n > 1 are called the recirculation times of the jth particle. According to our
assumptions, these times are i.i.d. random variables with a positive probability to be
infinite. We denote their PDF by

FT (t) = Pr{T j
n ≤ t}.

Their pdf is given by

fT (t) = fτin ∗ fτout
(t),

where τin is the time a simulated (pink) particle spends in the simulation and τout is
the time a nonsimulated (green) particle spends outside the simulation.

The assumption that the green particles have a positive probability 1−p of never
returning from the outer sphere to the inner sphere is expressed as

lim
t→∞FT (t) = p < 1,(5.2)

or, equivalently,

Pr
{
T j
n = ∞}

= 1− p > 0 (n > 1),(5.3)

where p is given by (3.11).
Recall that ξ(t − tj) denoted the number of re-entrances of the jth red particle

into the simulation by time t. We denote by N j(t) its total number of entrances into
the simulation by time t, including the first entrance at time tj ,

N j(t) = 1 + ξ(t− tj).

Note that (5.3) implies that N j(t) is a terminating renewal process [30], that is, a
renewal process that terminates when an infinite recirculation time occurs.

We now consider the entrance times of the pooled process. By definition, the
total number of particle entrances into the simulation by time t, denoted NP (t), is
given by

NP (t) =

NB(t)∑
j=1

N j(t).(5.4)

The actual entrance times of the pooled process into the simulation, {SP
� }NP (t)

�=1 , are
the elements of the set

{SP
� }NP (t)

�=1 = {tjk | 1 ≤ j ≤ NB(t), 1 ≤ k ≤ N j(t)}
arranged in ascending order.

The times between successive arrivals of the pooled process at the inner sphere,
denoted TP

� , are defined by

TP
� = SP

�+1 − SP
� .

With this notation the mathematical problem of simulating the arrivals of ions at the
inner sphere is to determine the joint PDF of the times TP

� (for all #). These times
are the interarrival times for introducing new particles into the simulation.
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6. The first arrival time of the pooled process. In this section, we calculate
the exact PDF of the first arrival time of the pooled process in the steady state. First,
we compute the distribution of the residual time since start of observation of the
simulation till the introduction of the first new particle into the inner sphere. Then,
we compute the PDF of the time between consecutive arrivals of the pooled process.

We introduce the following notation. We denote by ϕ(t) the renewal function of
the recirculation process of a single particle. It is given by

ϕ(t) =
∞∑
k=0

f ∗k
T (t),(6.1)

where f ∗k
T (t) is the k-convolution of the pdf fT (t) of a single recirculation time, and

f∗0
T (t) = δ(t). For future uses, we note that the Laplace transform of ϕ is

ϕ̂(s) =

∞∑
k=0

f̂∗k
T (s) =

∞∑
k=0

[
f̂T (s)

]k
=

1

1− f̂T (s)
,(6.2)

and at s = 0 we obtain from (5.2)

ϕ̂(0) =

∫ ∞

0

ϕ(t) dt =
1

1− p
.(6.3)

Consider a simulation that has been running for an infinite time and is already
in steady state. We start to observe the simulation at time t = 0, and denote by γP

the first arrival time of a particle into the simulation after t = 0. The first particle
to arrive into the simulation may be either a blue particle that has not yet been in
the simulation, or a red particle that has visited the simulation in the past and may
re-enter the simulation region at the inner sphere after start of observation. Before
we compute the exact PDF of γP , it is useful to compute the probability that a red
particle that initially entered the simulation region at time −s in the past will re-enter
the simulation region at time x after start of observation.

Lemma 6.1. Let γR
s denote the first re-entrance time after t = 0 of a red particle

that initially entered the simulation at time −s. Then

Pr
{
γR
s = x

}
=

∫ s

0

ϕ(s− u)fT (x+ u) du.(6.4)

Proof. Consider a blue particle that entered the simulation at time t1 = −s. In
the time interval [−s, 0] this particle may have re-entered the simulation an arbitrary
number of times. For a particle that recursed k−1 times before time t = 0, we denote
by tk its last re-entrance time before t = 0 and by tk+1 its next re-entrance time after
t = 0. The event

{
γR
s = x

}
can thus be decomposed into the disjoint union

{γR
s = x} =

∞⋃
k=1

{tk < 0 ∩ tk+1 = x | t1 = −s}

so that

Pr
{
γR
s = x

}
=

∞∑
k=1

Pr{tk < 0 ∩ tk+1 = x | t1 = −s}.(6.5)
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The first summand is the probability that the first re-entrance time of the particle
occurred at time x. Therefore,

Pr{t1 < 0 ∩ t2 = x | t1 = −s} = fT (s+ x).(6.6)

The next summand (k = 2) is the probability of exactly one recirculation before time
t = 0 and next re-entrance at time x. To compute this probability, we integrate over
all possible times −u for the recirculation time t2,

Pr{t2 < 0 ∩ t3 = x | t1 = −s} =

∫ s

0

Pr{t2 = −u ∩ t3 = x | t1 = −s} du

=

∫ s

0

fT (s− u)fT (u+ x) du.(6.7)

We now consider the kth term in the sum (6.5). It represents the probability of exactly
k − 1 recirculations before time t = 0 and next re-entrance at time x. Let −u denote
the last recirculation time prior to time t = 0. By assumption, all recirculation times
of a particle are i.i.d. random variables with pdf fT (t). Therefore,

Pr{tk = −u | t1 = −s} = f
∗(k−1)
T (s− u),

where f∗k
T denotes the kth convolution of the pdf fT (t). Thus,

Pr{tk < 0 ∩ tk+1 = x | t1 = −s} =

∫ s

0

f
∗(k−1)
T (s− u)fT (u+ x) du.(6.8)

Combining (6.5) with (6.6) and (6.8) and using the definition f∗0
T (t) = δ(t), we obtain

that

Pr{γR
s = x} =

∫ s

0

∞∑
k=0

f∗k
T (s− u)fT (u+ x) du

=

∫ s

0

ϕ(s− u)fT (u+ x) du,

which concludes the proof of the lemma.
We are now ready to prove the following theorem concerning the PDF of the first

arrival time of the pooled process.
Theorem 6.2. The stationary PDF of the first arrival time of a steady state

pooled process is given by

Pr
{
γP > x

}
= exp {−Λx} exp

{
Λ

∫ x

0

FT (t) dt

}
.(6.9)

Proof. Consider a simulation that has been running for an infinite time which we
start to observe at time t = 0. The event {x < γP < x+∆x} means that no particles
arrived into the simulation in the time interval [0, x] and exactly one particle arrived
in the short time interval [x, x +∆x]. This means, of course, that all the remaining
particles arrived after time x. The identity of the arriving particle can be either blue
or red. Therefore,

Pr{γP = x} = Pr
{
γP > x

}
× [Pr{blue arrival at x}+ Pr{red re-entrance at x}].(6.10)
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Since the arrivals of blue particles is a memoryless Poisson process with rate λB , the
probability of the first blue particle to arrive during the time interval [x, x + ∆x] is
approximately λB∆x. To compute the re-entrance probability of a red particle at
time x, we write

Pr{red re-entrance at time x}

=

∫ ∞

0

Pr{red re-entrance at time x | the first entrance time of a red particle=−s}

× Pr{a red particle first entered the simulation at time −s} ds.
We consider each term factor in the integral separately. First, we recall that the
conditional re-entrance time of this red particle was denoted γR

s and its pdf was
calculated in the previous lemma. Therefore we write

Pr{red re-entrance at time x | the first entrance time of a red particle=−s}

= Pr{γR
s = x | t1 = −s}.

Second, by definition,

Pr{a red particle first entered the simulation at time −s} ds

= Pr{a blue particle entered the simulation at time −s} ds = λB ds.

Thus, (6.10) can be rewritten as

Pr
{
γP = x

}
= Pr

{
γP > x

}× λB

[
1 +

∫ ∞

0

Pr{γR
s = x | t1 = −s} ds

]
.(6.11)

Inserting (6.4) into (6.11), changing the order of integration in the resulting double
integral, and using (6.3) and (5.2) gives

Pr{γP = x} = λB Pr{γP > x}
[
1 +

∫ ∞

0

fT (x+ u)du

∫ ∞

u

ϕ(s− u) ds

]
= λB Pr{γP > x}

[
1 +

FT (∞)− FT (x)

1− p

]
= λB Pr{γP > x} 1− FT (x)

1− p
.(6.12)

Finally, integrating (6.12) with respect to x, we obtain (6.9).
Comment. The fact that the limiting PDF (6.9) is not exponential is yet another

manifestation of the non-Poissonian character of the pooled process. The fact that the
pooled process is not Poissonian sets this result apart from the known cases of finite
mean recurrence times, as analyzed in [33], where the resulting process is Poissonian.

We now show, as mentioned in the introduction, that the pooled process is not
a renewal process and has an infinite memory. Therefore its interarrival times are
dependent, not identically distributed random variables. Thus, for example, the PDF
of the time between the first and the second arrivals after observation begins is not
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the same as that of the time between the second and the third arrivals, and so on. The
PDF of the interarrival time between the kth and k + 1th arrivals after observation
begins can be calculated as the marginal distribution of the joint distribution of the
k + 1 consecutive interarrival times.

First, we compute the PDF of the time between the first and the second ar-
rivals of the pooled process. Applying considerations similar to the ones in the above
computation of the residual first entrance time, it can be shown that

Pr{γP = x ∩ TP
1 > t} = ΛF c

T (x)F
c
T (t) Pr{γP > t+ x}.

Thus, integrating with respect to x, we obtain

Pr{TP
1 > t} =

∫ ∞

0

ΛF c
T (x)F

c
T (t) Pr{γP > t+ x} dx.(6.13)

Also, the conditional probability is given by

Pr{TP
1 > t | γP = x} =

ΛF c
T (x)F

c
T (t) Pr{γP > t+ x}

ΛF c
T (x) Pr{γP > x} .(6.14)

A comparison of (6.13) and (6.14) shows that the conditional PDF of TP
1 , given the

value of the residual first entrance time γP , is different than the unconditional PDF
of TP

1 . Therefore, the pooled process is not Poissonian, not even a renewal process,
but rather has memory. Using similar methods, it is possible to show that the PDF of
the kth interarrival time of the pooled process depends on all previous arrival times,
which means that the pooled process has infinite memory.

7. Simulation of the pooled process. In this section we present a preliminary
statistical analysis of the pooled process and some computer simulation results. First,
we estimate the time for convergence of a simulation of the pooled process to steady
state. Then, we show both mathematically and numerically that the interarrival times
of the pooled process are approximately exponentially distributed. We stress that we
study only the pdf of a single interarrival time and not the joint pdf of two or more
consecutive interarrival times, nor do we study the time correlations of the pooled
process. These issues will be studied in a separate publication.

Consider a computer simulation of the pooled process. As analyzed in section
2, the pooled process is the superposition of many delayed terminating renewal pro-
cesses. The delayed process is the arrival process of blue particles which is Poissonian
with rate λB . Thus, the arrival times of the blue particles are easily constructed
by sampling their interarrival times from an exponential distribution with rate λB .
For each blue particle we construct its re-entrance times into the simulation by sam-
pling from the defective distribution FT . Note that for each blue particle, the total
number of its re-entrances follows a geometric distribution with parameter p. Thus,
for each blue particle, this sampling procedure results in a finite sequence of random
re-entrance times. The arrival times of the blue particles are formed by sorting all
these entrance and re-entrance times of all particles in increasing order.

7.1. Convergence to steady state. We can estimate the rate of convergence
of the pooled process to steady state, starting with no simulated particles inside the
inner sphere. Specifically, we determine the minimal time tS at which

E[NP (tS)]

tS
= Λ(1− ε).(7.1)
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This is a criterion for wide sense convergence to steady state [32]. An explicit expres-
sion for E[NP (t)] was calculated in (4.7) in terms of µ1(s), the average number of
re-entrances by time s. Since µ1(s) is a monotone increasing function, it can be easily
seen that E[NP (t)]/t is also a monotone increasing function. To find a lower bound
for tS , we use the fact that µ1(s) satisfies the integral equation [30]

µ1(s) =

∫ s

0

fT (u)[1 + µ1(s− u)]du.(7.2)

According to (4.3), for all times s,

µ1(s) < µ1(∞) =
p

1− p
.

Inserting this inequality into (7.2), we obtain a more refined inequality for µ1(s),

µ1(s) <
1

1− p
FT (s) <

1

1− p
Pr

{
τout < t

}
.(7.3)

Combining (A.4) and the inequality

2√
π

∫ ∞

x

e−u2

du ≤ 1− 2√
π
x for x <

1√
2
,

we obtain that

Pr{τout < t} ≤


p

(
1− 2√

π

√
Tb

t

)
, t > 2Tb,

p, t < 2Tb,

(7.4)

where Tb is defined in (A.5). Inserting (7.4) and (7.3) into (4.7) gives

E[NP (t)]

t
≤ Λ

(
1− p

4√
π

√
Tb

t
+ p

4
√
2√
π

Tb

t

)
.(7.5)

We are now ready to apply the wide sense criteria (7.1). For ε  1, tS � Tb, so we
can neglect the last term. This gives

tS ≥ 16p2

π

Tb

ε2
.(7.6)

To evaluate whether this time is long or short, consider just the average number of
blue particle entrances during this time (neglecting their re-entrances). This number
is given by the product λBtS . Using (3.5) and (7.6) for λB and tS , respectively, gives

E[NB(tS)] ≥ 12(1− p)2

π

Na

ε2
,(7.7)

where Na = 4/3πa3ρ � 1 denotes the average number of simulated particles in
the inner sphere. Therefore, to obtain wide sense convergence up to one percent for a
simulation with an average of Na = 400 particles in the inner sphere, the total number
of blue particle entrances during this time is of the order of at leastNa/ε

2 = 4, 000, 000
particles. Note that in a realistic simulation, the time steps of ionic motion are much
smaller than the times between consecutive entrances of particles into the simulation.
Therefore, (7.7) implies that a simulation that has not started in steady state must
be run a prohibitively large number of time steps until convergence to steady state is
achieved. Therefore, as discussed in section 2, an algorithm to run the simulation in
steady state from the beginning is needed.
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7.2. Short interarrival times are approximately exponential. Inserting
(6.9) into (6.13) gives the following expression for the distribution of TP

1 :

Pr{TP
1 > t} = F c

T (t)

∫ ∞

0

ΛF c
T (x)e

−Λ(x+t)e
Λ
∫ t+x

0
FT (s)ds

dx.(7.8)

We now analyze the short time and long time behavior of this distribution. First we
consider short times, t  Tb. In this case we make a change of variables x = Tbu and
s = Tbw in the integrals in (7.8). This gives

Pr{TP
1 > t} = F c

T (t)e
−Λt

∫ ∞

0

ΛTbF
c
T (Tbu)e

−ΛTb(u−
∫ t/Tb+u

0
FT (Tbw)dw)

du.(7.9)

According to our assumptions,

ΛTb =
3

4

1− p

p2
Na � 1.

Therefore, applying Laplace’s method for the approximation of the integral in (7.9)
gives

Pr{TP
1 > t} ≈ F c

T (t)e
−Λte

Λ
∫ t

0
FT (s) ds

.

For short times, t  Tb, FT (t)  1, so that we have the approximation

Pr{TP
1 > t} = e−Λt(1 + o(1)) for t  Tb.

Next, we consider the long time behavior of Pr{TP
1 > t}. For times t � Tb, we

have FT (s) ≈ p, and therefore∫ x+t

0

FT (s) ds =

∫ x

0

FT (s) ds+

∫ x+t

x

FT (s) ds

≈
∫ x

0

FT (s) ds+ tp.(7.10)

Inserting (7.10) into (7.8) gives

Pr{TP
1 > t} ≈ (1− p) exp(−λBt) for t � Tb.

To conclude, the interarrival time TP
1 is approximately exponential with rate Λ for

short times, but due to possible particle recirculations its distribution has a different
exponential tail with rate λB < Λ. Note, however, that since interarrival times are
of the order of 1/Λ, and 1/Λ  Tb, all interarrival times of the pooled process are
approximately exponentially distributed with rate Λ.

7.3. Simulation results. A simulation of the pooled process for uncharged
particles has been run, according to the principles presented at the beginning of
this section, with the typical values a = 50Å, r0 = 80Å, D = 10−9m2/sec, and
ρ = 0.1M. These parameters give a value p = 0.625, for the return probability, and a
value Na = 31, for the average number of simulated particles inside the inner sphere.
The average interarrival time of the pooled process is 1/Λ = 10−10sec, compared to
Tb = 22.5× 10−10sec, so that indeed 1/Λ  Tb.
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Fig. 3. The pdfs of TP
1 (left) and TP

2 (right), as computed from the simulation, superimposed
on the exponential density with rate Λ.

In Figure 3 the graphs of the pdfs of TP
1 and TP

2 are superimposed on the exponen-
tial pdf with rate Λ. The pdfs of TP

1 and TP
2 are the result of about 250,000 samples

of interarrival times of the pooled process. It is apparent that for times shorter than
Tb both TP

1 and TP
2 are exponentially distributed with rate Λ. In all of the samples,

not even once did an interarrival time longer than Tb occur in the simulation. There-
fore, the theoretically predicted exponential tail with rate λB cannot be observed in
these graphs. Finally, we note that TP

1 and TP
2 are dependent, with a correlation

coefficient r = cov(TP
1 , TP

2 )/σ1σ2 ≈ −0.001. The fact that the correlation coefficient
is negative is not surprising. It reflects the higher probability of recirculation in TP

2

when TP
1 is large. This means that when TP

1 is long there is a higher probability that
TP

2 is short. The small correlation coefficient between TP
1 and TP

2 is a consequence of
the short interarrival times of the pooled process, 1/Λ, relative to the characteristic
time for recirculation, Tb. A detailed analytical and numerical study of the statistical
properties of the pooled process will be done elsewhere.

8. Summary and discussion. The time course of the exchange of ions between
a test volume embedded in a continuum with a buffer region has been studied. The
study of this time course is the basis for a simulation of uncharged and charged
particles in a solution. The process of injecting new particles into the simulation
has been identified as a stationary pooled process composed of an infinite number
of delayed terminating independent renewal processes. While the pooled process
converges to a stationary steady state, it is neither a renewal nor a Markov process.
We have calculated the first two moments of this process, as well as the probability
distribution of its residual time, and the joint distribution of the residual and the
next arrival. From these calculations, it is apparent that the pooled process has an
infinite memory. Therefore, to run the exact time course of this process in steady
state, an infinite record of all past entrances and exits needs to be kept. To avoid this
complexity, we have found that under some conditions on the size of the simulation
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and buffer regions the pooled process can be approximated by a memoryless Poisson
process. This approximation retains the average influx of the pooled process, but
underestimates its variance. Our analysis shows how the parameters a and r0 control
the size of the simulation and the accuracy of our proposed approximation.

A closely related mathematical problem is considered in [30, chap. 5, sect. 9],
where the renewal periods are assumed to have finite moments, in contrast with the
case at hand in which the renewal periods may be infinite with positive probability.
In [30], the case of infinitely many uniform sparse renewal processes is considered,
and it is shown that under certain conditions on the sparseness, the pooled process
becomes Poissonian as the number of processes increases to infinity. As we have seen,
in our case the resulting process in not Poissonian.

The application of our results to an actual simulation is different for charged or
uncharged particles. The approximations that we derived are not necessary for a sim-
ulation of uncharged Brownian particles, though they are necessary for a simulation of
charged particles, as discussed below. For uncharged particles the stationary pooled
process can be constructed offline to provide the random injection times of particles
into the simulation. Such a pooled process has to be constructed for each choice of
the parameters λB and p, that is, for each set of values for the parameters D, ρ, a,
and r0. With the correct choice of injection times, such a simulation reaches steady
state immediately. If a wrong injection time course is adopted, there is a depletion or
overcrowding of particles in the simulation region, which renders the simulation not
self-consistent.

The simulation of charged particles is completely different from that of uncharged
particles. In the uncharged case the mean field is always zero and thus the densities
of all species in the bath remain constant throughout the time course of the simu-
lation. In contrast, charged particles cause fluctuations in the net charge inside the
simulation volume. The nonzero net charge creates a nonvanishing time dependent
electrostatic field outside the simulation region that affects the continuum densities in
the bath near the simulation region. Thus, if the net charge in the simulation region is
positive, the bath density of positive charges decreases and the density of the negative
charges increases in the neighborhood around the simulation region. These changes,
in turn, affect the effective entrance rates of the different species into the simulation.
Therefore, for charged particles, each configuration of net charge in the simulation
region requires the construction of a new table of the pooled process suitable for it.
Specifically, each entrance or exit changes the net charge inside the simulation region,
which, in turn, changes the entrance rates into the simulation region.

Under the assumption of a fast bath,1 the entrance law of a new ion into the
simulation is that of the residual of the pooled process (6.9) that corresponds to the
instantaneous concentrations due to the momentary net charge inside the simulation.
These conditions change every time an ion enters or exits the simulation. Our analyti-
cal expression for the PDF of the residual time eliminates the need to run a simulation
of the pooled process (as described in section 7) every time conditions change. In this
way, a small portion of the bulk solution can be studied without the need to resort to
ad hoc assumptions, such as artificial periodic boundary conditions.

In our model and analysis of a simulation of interacting ions (e.g., charged ions
or ions with finite volume), we have used implicitly the concept of a self-consistent
simulation. This notion is concerned with the detailed laws of ionic motion in the

1This means that the time to equilibrate the densities in the bath is shorter than the time between
changes in the net charge inside the simulation region.
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simulation region and the effective motion of ions in the surrounding continuum. The
effective diffusive motion of ions is the result of their thermal interaction with the
surrounding solvent and their interactions with each other. Thus, the motion inside
the simulation volume is governed by both an unknown diffusion coefficient of ions in
infinitely dilute solution and the interionic forces (computed by the simulation). On
a sufficiently coarse time scale, the resulting motion of a simulated ion can be viewed
as an effective diffusion with an effective diffusion coefficient that can be calculated
from statistics of simulated trajectories. This calculated effective diffusion coefficient
must be equal to the assumed (experimentally measured) diffusion coefficient in the
bulk solution. This is a self-consistency requirement from the simulation. In addition,
the average concentrations of the ionic species inside the simulation volume must be
the same as those assumed in the bulk solution, as mentioned above. This is another
self-consistency requirement. Still another self-consistency requirement is concerned
with the notion of chemical activity. The concentrations of ions in the presence of
an electrostatic field is different than that in the absence of a field, as can be readily
seen from the Poisson–Boltzmann theory [12]. To compensate for the replacement
of charged particles with independent uncharged particles the notion of activity has
been introduced in physical chemistry [12]. More precisely, the change in the chemical
potential as a function of particle density is assumed to take a simple form derived from
the theory of gases, which replaces the physical density with a larger effective density.
The ratio of the two densities is the activity factor. It is a directly measurable physical
parameter. In a self-consistent simulation of charged particles, the unknown activity
and diffusion coefficients in an infinitely dilute solution have to be chosen in such a way
that all the above-mentioned self-consistency conditions are met. Finally, in addition
to these self-consistency conditions, the electrostatic field has to be calculated in a
self-consistent way at each time step of the simulation. A detailed description of a
self-consistent simulation of charged particles will be presented in a separate paper.
If the correct time course of the simulation is not followed it may be difficult to meet
some of these self-consistency requirements.

Simulations of ions in solution have a wide range of applications. An important
one is the theoretical study of permeation of uncharged molecules and ions through
protein channels of biological membranes [34], [35]. Protein channels are small natural
nano-devices of length in the range of 20–100Å, and 5–20Å diameter. A computer
simulation of a channel involves the simulation of the mobile ions both inside the
channel and around it, in a volume comparable to the channel size. In the spirit of the
theory discussed in this paper, such a simulation must be connected to its surrounding
continuum. This leads to a small simulation with large time dependent density and
potential fluctuations. The results of this paper are directly applicable to a simulation
of permeation of uncharged molecules through protein channels, such as maltoporins
that conduct sugar. Although the motion of the sugar molecules inside the maltoporin
channel cannot be assumed a diffusion process and has to be simulated by molecular
dynamics, the connection of the simulation to the continuum is described by the
present work. For channels that conduct ions or other charged molecules, there are
additional new elements in their simulation, namely, the presence of an impermeable
membrane and a permanent charge profile of the channel itself, inside the simulation
volume. The injection process of new particles into the simulation region on both
sides of the membrane is similar to that described above. There are many differences,
though, between a simulation with and without a channel, that are a subject for a
separate study.
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Appendix A. The time distribution outside the simulation. We now
compute the distribution of τout, the time a nonsimulated (green) particle spends
outside the simulation until its next re-entrance into the simulation. To this end,
we denote by p(r, t | r0) the (radial) conditional probability density of the particle’s
location at time t, given that it has exited the simulation at the outer sphere at
time t = 0 and has not yet returned to the inner sphere. Obviously, in terms of this
distribution,

Pr{τout > t} =

∫ ∞

a

4πr2pout(r, t | r0)dr.(A.1)

According to our assumptions, nonsimulated green particles perform independent free
Brownian motion with diffusion coefficient D. Thus, the pdf pout(r, t | r0) is the solu-
tion of the Fokker–Planck equation [31]

∂

∂t
pout(r, t | r0) = D∆p(r, t | r0), a < r < ∞,

pout(a, t | r0) = 0, t > 0,(A.2)

pout(r, 0 | r0) = δ(r − r0)

4πr2
0

, a < r < ∞.

The solution of (A.2) is given by

pout (r, t | r0) = 1

(4πDt)1/2
1

4πr0

1

r

{
e−(r−r0)

2/4D t − e−(r+r0−2a)2/4D t
}

.(A.3)

Inserting (A.3) into (A.1) gives

Pr {τout ≤ t | r0 } = p
2√
π

∫ ∞
√

Tb/t

e−u2

du,(A.4)

where

Tb =
(r0 − a)2

4D
(A.5)

is a characteristic time for the motion of a particle from the outer sphere to reach the
inner sphere.

Equation (A.4) shows that τout can be infinite with probability 1 − p > 0, that
is, it has a defective probability distribution. It follows that it has an infinite mean
value. The pdf of its defective distribution, given by

fτout(t) =
d

dt
Pr {τout ≤ t | r0 } = p

1√
π

√
Tb

t3/2
exp

{
−Tb

t

}
,

gives ∫ ∞

0

tfτout(t) dt = ∞.(A.6)

Moreover, we have the following proposition.
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Proposition A.1. The first moment of τout, conditioned on {τout < ∞}, is
infinite.

Proof. Since

Pr {τout < t | τout < ∞} =
Pr {τout < t, τout < ∞}

Pr {τout < ∞} =
Pr {τout < t}

p
,

we obtain, in view of (A.6), that∫ ∞

0

tdPr {τout < t | τout < ∞} =
1√
π

∫ ∞

0

√
Tb

t1/2
exp

{
−Tb

t

}
dt = ∞.
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