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The ionic current flowing through a protein channel in the membrane of a biological cell depends on the
concentration of the permeant ion, as well as on many other variables. As the concentration increases, the rate
of arrival of bath ions to the channel’s entrance increases, and typically so does the net current. This concen-
tration dependence is part of traditional diffusion and rate models that predict Michaelis-Menten current-
concentration relations for a single ion channel. Such models, however, neglect other effects of bath concen-
trations on the net current. The net current depends not only on the entrance rate of ions into the channel, but
also on forces acting on ions inside the channel. These forces, in turn, depend not only on the applied potential
and charge distribution of the channel, but also on the long-range Coulombic interactions with the surrounding
bath ions. In this paper, we study the effects of bath concentrations on the average force on an ion in a single
ion channel. We show that the force of the reaction field on a discrete ion inside a channel embedded in an
uncharged lipid membrane contains a blocking(shielding) term that is proportional to the square root of the
ionic bath concentration. We then show that different blocking strengths yield different behavior of the current-
concentration and conductance-concentration curves. Our theory shows that at low concentrations, when the
blocking force is weak, conductance grows linearly with concentration, as in traditional models, e.g.,
Michaelis-Menten formulations. As the concentration increases to a range of moderate shielding, conductance
grows as the square root of concentration, whereas at high concentrations, with high shielding, conductance
may actually decrease with increasing concentrations: the conductance-concentration curve can invert. There-
fore, electrostatic interactions between bath ions and the single ion inside the channel can explain the different
regimes of conductance-concentration relations observed in experiments.
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I. INTRODUCTION

Ionic permeation through protein channels embedded in
otherwise impermeable cell membranes is one of the most
important processes in life[1], governing an enormous range
of biological function in health and disease[2]. The ionic
current flowing through an open protein channel depends on
many factors, reflecting the thermal fluctuations, the concen-
tration gradient, the electrostatic forces, the frictional retard-
ing force on ions in the channel, and the physical forces
linking those ions with their environment. These factors in
turn depend on the geometry and charge distribution of the
channel, the friction within the channel, and obviously, on
the bath concentrations on both sides of the channel.

One of the roles of ionic concentration is readily under-
stood. As the surrounding bath concentration is increased, so
does the arrival rate of ions to the entrance of the channel,
thus increasing the net current. Since ions in the surrounding
electrolyte bath diffuse to the channel’s mouth, the arrival
rate depends linearly on the bath concentrations, at least in a
mean-field approximation[4,5].

Standard rate models[1] assume rate constants inside the
channel that are independent of bath concentrations and pre-

dict a Michaelis-Menten dependence of the current and con-
ductance on the concentration, when the arrival rate of ions
from bath to channel is linearly proportional to concentra-
tion. I-C curves are linear for small bath concentrations, and
a saturation of the conductance occurs for high concentra-
tions in these models[1,3].

Some channels indeed exhibit conductance-concentration
relations that resemble the Michaelis-Menten law; others,
however, exhibit a variety of nonlinear behaviors that deviate
from this simple formula. Experiments show that in some
channels, conductance depends on thesquare rootof the
concentration, even at physiological concentrations[6–10],
while in other channels conductance(or current) can de-
creaseas concentrations increase[11,12]. The latter case,
however, typically occurs well beyond physiological concen-
trations. The inward rectifying K+ channels[13–15] form an
important family of channels for which conductance in-
creases as the square root of concentration. They also show a
decrease in conductance as external concentrations are de-
creased in asymmetrical cases[16–18]. Multisite multi-ion
rate models are typically used to explain both the square root
dependence of conductance on concentration, in some chan-
nels, and the decrease in conductance at high concentrations,
in others[14,19], although these models have serious limita-
tions (see, for example,[20,21]).

Such conductance-concentration curves suggest that bath
concentrations do more than set the arrival rate of ions to the
channel. Indeed, the net current through the channel depends
not only on the arrival rate, but also on the force acting on
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the ions when they are in the channel pore. These forces, in
turn, depend not only on the applied potential and on the
channel charge distribution, but also on the bath concentra-
tions, through the long-range Coulombic interactions with
the bath ions. We call the component of the force on an ion
due to the surrounding bath concentrations thereaction field
force (RFF).

It seems that the RFF inside the channel has been over-
looked in recent literature, in contrast to earlier treatments of
[22,23]. Reaction field effects are neglected in traditional rate
models, because these models assume(i) hopping rates in-
side the channel that are independent of concentrations, and
(ii ) entrance rates into the channel that scale linearly with
bath concentrations. The effects of bath concentrations on the
forces inside the channel have not been studied by detailed
molecular-dynamics(MD) simulations because these simula-
tions typically include only one or two ions inside the pore
and few if any ions in the small simulated volume of the
surrounding baths[24–27]. Due to their computational com-
plexity, MD simulations are not an adequate tool for the
study of these effects, at least in the foreseeable future. A
study of these effects by Brownian dynamics simulations,
while possibly feasible, would require enormous computer
resources, especially in the case of low concentrations, and
would likely remain infeasible in the case of nonhomoge-
neous mixtures that contain trace concentrations, such as a
mixture of 100 mM Na-Cl and 10−6 M Ca2+. Many, even
most biological systems, use trace concentrations of solutes
(e.g., cofactors such as Ca2+) as controllers of important bio-
logical function [28] and so trace concentrations must be
present, and well estimated, if computations are to have bio-
logical relevance. Thus, a theoretical study of these effects
with continuum models is needed.

Continuum-type models, mainly the Poisson-Nernst-
Planck (PNP) system of equations, have been used to de-
scribe ionic permeation through protein channels since the
early 1990s. However, as was obvious and stated from the
beginning, and has become explicit in recent years both in
simulations[29–32] and theory[33], standard PNP models
provide an inadequate description of currents and concentra-
tions inside narrow pores, because they fail to capture the
force components related to the finite size of the mobile ions
and to their discrete(rather than continuum) charge distribu-
tion.

In previous work[33,34], we showed that the concentra-
tion of each ionic species, inside and outside the channel
pore, satisfies a Nernst-Planck-type equation, assuming ions
are interacting Brownian particles. The average force in the
Nernst-Planck equation depends on conditional charge den-
sities and also explicitly includes the dielectric boundary
force [35]. Thus, the average force includes the finite size of
the ions, and also takes into account the discrete nature of the
ion’s charge.

The importance of the dielectric boundary force in narrow
channels is shown in much recent work[27,29,32,35]. These
papers, however, have not studied the effects of the sur-
rounding bath concentrations, e.g., the RFF. In this paper, we
consider the effect of bath concentrations on the permeation
characteristics of a protein channel that can contain at most
one positive ion at a time. Thus, we make a connection to the

classical literature of rate theories of single ion channels that
is based on detailed electrostatic calculations, including both
the dielectric boundary force and the electrostatic effects of
the baths.

The study of the permeation characteristics of a single ion
channel has a long history. Early approaches were limited to
rate models[1], while more modern ones were based on the
assumption of diffusive motion of the ion inside the channel
[3,36–38]. The main goal of these modeling approaches was
to derive a Nernst-Planck equation and boundary conditions
that take into account the restriction of the single-ion chan-
nel. All of these models, however, assumed that the contri-
bution of the surrounding bath ions is only through the ar-
rival rate to the channel. The electrostatic effects of bath ions
were not considered in these models.

In this paper, we study the electrostatic effects of bath
ions on the permeating ion inside the channel. We use the
implicit solvent (“primitive” ) model of ionic solutions in
which the solvent water molecules are not modeled explic-
itly, but rather are described electrostatically by an effective
dielectric coefficient, and are the source of friction and noise
for diffusion. Following Jordanet al. [23], we express the
single ion channel assumption, by combining a discrete de-
scription of the ion inside the channel with a continuum de-
scription of the surrounding bath ions. Specifically, we as-
sume that the(conditional) concentrations in the two baths,
given the presence of a discrete ion either inside the channel
or near its entrance, are described by the solution of the
stationary Poisson-Boltzmann equation(in the baths), in the
presence of the discrete ion(in or near the channel). The
novelty in our approach is the coupling of a discrete ion in
the channel with a continuum description of the baths, in
order to compute currents with a Nernst-Planck equation.

Our main result is that the force on a discrete ion inside
(or near) the channel can be decomposed into almost additive
independent terms. These force terms are(i) the interaction
force with the fixed charges of the channel(FCF denotes
fixed charge force), (ii ) the dielectric boundary force(DBF),
(iii ) the membrane potential force(MPF) due to the applied
potential(often assumed to be a constant field), and finally
(iv) the reaction field force(RFF) due to the bath concentra-
tions.

By definition, the first three forces areindependentof bath
concentrations. Our calculations show that for a few model
channels embedded in neutral lipid membranes, the RFF
scales approximately as thesquare rootof bath concentra-
tions, a property noticed by[23]. A mathematical explanation
for this square root dependence is provided in the Appendix.
In addition, we show that the RFF decreases as the radius of
the channel increases.

Incorporation of these results into the Nernst-Planck
equation shows that different strengths of the reaction field
force can lead to different blocking effects and different
current-concentration relations. A weak blocking effect and
weak reaction field lead to a linear current-concentration re-
lation at low concentrations, as in the Michaelis-Menten for-
mula, while a moderate blocking effect and reaction field
lead to a square root dependence of conductance on concen-
tration. A strong blocking and reaction field may even lead to
a decrease in the current as concentrations increase. In this
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way, our theory explains the observed square root depen-
dence of current on concentration. The square root depen-
dence does not necessarily imply more than one ion inside
the channel at any given time nor specific binding sites in-
side the channel. Of course, other explanations, such as mul-
tisite multi-ion rate models, are possible as well.

II. THE REACTION FIELD AND BATH
CONCENTRATIONS

We consider the concentration cell used to study transport
and membranes in electrochemistry and biophysics. Two
electrolyte baths, here with equal concentrationsC and rela-
tive dielectric coefficient«b=80, are separated by an imper-
meable lipid membrane of dielectric coefficient«m=2. Span-
ning this membrane is a single protein channel that allows
ions to go through its pore from one bath to the other. For
simplicity, we assume that only positive ions can enter this
pore, and that the pore can accommodate at most one ion at
a time.

In addition, we consider only the case of a 1-1 simple
monovalent electrolyte bathing solution, though our analysis
can be easily generalized to more complex electrolytes. Our
aim is to compute the ionic current through this channel,
given its spatial structure, its permanent charge distribution,
the applied voltage, and the surrounding bath concentrations.

Following [33], we start with a Langevin model for the
motion of all mobile ions in a finite system, combined with a
continuum description of the solvent water molecules. We
thus assume that on sufficiently coarse length and time
scales, the joint motion of all 2N mobile ions can be de-
scribed by a system of coupled Langevin equations, with
independent noise sources,

ẍ j
p + gpsx j

pdẋ j
p =

f j
p

mp +Î2gpsx j
pdkBT

mp ẇj
p s j = 1,2, . . . ,Nd,

ẍk
n + gnsxk

ndẋk
n =

f k
n

mn +Î2gnsxk
ndkBT

mn ẇk
n sk = 1,2, . . . ,Nd,

s1d

wherex j
p andxk

n describe the locations of thej th positive and
kth negative ions, respectively, whilef j

p andfk
n are the forces

acting on them. In addition,gc describes the location-
dependent friction coefficient of ions of speciesc sc=p,nd,
mc is their effective mass,ẇj

p andẇk
n are Gaussian noises,kB

is Boltzmann’s coefficient, andT is the temperature. In this
formulation, the water molecules are not represented explic-
itly. Rather, they are the source of friction and noise, and also
determine the effective possibly location-dependent dielec-
tric coefficient. As described in[33,34], we assume that the
system is connected to an external control mechanism that
maintains a stationary state with constant average concentra-
tions C in the left and right baths, respectively, and a con-
stant average current flowing through the pore, due to a con-
stant applied voltageV between the baths.

In a previous paper[33], we showed that under these
assumptions, the steady-state time-averaged concentration of

ions of speciesc, described byrcsxd, satisfies the Nernst-
Planck equation

0 = = ·Jcsxd = = ·F f̄ csxd
mcgcsxd

rcsxd −
kBT

mcgcsxd
= rcsxdG ,

s2d

where mc is the effective mass of the ion,gcsxd is its

(location-dependent) friction coefficient, andf̄csxd is the av-
erage force acting on a discretec-type ion atx. This average
force is the sum of three terms,

f̄ csxd = fD
c sxd + f̄SR

c sxd + f̄EL
c sxd, s3d

where the first term describes the dielectric boundary force
[35], the second is the average short-range force, and the
third term is the average electrostatic force. The average
electrostatic force accounts for all Coulombic interactions of
the ion with the other fixed, mobile, and induced charges in
the system, excluding the charges induced by the ion itself,
which are taken into account by the dielectric boundary
force.

The time-averaged electrostatic force on ac ion at x is
given by

f̄ EL
c sxd = u − q = fcsyuxduy=x, s4d

wherefcsyuxd is the mean(conditional) electrostatic poten-
tial at y, given an ion of speciesc at x. This potential is the
solution of theconditionalPoisson equation

= · f«syd = fcsyuxdg = −
e

«0
Frchsyd + o

j

zjr j ucsyuxdG , s5d

whererchsyd is the fixed charge distribution of the channel
and r j ucsyuxd is the conditional density of speciesj at y,
given an ion of speciesc at x. For the case of a simple 1-1
monovalent solution and a positive ion atx, Eq. (5) becomes

= · f«syd = fpsyuxdg = −
e

«0
frchsyd + rpupsyuxd − rnupsyuxdg,

whererpup andrnup are the conditional positive and negative
ion concentration profiles, given a positive ion atx.

The net current flowing through the channel can be com-
puted from the solution of Eq.(2). Assuming the channel has
a narrow, approximately cylindrical pore, whose axis is
aligned with thez axis, the net electric current is simply the
integral over any cross section in thexy plane of

Jz = esJz
p − Jz

nd,

whereJz
c is thez component of the flux vectorJc of species

c.
Equation(2), however, cannot be solved unless a specific

(closed or computational) form of the conditional densities
r j ucsyuxd is known. As shown in[33], standard PNP theory
corresponds to the approximation

r j ucsyuxd = r jsyd.

As mentioned in the Introduction, standard PNP neglects
both the dielectric boundary force and the short-range forces
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in Eq. (3). These approximations neglect the finite size of the
ions, and more importantly in our case, neglect the fact that,
by assumption, the channel can accommodate at most one
ion at a time. As shown in theory and in simulations, both of
these approximations of standard PNP are oversimplifica-
tions that lead to the loss of important properties of narrow
channels embedded in low dielectric lipid membranes
[33,29–31,27,35].

Here, we adopt a different approximation for these condi-
tional concentrations, which retains the advantage of a con-
tinuum description, while taking into account the properties
of a single-ion channel assumption. In this paper, we de-
scribe the conditional bath concentrations at a continuum
level by the steady-state Poisson-Boltzmann equation, in the
presence of a discrete ion atx. The channel is forced to be
singly occupied by no-flux boundary conditions at the two
entrances to the channel, on the left and right edges of its
pore, imposed when an ion is inside the channel at location
x. We also include some of the correlation effects of finite
size and short-range forces of ions very close to the channel.
We impose no flux boundary conditions both at the surface
of a sphere of radius 1.5 Å around the center of the ion and
at the edges of the channel, just after an ion has exited the
pore, thus effectively assuming that no other ion has yet
entered the channel. In essence, we have a three-site model,
with sites coupled by electrostatics and the one ion assump-
tion.

This approximation retains the notion of a single-ion
channel, but neglects both the finite size of ions in the bath
away from the channel, and the dielectric boundary force
acting on those bath ions. As shown in[35,39], the dielectric
boundary force(DBF) on a single ion in the bath is relatively
small, because of shielding, and the shielded DBF decreases
exponentially with distance from the dielectric wall, rather
than the long-range inverse square Coulomb law. We there-
fore assume that the conditional positive and negative con-
centrations outside the channel pore, given a positive ion
inside the channel at locationx, follow a Poisson-Boltzmann
(PB) distribution,

rpupsyuxd = C expH−
efsyuxd

kT
J, rnupsyuxd = C expHefsyuxd

kT
J .

s6d

The conditional potentialfsyuxd—that depends on both the
bath ions and the discrete ion inside the channel—is the so-
lution of the Poisson equation,

= · f«sxd = fsyuxdg = −
1

«0
ferchsxd + erpupsyuxd − ernupsyuxd

+ qdsy − xdg, s7d

whereq is the charge of the discrete ion. These approxima-
tions lead to electrostatics similar to those computed without
concomitant flux[23].

In summary, the presence of a discrete ion(either inside
the channel or just outside) leads to a redistribution of the
ionic concentrations in the surrounding baths, according to
Eqs. (6) and (7). These conditional concentrations, in turn,
create a modified force on the discrete ion, according to Eqs.
(4) and (5). We call the concentration-dependent component
of this force thereaction field force(RFF). Thus our formu-
lation accounts for the redistribution of the local bath con-
centrations near the entrance to the channel, due to the pres-
ence of the discrete ion inside it. Note that even when a
positive ion is inside the pore, we maintain the assumption
that neither a negative nor positive ion can enter the channel:
nonelectrical forces, e.g., Lennard-Jones, are assumed to pre-
vent entry of an additional ion into the channel.

III. NUMERICAL RESULTS

We present numerical results, corresponding to the solu-
tion of Eqs. (3)–(7) for two different cylindrical channel
models. First, we consider an uncharged channel, that is, an
ideal cylindrical hole in a dielectric wall, with lengthL
=25 Å and radiusr =2.5 Å. Then, we consider a negatively
charged channel, with a total charge of −e. The fixed charge
is spread along a ring ranging fromr =2.5 Å to r =4.5 Å and
spanning the whole channel. In both of these cases, we nu-
merically solve Eqs.(4)–(7), and present the mean force on a
positive ion as a function of its locationz on the channel
axis.

In Fig. 1, a plot of the force on a monovalent positive ion
as a function of location along the channel axis is shown for
different bath concentrations, for the uncharged channel
(left) and for the charged channel(right). All calculations are
given in units proportional tokBT, at room temperatureT
=300 K. The left graph shows that, for an uncharged chan-
nel, there is a strong repulsive force pulling an ion in the
channel outwards, towards the bath, from a region of low
dielectric coefficient to a region of high dielectric coefficient.
In the case of zero bath concentrations, this is the dielectric
boundary force(DBF) [35]. The bath concentration also acts
on the total force as best seen in Fig. 2, where the difference

FIG. 1. The electrostatic force on an ion in the
uncharged channel(left) and in the charged chan-
nel (right).
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of the force from the case of zero bath concentration is plot-
ted. The higher the bath concentrations, the larger the total
repulsive force driving the ion out of the channel. It is clear
from this figure that when the ion is outside the uncharged
channel—that is, whenuzu.12.5 Å—theeffect of the reac-
tion field is reversed. Then, the force on the charged ion has
an opposite sign but the absolute value of the force still
increases as concentration increases, essentially shielding the
dielectric boundary force near the entrance of the channel.

The corresponding force in a negatively charged channel
is shown in the right part of Fig. 1. In comparison to the
uncharged channel, the force on a positive ion is now greatly
reduced. As in the case of a noncharged channel, the force
depends on the bath concentrations, and the higher the bath
concentrations, the larger the repulsive force pushing an ion
in the channel outwards towards the baths.

We are interested in the study of the reaction field and its
dependence on bath concentrations, and so in Fig. 2(left) we
plot thedifferencebetween the total force at a bath concen-
tration C and the total force with zero bath concentrations.
Figure 2(left) shows these differences for various bath con-
centrations for the uncharged channel. Similar results(not
shown in the graph) occur in the charged channel as well. In
the center and rightmost plots of Fig. 2, the same differences
are shown for the uncharged and charged channels, respec-
tively (normalized by division by the square root of the dif-
ference in bath concentrationC). As seen from these graphs,
division by the square root of concentration approximately
aligns these differences between forces, at concentrations be-
low 1 M.

It seems that as in[23], the electrostatic forceF on an ion
inside or near the entrance of a narrow channel adopts a
simple form, when the applied voltage is zero,

Fsz,C,V = 0d < Fchszd + ÎCFRFszd,

whereFchszd is the total electrostatic force on an ion at lo-
cationz, in the case of zero bath concentrations, andFRFszd
is the unit-normalized reaction field force due to the presence
of mobile ions in the surrounding electrolyte baths.

The forceFchszd contains the contribution of the dielectric
boundary force and of the electrostatic interactions of the
mobile ion with the fixed charges of the protein. The reaction
field forceFRFszd contains the contribution of the bath con-
centrations to the total force. This reaction or blocking force
depends on the geometry and fixed charges of the protein and
of the lipid membrane, and on the concentration of ions in

the bath. A mathematical explanation for the observed square
root dependence of the reaction field force on concentration
is described in the Appendix, where a simpler problem is
analyzed analytically, that of a fixed charge inside an infinite
dielectric wall near an electrolyte bath.

The bath concentrations have a stronger effect on an un-
charged channel than on a charged channel(Fig. 3). The
differences, however, are not large, and both cases yield a
potential barrier slightly more than 1kBT for a 1 M bath
concentration in a channel with radius of 2.5 Å. Also shown
in this figure is the corresponding potential barrier for an
uncharged channel with radius of 4Å. As expected, the RFF
potential is now reduced, in this case by about 0.25kBT.

An additional potential barrier of 1kBT has a significant
effect on the single channel conductance because, from
Kramer’s theory, the escape rate over a potential barrier is
proportional toe−DE/kBT. Therefore, even a seemingly small
addition of 1kBT to the energy differenceDE leads to a
decrease of 1/e<0.37 in the transition rate over the barrier.
Effects of the order of 63% are highly significant when com-
paring different models of ion permeation. See Sec. IV for
further discussion.

Further numerical calculations of the total force, not pre-
sented here, show that in the presence of an additional exter-
nal voltage, the total force on an ion can be approximated,

Fsz,C,Vd < Fchszd + ÎCFRFszd + VFexszd, s8d

whereFexszd is the force due to the applied external voltage.
The formula shows that for small voltages, the effects of bath
concentrations areindependentof the applied voltage, be-
cause of the additivity of the force termsÎCFRFszd and
VFexszd.

IV. THE REACTION FIELD AND SINGLE CHANNEL
CONDUCTANCE

In the previous section, we computed the average force on
an ion inside a channel that can accommodate at most one
ion at a time, and we showed that the force on the ion is
(nearly) the sum of simple components; see the decomposi-
tion (8). We now use these results to compute the current
flowing through the channel.

For simplicity, we assume that the motion of the mobile
ions inside the channel and near its edge is approximately
one-dimensional along its axis, with an effective diffusion
coefficientD. Because of the close fit of ions in channels, a

FIG. 2. Left: The difference in electrostatic force from the case of pure water for bath concentrations of 100, 200, 500, and 1000 mM in
an uncharged channel. The larger the concentration, the stronger is the reaction field. Middle: same plots, scaled by the square root of
concentration. Right: same as middle figure, but for a charged channel.
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one-dimensional Nernst-Planck equation is likely to be a bet-
ter model of concentration than a three-dimensional Nernst-
Planck equation, with its artifactually large concentrations of
ions, e.g., at the membrane-channel boundaries where per-
manent charges are located. Then, the three-dimensional
Nernst-Planck equation(2) for the average concentration in-
side the channel can be reduced to the simpler one-
dimensional version

−
d

dz
Jszd =

d

dz
DFdc

dz
+ c

e

kT

df

dz
G = 0.

The solution to this equation, for a nondimensional channel
of unit length, is given by[3,40]

J = D
cs0deefs0d/kBT − cs1deefs1d/kBT

E
0

1

eefszd/kBTdz

, s9d

wherecs0d andcs1d are the concentration values at the edges
of the channel. As shown by Levitt[3], for a channel that can
accommodate at most one ion at a time and surrounded by
symmetric bath concentrationsC, the concentrations at the
edges of the channel can be approximated by

cs0d = cs1d =
C

1 + gC
, s10d

where

g = LAE
0

1

e−fsxdFefexs0d −
Hsxd
Hs1d

sefexs0d − efexs1ddGdx,

s11d

with fex the potential corresponding to the external field,L
the length of the channel,A its cross-sectional area, and

Hsxd =
L

DA
E

0

x

efssdds.

Assuming the force is given by Eq.(8), the corresponding
potential follows a similar decomposition,

fsz,C,Vd = fchszd + ÎCfRFszd + Vfexszd. s12d

Combining Eq.(12) with Eq. (9) gives that for small bath
concentrationsC,

E
0

1

expHefssd
kBT

Jds=E
0

1

expHe
fchssd + Vfexssd

kBT
J

3S1 +ÎC
efRFssd

kBT
Dds

= I0 + ÎCI1, s13d

where

I0 =E
0

1

eefchssd/kBTds, I1 =E
0

1 efRFssd
kBT

expSefchssd
kBT

Dds.

s14d

For small voltages and small concentrations, the functional
relation of current versus concentration takes the form

IsC,Vd = const3 V
C

1 + bÎC

1

1 + gC
, s15d

whereb= I1/ I0, andg is given by Eq.(11). This relation is
obviously different from the Michaelis-Menten formula,

IsC,Vd = const3 V
C

1 + gC
, s16d

typically derived for a single ion channel under the assump-
tion that barrier rates inside the channel are independent of
bath concentrations. Ifb!1 andg!1, there is no significant

FIG. 3. The reaction field potentialfRF corre-
sponding to a bath concentration of 1 M. From
top to bottom: charged channel, radius 2.5 Å; un-
charged channel, radius 2.5 Å; and uncharged
channel, radius 4 Å.
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difference between the two formulas for small concentra-
tions. Both predict a linear increase in conductance as a func-
tion of concentration. The differences between the two for-
mulas arise whenb is not small, as we analyze in the next
subsection.

Shielding and possible current-concentration curves

The effects of shielding on the possible current-
concentration curves are shown in the following example.
We assume that the potential of mean force inside and near
the channel has a decomposition like Eq.(12),

fszd = fchszd + aÎCfRFszd + Vz, s17d

where, in this formulation,a measures the strength of the
shielding and blocking. Different amounts of shielding cor-
respond to different values ofa and give rise to different
behaviors of the current as a function of concentration, and
thus of the conductance as a function of concentration. For
example, the reaction field in a wider channel is smaller than
in a narrower channel, thus leading to a smaller value ofa.

Specifically, for illustrative purposes we consider analytic
expressions for the channel potential and the reaction field
potential, of the form

fchszd = 4
kBT

e
expS−

sz− 0.5d2

0.1
D ,

fRFszd =
kBT

e
expS−

sz− 0.5d2

0.05
D , s18d

which can correspond to a slightly charged channel, for
which the combination of the dielectric boundary force and
the interactions with the fixed charges of the channel create a
moderate barrier 4kBT high, with an additional reaction field
barrier of 1kBT for a 1 M solution, similar to those com-
puted in Fig. 3. For a specific channel structure, of known or
assumed three-dimensional structure and charge distribution,
these potentials should be computed from the solution of the
relevant Poisson equations.

To compute the current-concentration curve, we insert
Eqs. (17) and (18) into the explicit formula(9) with cs0d
=cs1d given by Eq.(10) and with a small applied potential of
V=1 kBT/e<25 mV. For these graphs, we considered a
channel of lengthL=25 Å and cross-sectional areaA
=9p Å2. On the left side of Fig. 4, the potentialsfch andfRF
are plotted along the nondimensional channel axisz between
z=0 and z=1. The other panels of this figure showI-C
curves for three different values ofa. The top curves showJ
with cs0d=cs1d=C, while the bottom curves show the pre-
dicted flux with the single ion assumption, e.g., withcs0d,

cs1d given by Eq.(10). For a=0.1, as seen from the linear
top curve, shielding is negligible, so the current grows lin-
early with low concentration, and then bends following a
Michaelis-Menten formula. Fora=0.5, shielding is moder-
ate, and the current grows first linearly for small concentra-
tions but then like the square root of the concentration for
moderate concentrations. Finally, fora=1, shielding is a
first-order effect in the force acting on the ion inside the
channel. Fora=1, the current decreases at concentrations
around 1 M, because at these concentrations the electrostatic
energy required for an ion to leave the electrolyte solution
and enter the channel becomes very high. Note that this can
also be seen from the theoretical formula(15), since in this
case for large concentrations,I <1/ÎC.

In conclusion, our theory explains different conductance-
concentration behaviors, based on the effects of the reaction
field on an ion either inside or near the channel due to the
ions in the surrounding electrolytes.

V. SUMMARY AND DISCUSSION

The permeation of ions through a protein channel is a
complex multiscale process, which depends not only on the
atomistic details of the protein but also on the configurations
of the surrounding baths. Traditional approaches, whether
molecular-dynamics simulations or rate models, do not con-
sider the electrostatic effects of the bath ions on the perme-
ation process. Standard continuum formulations, such as the
Poisson-Nernst-Planck system of equations, do not ad-
equately describe the dielectric boundary force inside the
channel nor the finite size of the ions.

We present a different approach, a hybrid PNP theory that
couples adiscretedescription of the contents of the channel
with a continuumdescription of the surrounding baths. Our
main result is that for a single ion channel embedded in an
uncharged lipid membrane, the surrounding bath concentra-
tions create a reaction field whose strength scales with the
square root of the bath concentration. The reaction field force
(RFF) predicts a square root dependence of conductance on
concentration, even with single occupancy. The square root
dependence of shielding on concentration should not be sur-
prising, because similar dependences are well known, for
example in Onsager’s theory of conductance of electrolytes
and in the Debye-Hückel theory of ionic shielding[41,42].
We note that when the lipid membrane is charged, the reac-
tion field is quite different in nature and does not typically
scale as the square root of the concentration. An analysis of
this case will be published elsewhere[43].

Our results are qualitative, and not quantitative, as they
must be until we consider a specific protein channel. More-
over, some of our results are limited by the underlying as-

FIG. 4. The potentialsfch and fRF (leftmost
graph) and resulting current-concentration rela-
tions (in arbitrary units) for three different values
of a, the strength parameter of the reaction field
(right).
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sumptions. For example, our analysis is at the level of the
implicit solvent (primitive) model, in which solvent water
molecules are described as an effective dielectric coefficient.
In addition, we neglect(in the bath) the effects of the finite
size of ions. Incorporation of these finite-size effects in ho-
mogeneous solutions is a well studied problem, with well
established theories such as the mean spherical approxima-
tion and the hypernetted chain theory, to name just a few
[41,42,44–46]. Appropriate incorporation of similar theories
into the confined geometry near and inside a protein channel
remains an open research problem[47–51].

APPENDIX A: AN ION INSIDE A DIELECTRIC
MEMBRANE

In this section, we investigate the square root dependence
of the reaction field force on bath concentrations, using a
much simpler setting that allows mathematical analysis.

The three-dimensional spaceR3 is composed of two infi-
nite regions, a bath and a membrane, with dielectric coeffi-
cients«b and«m separated by they-z plane atx=0. A single
chargeq is located atx0=s−x0,0 ,0d inside the membrane,
while in the bath region there is a simple 1:1 electrolyte with
average concentrationr at infinity. Note that a similar prob-
lem, in which the particle is inside the domain occupied by
the electrolyte, rather than inside the dielectric wall, was
considered by Stillinger[52].

Let fsx ux0d describe the electric potential throughout
space and letpsx ux0d and nsx ux0d describe the conditional
positive and negative concentrations, given the presence of a
discrete positive ion of chargeq at x0. Thenf satisfies Pois-
son’s equation

= · f« = fg = − fesp − nd + qdsx − x0dg.

We consider an equilibrium mean-field approach, in which
the concentrationsp andn are the solutions of the Boltzmann
equation with the same potentialf,

psxd = re−ef/kBT, nsxd = reef/kBT.

We consider an ion far away from the interface, so the po-
tential f inside the bath is everywhere less than 1kBT/e. In
this case, linearization of the exponentials leads to the linear-
ized Poisson-Boltzmann equation,

= · f« = fg = − Fqdsx − x0d − 2
e2r

kT
fG .

In the two different regions, this equation is

Df = 5 k2f, x . 0

−
q

«0«m
dsx − x0d, x , 0,6 sA1d

where

k =Î 2e2r

«0«bkBT

is the reciprocal of the Debye length, and equalsÎr /3.1 Å
for «b=80, wherer is measured in units of molars(moles/

liter). We solve Eq.(A1) in cylindrical coordinates, because
there is no dependence on the angleu, but only on the coor-
dinates sx,rd. In the regionx,0, we write fsxd=f0sxd
+csxd, wherec satisfies a homogeneous Laplace equation,
and f0sxd is the Coulombic potential created by a point
chargeq located atx0 in a homogeneous region with uniform
dielectric coefficient«sxd=«m. Separation of variablescsxd
=XsxdRsrd gives

X9 = ± l2X andR9 +
R8

r
± l2R= 0. sA2d

The corresponding solutions of the modified Bessel equation
(A2) with a negative sign are linear combinations ofI0 and
K0, which are singular either atr =0 or r =`. Since c is
everywhere finite and decays at infinity, all solutions with a
negative sign are excluded. In addition, for the positive sign,
only one solution of the corresponding Bessel equation,
namely,J0srd, is admissible. The other independent solution,
Y0srd, is singular atr =0.

The general solution in this region can then be written as

fsx,rd = f0sx,rd +E
0

`

AsldJ0slrdelxdl, sA3d

whereAsld is yet to be determined.
Now consider the homogeneous solution for the region

x.0. Here separation of variables leads to

X9 = l2X, R9 +
R8

r
+ sl2 − k2dR= 0. sA4d

Similar analysis shows thatl2ùk2, and therefore the general
solution forx.0 is

csx,rd =E
0

`

BsldJ0slrde−Îl2+k2xdl,

whereBsld is another yet undetermined function.

1. Equal dielectric coefficients

First consider the case of equal dielectric coefficients on
both sides of the interface, that is,«b=«m. In this case, the
two constraints on the yet undetermined functionsAsld and
Bsld are continuity of the potential and continuity of its nor-
mal derivative atx=0. These two conditions are

f0s0,rd +E
0

`

AsldJ0slrddl =E
0

`

BsldJ0slrddl,

]f0s0,rd
]x

+E
0

`

lAsldJ0slrddl

= −E
0

`

Îl2 + k2BsldJ0slrddl.

Inserting the expression
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f0sx,rd =
1

4p«m«0

q
Îsx + x0d2 + r2

and rearranging terms gives

E
0

`

l
Asld − Bsld

l
J0slrddl = −

1

4p«m«0

q

Îx0
2 + r2

,

E
0

`

lFAsld +
Îl2 + k2

l
BsldGJ0slrddl =

1

4p«m«0

qx0

sx0
2 + r2d3/2.

Using known Hankel transforms, we obtain the linear system
of equations

Asld − Bsld = −
q

4p«0«m
e−lx0,

Asld +
Îl2 + k2

l
Bsld =

q

4p«0«m
e−lx0,

whose solution is

Asld =
q

4p«0«m
Fl − Îl2 + k2

l + Îl2 + k2Ge−lx0. sA5d

Inserting Eq.(A5) into Eq. (A3), we find that the reaction
field force on the discrete charge atx0 is given by

FsC,x0d = U − q
]

]xFE0

`

AsldJ0slrdelxdlGU
sx,rd=s−x0,0d

= −
q2

4p«0«m
E

0

`

lF 2l

l + Îl2 + k2
− 1Ge−2lx0dl.

sA6d

To study the effect of bath concentrations, present inside the
coefficientk, we change variablesl=km to obtain

FsC,x0d =
q2k2

4p«0«m
E

0

`

m
Î1 + m2 − m

Î1 + m2 + m
e−2kx0mdm. sA7d

This is a Laplace transform type integral, for which we have
not been able to find a closed-form solution. Asymptotic
analysis shows that for largekx0, the integral is approxi-
mately

FsC,x0d =
q2k2

4p«0«m

1

s2x0d2 ,

so that for either very large concentrations or very large dis-
tances from the wall, the reaction field increases linearly as a
function of concentration. The other extreme—whenx0 is
very close to the wall—is inconsistent with the linearization
of the nonlinear PB equation.

In our biological application, we are interested in dis-
tances which are of the order of a few angstroms, and con-
centrations that range between 50 mM and 2 M. In this
range,kx0=Os1d. Expansion of Eq.(A7) in powers ofkx0

−1 gives

FsC,x0d =
q2

4p«0«bs2x0d2

3f0.275 + 0.237skx0 − 1dg + Oskx0 − 1d2,

with similar expansions near other values ofkx0. Becausek
scales like the square root of the concentration, we obtain a
square root dependence of the force on concentration.

2. Different dielectric coefficients

In the case«mÞ«b, the continuity equations are

Asld − Bsld = −
q

4p«0«m
e−lx0,

«mAsld + «b

Îl2 + k2

l
Bsld = «m

q

4p«0«m
e−lx0.

Solving for Asld gives

Asld =
q

4p«m«0

l − «r
Îl2 + k2

l + «r
Îl2 + k2

e−lx0,

where «r =«b/«m. Therefore, the force at the fixed charge
location is

FIG. 5. The electrostatic force on an ion in-
side a dielectric wall as a function of bath con-
centrationC, at a distance ofx0=3 Å from the
wall (left), and as a function of the distancex0,
for constant bath concentration ofC=0.5 M
(right).

SATURATION OF CONDUCTANCE IN SINGLE ION… PHYSICAL REVIEW E 70, 051912(2004)

051912-9



FsC,x0d =
q2

4p«m«0
E

0

`

l
l2s«r

2 − 1d + «r
2k2

sl + «r
Îl2 + k2d2

e−2lx0dl.

Note that when there are no bath concentrations,C=0, that is
k=0, we obtain that

Fs0,x0d =
q2

4p«m«0
E

0

` «r − 1

«r + 1
le−2lx0dl

=
q2

4p«m«0

«r − 1

«r + 1

1

s2x0d2 ,

which is the familiar expression for the dielectric boundary
force on a particle near a dielectric wall.

Because we are interested in the effects of the bath con-
centrations on the overall force, we consider the difference
dFsC,x0d=FsC,x0d−Fs0,x0d, which removes the purely di-

electric component due only to the different dielectric coef-
ficients of the two regions. We have then

dFsC,x0d =
q2k2

4p«0«m

2«r

«r + 1
E

0

`

m
Îm2 + 1 −m

«r
Îm2 + 1 +m

e−2kx0mdm,

which indeed reduces to Eq.(A6) when«r =1. Similar analy-
sis shows that this force also increases as the square root of
the concentration whenkx0=Os1d.

In Fig. 5, the force as a function of bath concentrations is
plotted for a charged particle at a distance of 3 Å from the
wall (left) for two cases, one with«b=«m=80 and the other
with «m=5. Note that in the case of a dielectric wall, the
force is stronger than in its absence, because the force bath
ions exert on the fixed ion is larger in this case. Moreover,
the shielding force decreases monotonically as a function of
«m, for fixed «b. Specifically, the shielding force more than
doubles when«m is reduced from 80 to 5.
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