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Saturation of conductance in single ion channels: The blocking effect of the near reaction field
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The ionic current flowing through a protein channel in the membrane of a biological cell depends on the
concentration of the permeant ion, as well as on many other variables. As the concentration increases, the rate
of arrival of bath ions to the channel’'s entrance increases, and typically so does the net current. This concen-
tration dependence is part of traditional diffusion and rate models that predict Michaelis-Menten current-
concentration relations for a single ion channel. Such models, however, neglect other effects of bath concen-
trations on the net current. The net current depends not only on the entrance rate of ions into the channel, but
also on forces acting on ions inside the channel. These forces, in turn, depend not only on the applied potential
and charge distribution of the channel, but also on the long-range Coulombic interactions with the surrounding
bath ions. In this paper, we study the effects of bath concentrations on the average force on an ion in a single
ion channel. We show that the force of the reaction field on a discrete ion inside a channel embedded in an
uncharged lipid membrane contains a blockisgielding term that is proportional to the square root of the
ionic bath concentration. We then show that different blocking strengths yield different behavior of the current-
concentration and conductance-concentration curves. Our theory shows that at low concentrations, when the
blocking force is weak, conductance grows linearly with concentration, as in traditional models, e.g.,
Michaelis-Menten formulations. As the concentration increases to a range of moderate shielding, conductance
grows as the square root of concentration, whereas at high concentrations, with high shielding, conductance
may actually decrease with increasing concentrations: the conductance-concentration curve can invert. There-
fore, electrostatic interactions between bath ions and the single ion inside the channel can explain the different
regimes of conductance-concentration relations observed in experiments.
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I. INTRODUCTION dict a Michaelis-Menten dependence of the current and con-
lonic permeation through protein channels embedded i uctance on the concentration, when the arrival rate of ions

otherwise impermeable cell membranes is one of the modfom bath to channel is linearly proportional to concentra-
important processes in lifd], governing an enormous range tion. I-C curves are linear for small bath concentrations, and
of biological function in health and diseag2]. The ionic & Saturation of the conductance occurs for high concentra-
current flowing through an open protein channel depends of{onS in these modelgL, 3. - .
many factors, reflecting the thermal fluctuations, the concen-  SOMe channels indeed exhibit conductance-concentration
tration gradient, the electrostatic forces, the frictional retard!€lations that resemble the Michaelis-Menten law; others,
ing force on ions in the channel, and the physical force{oweve_r, e>_<h|b|tavar|ety of nonll_near behaviors tha_t deviate
linking those ions with their environment. These factors inifoM this simple formula. Experiments show that in some
turn depend on the geometry and charge distribution of th&hannels, conductance depends on sheare rootof the
channel, the friction within the channel, and obviously, onconcentration, even at physiological concentratipiis1Q,

the bath concentrations on both sides of the channel. while in other channels conductancer currenj can de-
One of the roles of ionic concentration is readily under-Sreaseas concentrations increagel,12. The latter case,

. L owever, typically occurs well beyond physiological concen-
stood. As thg surroundln_g bath concentration is increased, ations. The inward rectifying Kchannel§13-15 form an
does the arrival rate of ions to the entrance of the channe

. : . ; : “Important family of channels for which conductance in-
thus increasing the net current. Since ions in the surroundmgreases as the square root of concentration. They also show a

electrolyte bath diffuse to the channel's mouth, the arrivalyecrease in conductance as external concentrations are de-
rate de_pends Imequy on the bath concentrations, at least in @eased in asymmetrical casgs6—18. Multisite multi-ion
mean-field approximatiof4,5)]. o rate models are typically used to explain both the square root
Standard rate mode[d] assume rate constants inside thegependence of conductance on concentration, in some chan-
channel that are independent of bath concentrations and prgg|s, and the decrease in conductance at high concentrations,
in others[14,19, although these models have serious limita-
tions (see, for example20,27).

*Email address: boaz.nadler@yale.edu Such conductance-concentration curves suggest that bath
"Email address: schuss@post.tau.ac.il concentrations do more than set the arrival rate of ions to the
*Email address: uh@alumni.caltech.edu channel. Indeed, the net current through the channel depends
SEmail address: beisenbe@rush.edu not only on the arrival rate, but also on the force acting on
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the ions when they are in the channel pore. These forces, idassical literature of rate theories of single ion channels that
turn, depend not only on the applied potential and on thés based on detailed electrostatic calculations, including both
channel charge distribution, but also on the bath concentrahe dielectric boundary force and the electrostatic effects of
tions, through the long-range Coulombic interactions withthe baths.
the bath ions. We call the component of the force on an ion The study of the permeation characteristics of a single ion
due to the surrounding bath concentrationsréwction field  channel has a long history. Early approaches were limited to
force (RFF). rate modeld1], while more modern ones were based on the
It seems that the RFF inside the channel has been oveassumption of diffusive motion of the ion inside the channel
looked in recent literature, in contrast to earlier treatments 0f3,36—38. The main goal of these modeling approaches was
[22,23. Reaction field effects are neglected in traditional rateto derive a Nernst-Planck equation and boundary conditions
models, because these models ass(imbopping rates in- that take into account the restriction of the single-ion chan-
side the channel that are independent of concentrations, amel. All of these models, however, assumed that the contri-
(i) entrance rates into the channel that scale linearly wittbution of the surrounding bath ions is only through the ar-
bath concentrations. The effects of bath concentrations on théval rate to the channel. The electrostatic effects of bath ions
forces inside the channel have not been studied by detailedere not considered in these models.
molecular-dynamicéMD) simulations because these simula-  In this paper, we study the electrostatic effects of bath
tions typically include only one or two ions inside the poreions on the permeating ion inside the channel. We use the
and few if any ions in the small simulated volume of the implicit solvent (“primitive”) model of ionic solutions in
surrounding bathf24-27. Due to their computational com- which the solvent water molecules are not modeled explic-
plexity, MD simulations are not an adequate tool for theitly, but rather are described electrostatically by an effective
study of these effects, at least in the foreseeable future. Mielectric coefficient, and are the source of friction and noise
study of these effects by Brownian dynamics simulationsfor diffusion. Following Jordaret al. [23], we express the
while possibly feasible, would require enormous computessingle ion channel assumption, by combining a discrete de-
resources, especially in the case of low concentrations, angtription of the ion inside the channel with a continuum de-
would likely remain infeasible in the case of nonhomoge-scription of the surrounding bath ions. Specifically, we as-
neous mixtures that contain trace concentrations, such assame that th€conditiona) concentrations in the two baths,
mixture of 100 mM Na-Cl and I§ M C&*. Many, even given the presence of a discrete ion either inside the channel
most biological systems, use trace concentrations of solutes near its entrance, are described by the solution of the
(e.g., cofactors such as €aas controllers of important bio- stationary Poisson-Boltzmann equati@m the bathg in the
logical function [28] and so trace concentrations must bepresence of the discrete idin or near the channgl The
present, and well estimated, if computations are to have biaaovelty in our approach is the coupling of a discrete ion in
logical relevance. Thus, a theoretical study of these effectthe channel with a continuum description of the baths, in
with continuum models is needed. order to compute currents with a Nernst-Planck equation.
Continuum-type models, mainly the Poisson-Nernst- Our main result is that the force on a discrete ion inside
Planck (PNP) system of equations, have been used to defor neal the channel can be decomposed into almost additive
scribe ionic permeation through protein channels since thendependent terms. These force terms @yehe interaction
early 1990s. However, as was obvious and stated from thforce with the fixed charges of the chan€&CF denotes
beginning, and has become explicit in recent years both ifixed charge forcg (ii) the dielectric boundary forc¢dBF),
simulations[29-33 and theory[33], standard PNP models (iii) the membrane potential for¢®PF) due to the applied
provide an inadequate description of currents and concentrgotential (often assumed to be a constant fjeldnd finally
tions inside narrow pores, because they fail to capture thév) the reaction field forcéRFF due to the bath concentra-
force components related to the finite size of the mobile iongions.
and to their discretérather than continuuprcharge distribu- By definition, the first three forces aiedependentf bath
tion. concentrations. Our calculations show that for a few model
In previous work[33,34], we showed that the concentra- channels embedded in neutral lipid membranes, the RFF
tion of each ionic species, inside and outside the channedcales approximately as ttsguare rootof bath concentra-
pore, satisfies a Nernst-Planck-type equation, assuming iori®ns, a property noticed b2 3]. A mathematical explanation
are interacting Brownian particles. The average force in thdor this square root dependence is provided in the Appendix.
Nernst-Planck equation depends on conditional charge dern addition, we show that the RFF decreases as the radius of
sities and also explicitly includes the dielectric boundarythe channel increases.
force[35]. Thus, the average force includes the finite size of Incorporation of these results into the Nernst-Planck
the ions, and also takes into account the discrete nature of theguation shows that different strengths of the reaction field
ion’s charge. force can lead to different blocking effects and different
The importance of the dielectric boundary force in narrowcurrent-concentration relations. A weak blocking effect and
channels is shown in much recent wgek,29,32,3h These weak reaction field lead to a linear current-concentration re-
papers, however, have not studied the effects of the sutation at low concentrations, as in the Michaelis-Menten for-
rounding bath concentrations, e.g., the RFF. In this paper, wmula, while a moderate blocking effect and reaction field
consider the effect of bath concentrations on the permeatiolead to a square root dependence of conductance on concen-
characteristics of a protein channel that can contain at mostation. A strong blocking and reaction field may even lead to
one positive ion at a time. Thus, we make a connection to tha decrease in the current as concentrations increase. In this
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way, our theory explains the observed square root depenens of speciex, described byp(x), satisfies the Nernst-
dence of current on concentration. The square root deperPlanck equation

dence does not necessarily imply more than one ion inside f_c( ) )

the channel at any given time nor specific binding sites in- - _ o ¢\ = v . X kT

side the channel. Of course, other explanations, such as mul-0 =V r=V mCy°(x) peX) mCy°(x) Ve |
tisite multi-ion rate models, are possible as well. )

where m°¢ is the effective mass of the iomf(x) is its

(location-dependenfriction coefficient, and®(x) is the av-
erage force acting on a discratdype ion atx. This average

We consider the concentration cell used to study transpoferce is the sum of three terms,
and membranes in electrochemistry and biophysics. Two — - -
electrolyte baths, here with equal concentratiGnand rela- FE0) =500 +f5ex) + Fe (), 3
tive dielectric coefficient,=80, are separated by an imper- where the first term describes the dielectric boundary force
meable lipid membrane of dielectric coefficien{=2. Span-  [35], the second is the average short-range force, and the
ning this membrane is a single protein channel that allowshird term is the average electrostatic force. The average
ions to go through its pore from one bath to the other. Foklectrostatic force accounts for all Coulombic interactions of
simplicity, we assume that only positive ions can enter thishe jon with the other fixed, mobile, and induced charges in
pore, and that the pore can accommodate at most one ion @fe system, excluding the charges induced by the ion itself,
a time. which are taken into account by the dielectric boundary
In addition, we consider only the case of a 1-1 simpleforce.
monovalent electrolyte bathing solution, though our analysis The time-averaged electrostatic force orm #n at x is
can be easily generalized to more complex electrolytes. Ougiven by
aim is to compute the ionic current through this channel, _
given its spatial structure, its permanent charge distribution, gx)= -qV ¢C(Y\X)|Fx, 4
theF?)FI)Igcﬁggv?gggG\}A’I:r;?;rr,:ev\ﬁtuhrrguC:r:gge\lljiit%%%gefg??ﬂgngvhere oc(y|x) is the mean(conditiona) electrostatic poten-

motion of all mobile ions in a finite system, combined with agi:ua':itoyﬁ %}Vﬁlfgnggo%fafgigiiﬁtex'ug?;gnpmem'al is the
continuum description of the solvent water molecules. We q

Il. THE REACTION FIELD AND BATH
CONCENTRATIONS

thus assume that on sufficiently coarse length and time e
scales, the joint motion of all X2 mobile ions can be de- V-[le(y)V d>c(y|X)]=—8—[pch(y) +2_ Zpjcy1¥) |, (5)
scribed by a system of coupled Langevin equations, with 0 !
independent noise sources, where p.(y) is the fixed charge distribution of the channel
£p 2P kaT a_nd p”C(y|.x) is the cpnditional density of speciegj aty,
KP4 PP)XP = —L 4 | B GP (=12, N, given an ion of species at x. For the case of a simple 1-1
J P P mP ! monovalent solution and a positive ionxatEqg. (5) becomes
e
n n V-ley)V X)|=-— + X) = X)],
0+ 0K = % . /2«y”(r>1<1kn)|<BTWE k=12, .. N). [e(y) V ¢p(yIx)] 8O[pch(y) Peip(YIX) = prip(y[x)]

0 yvherepp|p and Prjp @re _the cqnditional plolsiti\_/e and negative
ion concentration profiles, given a positive ionxat

wherexP andx} describe the locations of ttjéh positive and The net current flowing through the channel can be com-

kth negative ions, respectively, whilg andf} are the forces Pputed from the solution of Eq2). Assuming the channel has

acting on them. In addition)® describes the location- @ nharrow, approximately cylindrical pore, whose axis is

dependent friction coefficient of ions of specie¢c=p,n),  aligned with thez axis, the net electric current is simply the

m® is their effective massy? andwj are Gaussian noiselg; ~ Integral over any cross section in thg plane of

is Boltzmann’s coefficient, andl is the temperature. In this J,=e(IP-J0),

formulation, the water molecules are not represented explic-

itly. Rather, they are the source of friction and noise, and alssvhereJ; is the z component of the flux vectal® of species

determine the effective possibly location-dependent dielecC-

tric coefficient. As described if33,34, we assume that the ~ Equation(2), however, cannot be solved unless a specific

system is connected to an external control mechanism th&€losed or computationaform of the conditional densities

maintains a stationary state with constant average concentragc(y|X) is known. As shown ir{33], standard PNP theory

tions C in the left and right baths, respectively, and a con-corresponds to the approximation

stant average current flowing through the pore, due to a con- picyX) = pi(y).

stant applied voltag¥ between the baths. Jle !
In a previous papef33], we showed that under these As mentioned in the Introduction, standard PNP neglects

assumptions, the steady-state time-averaged concentrationafth the dielectric boundary force and the short-range forces

051912-3



NADLER et al. PHYSICAL REVIEW E 70, 051912(2004

Uncharged Channel Charged Channel
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FIG. 1. The electrostatic force on an ion in the
uncharged channéleft) and in the charged chan-
nel (right).
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in Eqg. (3). These approximations neglect the finite size of the 1

ions, and more importantly in our case, neglect the fact that, V - [£(X) V ¢(y[x)] = - ;[epch(x) + €ppip(YIX) = epnjp(ylx)
by assumption, the channel can accommodate at most one 0

ion at a time. As shown in theory and in simulations, both of +qaly = x)], (7)

these approximations of standard PNP are oversimpliﬁca\;\lhereq is the charge of the discrete ion. These approxima-

tions that lead to the lO.SS of Important properties of NArroW;,ns lead to electrostatics similar to those computed without
channels embedded in low dielectric lipid membranes

[33.29-31,27,3F concomitant flux23].

Here we adopt a different roximation for th ndi- In summary, the presence of a discrete {either inside
__nere, we adopt a difierent approximation for th€se€ condiy, e opapnel or just outsigldéeads to a redistribution of the
tional concentrations, which retains the advantage of a co

i d inti hile taking int t th " Nonic concentrations in the surrounding baths, according to
'?uum. (qur|p 'OR’ w Ile axing Itr'] 0 alcc?ﬁ.n € proper I(‘;SEqs.(G) and (7). These conditional concentrations, in turn,
of a singie-ion channe’ assumption. In this paper, We 0€g o410 5 modified force on the discrete ion, according to Egs.

scribe the conditional bath concentrations at a continuu 4) and(5). We call the concentration-dependent component
level by the steady-state Poisson-Boltzmann equation, in th f this force thereaction field forc RFF). Thus our formu-

presence of a discrete ion at The channel is forced to be lation accounts for the redistribution of the local bath con-

singly occupied by no-flux boundary conditions at the tWocentrations near the entrance to the channel, due to the pres-

entrances to the channel, on the left and right edges Of. itl?*nce of the discrete ion inside it. Note that even when a

lBositive ion is inside the pore, we maintain the assumption

éi.z\évgn%lssohg;fléie :?g?gegfotfhiincso\r/reerlaté?ggg{g?ﬁeo;hg?:ﬁ;tfat neither a negative nor positive ion can enter the channel:
9 y 'onelectrical forces, e.g., Lennard-Jones, are assumed to pre-

We impose no flux boundary conditions both at the surfac o o

of a spphere of radius 1.5 A ground the center of the ion an?fent entry of an additional ion into the channel.

at the edges of the channel, just after an ion has exited the

pore, thus effectively assuming that no other ion has yet IIl. NUMERICAL RESULTS

entered the channel. In essence, we have a three-site model,\ve present numerical results, corresponding to the solu-

with sites coupled by electrostatics and the one ion assumRin of Eqs. (3)«(7) for two different cylindrical channel
tion. o ) ) . . models. First, we consider an uncharged channel, that is, an
This approximation retains the notion of a single-ionjgea cylindrical hole in a dielectric wall, with length
channel, but neglects both the finite size of ions in the bath-25 A and radiug=2.5 A. Then, we consider a negatively
away from the channel, and the dielectric boundary forcecharged channel, with a total charge & The fixed charge
acting on those bath ions. As shown[85,39, the dielectric s spread along a ring ranging frons 2.5 A tor=4.5 A and
boundary forc&DBF) on a single ion in the bath is relatively spanning the whole channel. In both of these cases, we nu-

exponentially with distance from the dielectric wall, rather yositive jon as a function of its location on the channel

than the long-range inverse square Coulomb law. We theregyis.

centrations outside the channel pore, given a positive i0Rg 4 function of location along the channel axis is shown for
inside the channel at location follow a Poisson-Boltzmann  gitferent bath concentrations, for the uncharged channel
(PB) distribution, (lefty and for the charged channgight). All calculations are
given in units proportional t&kgT, at room temperaturd
paplyX) = C exp{— e¢(y|x)}, pupyX) = C exp{M} =300 K. The left graph shows that, for an uncharged chan-
KT KT nel, there is a strong repulsive force pulling an ion in the
(6)  channel outwards, towards the bath, from a region of low
dielectric coefficient to a region of high dielectric coefficient.
The conditional potentiad(y|x)—that depends on both the In the case of zero bath concentrations, this is the dielectric
bath ions and the discrete ion inside the channel—is the sddoundary forcd DBF) [35]. The bath concentration also acts
lution of the Poisson equation, on the total force as best seen in Fig. 2, where the difference
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Force Difference from 0 mM, V=0 Square Root Dependence Charged Channel

10

0
z(A)

FIG. 2. Left: The difference in electrostatic force from the case of pure water for bath concentrations of 100, 200, 500, and 1000 mM in
an uncharged channel. The larger the concentration, the stronger is the reaction field. Middle: same plots, scaled by the square root of
concentration. Right: same as middle figure, but for a charged channel.

of the force from the case of zero bath concentration is plotthe bath. A mathematical explanation for the observed square
ted. The higher the bath concentrations, the larger the totabot dependence of the reaction field force on concentration
repulsive force driving the ion out of the channel. It is clearis described in the Appendix, where a simpler problem is
from this figure that when the ion is outside the unchargedinalyzed analytically, that of a fixed charge inside an infinite
channel—that is, whetg|>12.5 A—theeffect of the reac- dielectric wall near an electrolyte bath.
tion field is reversedThen, the force on the charged ion has The bath concentrations have a stronger effect on an un-
an opposite sign but the absolute value of the force stilcharged channel than on a charged charRéd. 3). The
increases as concentration increases, essentially shielding tte#ferences, however, are not large, and both cases vyield a
dielectric boundary force near the entrance of the channel.potential barrier slightly more than KsT for a 1 M bath

The corresponding force in a negatively charged channetoncentration in a channel with radius of 2.5 A. Also shown
is shown in the right part of Fig. 1. In comparison to thein this figure is the corresponding potential barrier for an
uncharged channel, the force on a positive ion is now greatlyincharged channel with radius of 4A. As expected, the RFF
reduced. As in the case of a noncharged channel, the forgmtential is now reduced, in this case by about &zZb
depends on the bath concentrations, and the higher the bath An additional potential barrier of BT has a significant
concentrations, the larger the repulsive force pushing an ioeffect on the single channel conductance because, from
in the channel outwards towards the baths. Kramer’s theory, the escape rate over a potential barrier is

We are interested in the study of the reaction field and itgroportional toe™*FsT. Therefore, even a seemingly small
dependence on bath concentrations, and so in Higf@ we  addition of 1kgT to the energy differenc@E leads to a
plot the differencebetween the total force at a bath concen-decrease of 18~ 0.37 in the transition rate over the barrier.
tration C and the total force with zero bath concentrations.Effects of the order of 63% are highly significant when com-
Figure 2(left) shows these differences for various bath con-paring different models of ion permeation. See Sec. IV for
centrations for the uncharged channel. Similar resgits  further discussion.
shown in the graphoccur in the charged channel as well. In  Further numerical calculations of the total force, not pre-
the center and rightmost plots of Fig. 2, the same differencesented here, show that in the presence of an additional exter-
are shown for the uncharged and charged channels, respeatal voltage, the total force on an ion can be approximated,
tively (normalized by division by the square root of the dif- —
ference in bath concentratid®). As seen from these graphs, F(z,C,V) = Fo(2) + VCFre(2) + VFe((2), (8

division by the square root of concentration approximatelyyhereF,,(z) is the force due to the applied external voltage.
aligns these differences between forces, at concentrations bene formula shows that for small voltages, the effects of bath

low 1 M. concentrations ar@éndependenof the applied voltage, be-

. [t seems that as if23], the electrostatic forcé on an ion cause of the additivity of the force terrméEFRF(z) and
inside or near the entrance of a narrow channel adopts OF (2
ex(2).

simple form, when the applied voltage is zero,

F(z,C,V=0) = F(2) + VCFge(2), IV. THE REACTION FIELD AND SINGLE CHANNEL

whereF (2 is the total electrostatic force on an ion at lo- CONDUCTANCE

cationz, in the case of zero bath concentrations, &pg(2) In the previous section, we computed the average force on
is the unit-normalized reaction field force due to the presencean ion inside a channel that can accommodate at most one
of mobile ions in the surrounding electrolyte baths. ion at a time, and we showed that the force on the ion is
The forceF (2) contains the contribution of the dielectric (nearly) the sum of simple components; see the decomposi-
boundary force and of the electrostatic interactions of theion (8). We now use these results to compute the current
mobile ion with the fixed charges of the protein. The reactionflowing through the channel.
field force Fge(2) contains the contribution of the bath con-  For simplicity, we assume that the motion of the mobile
centrations to the total force. This reaction or blocking forceions inside the channel and near its edge is approximately
depends on the geometry and fixed charges of the protein armhe-dimensional along its axis, with an effective diffusion
of the lipid membrane, and on the concentration of ions incoefficientD. Because of the close fit of ions in channels, a
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one-dimensional Nernst-Planck equation is likely to be a bet- x #9
ter model of concentration than a three-dimensional Nernst- HX) = — [ e”¥ds.
0

Planck equation, with its artifactually large concentrations of
ions, e.g., at the membrane-channel boundaries \_/vhere_ per- Assuming the force is given by E¢B), the corresponding
manent charges are located. Then, the three-dimensiongbtential follows a similar decomposition,

Nernst-Planck equatiof?) for the average concentration in-

side the channel can be reduced to the simpler one- #(2,C,V) = ¢e(2) + VChre(2) + Vhei(2). (12
dimensional version Combining Eq.(12) with Eq. (9) gives that for small bath
concentration<,
__J( )__ dc+ e d¢ —0
dz" kT dz J ' p{eqs(s)} ds= J p{ ¢ch(s)+v¢ex(s)}
The solution to this equation, for a nondimensional channel 0
of unit length, is given by3,4
uni gtn, 1s giv Y 3,40 <1+C¢;>(RF())dS
C(O) ee</>(0)/kBT _ C( 1) eeqS(l)/kBT BT
= 1 ' (9) = |o+ \”Ell, (13)
f eez/)(z)/kBTdZ
o where
1 1
wherec(0) andc(1) are the concentration values at the edges |, = f e*ten 9T |, = f edre(S) exp( eer(S) )ds
of the channel. As shown by Levii8], for a channel that can 0 0 keT
accommodate at most one ion at a time and surrounded by (14)
symmetric bath concentratior, the concentrations at the ) _
edges of the channel can be approximated by For small voltages and small concentrations, the functional
relation of current versus concentration takes the form
o0 = ol =, (10 CV)= c__1
,V) = constx V = , 15)
1+5C (CV) PYNEERYS (

where

where B=14/1y, andvy is given by Eq.(11). This relation is
obviously different from the Michaelis-Menten formula,

1
vy=LA f e‘d’(X{e‘f’e%") - M(eaﬁex(m - e?edD) |dx
0 H(1)

I(C,V) =constx V c (16)
) - 1+‘yca
typically derived for a single ion channel under the assump-
with ¢,y the potential corresponding to the external fidld, tion that barrier rates inside the channel are independent of

the length of the channeA its cross-sectional area, and bath concentrations. <1 andy<1, there is no significant

(11)
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Potentials ¢eh and ¢RF o=0.1 =05
3 0.3 T 0:A5 e B FIG. 4. The potentialg.,, and ¢re (leftmost

Y] e o 0ffees Ao graph and resulting current-concentration rela-
01 i ; tions (in arbitrary unitg for three different values
A | EEERSyS i 0'05 ....... S . .

: : of «, the strength parameter of the reaction field

% 2 % 2 0 2 4 (right).
C (Molar) C (Molar) C (Molar)

difference between the two formulas for small concentrac(1) given by Eq.(10). For «=0.1, as seen from the linear
tions. Both predict a linear increase in conductance as a funtep curve, shielding is negligible, so the current grows lin-
tion of concentration. The differences between the two forearly with low concentration, and then bends following a
mulas arise wherB is not small, as we analyze in the next Michaelis-Menten formula. Fow=0.5, shielding is moder-
subsection. ate, and the current grows first linearly for small concentra-
tions but then like the square root of the concentration for
moderate concentrations. Finally, far=1, shielding is a
first-order effect in the force acting on the ion inside the
The effects of shielding on the possible current-channel. Fora=1, the current decreases at concentrations
concentration curves are shown in the following examplearound 1 M, because at these concentrations the electrostatic
We assume that the potential of mean force inside and ne&nergy required for an ion to leave the electrolyte solution

Shielding and possible current-concentration curves

the channel has a decomposition like EtR), and enter the channel becomes very high. Note that this can
— also be seen from the theoretical formyi®), since in this
$(2) = den(2) + aNCehre(2) +Vz, (17)  case for large concentratiorisy 1/1C.

where, in this formulatione measures the strength of the N conclusion, our theory explains different conductance-
shielding and blocking. Different amounts of shielding cor- concentration behaviors, based on the effects of the reaction
respond to different values aof and give rise to different f|eld on an ion elthe_r inside or near the channel due to the
behaviors of the current as a function of concentration, anéPnS in the surrounding electrolytes.
thus of the conductance as a function of concentration. For
example, the reaction field in a wider channel is smaller than
in a narrower channel, thus leading to a smaller value.of
Specifically, for illustrative purposes we consider analytic The permeation of ions through a protein channel is a
expressions for the channel potential and the reaction fieldomplex multiscale process, which depends not only on the

V. SUMMARY AND DISCUSSION

potential, of the form atomistic details of the protein but also on the configurations
K 5 of the surrounding baths. Traditional approaches, whether

den(2) = 4LT expl - (Z_—05)> molecular-dynamics simulations or rate models, do not con-

€ 01 sider the electrostatic effects of the bath ions on the perme-

ation process. Standard continuum formulations, such as the
keT (z-0.5? Poisson-Nernst-Planck system of equations, do not ad-
¢RF(Z):? ex _W> (18)  equately describe the dielectric boundary force inside the
channel nor the finite size of the ions.
which can correspond to a slightly charged channel, for e present a different approach, a hybrid PNP theory that
which the combination of the dielectric boundary force andcouples adiscretedescription of the contents of the channel
the interactions with the fixed charges of the channel create @ith a continuumdescription of the surrounding baths. Our
moderate barrier #gT high, with an additional reaction field main result is that for a single ion channel embedded in an
barrier of 1kgT for a 1 M solution, similar to those com- uncharged lipid membrane, the surrounding bath concentra-
puted in Fig. 3. For a specific channel structure, of known oftions create a reaction field whose strength scales with the
assumed three-dimensional structure and charge distributiogquare root of the bath concentration. The reaction field force
these potentials should be computed from the solution of theRFF) predicts a square root dependence of conductance on
relevant Poisson equations. concentration, even with single occupancy. The square root
To compute the current-concentration curve, we insertlependence of shielding on concentration should not be sur-
Egs. (17) and (18) into the explicit formula(9) with ¢(0)  prising, because similar dependences are well known, for
=c(1) given by Eq.(10) and with a small applied potential of example in Onsager’s theory of conductance of electrolytes
V=1kgT/e=25mV. For these graphs, we considered aand in the Debye-Hiickel theory of ionic shieldifgl,42.
channel of lengthL=25A and cross-sectional areA  We note that when the lipid membrane is charged, the reac-
=97 A2 On the left side of Fig. 4, the potentiatg, and¢re  tion field is quite different in nature and does not typically
are plotted along the nondimensional channel atistween scale as the square root of the concentration. An analysis of
z=0 and z=1. The other panels of this figure showC  this case will be published elsewhd#s].
curves for three different values of The top curves show Our results are qualitative, and not quantitative, as they
with ¢(0)=c(1)=C, while the bottom curves show the pre- must be until we consider a specific protein channel. More-
dicted flux with the single ion assumption, e.g., witt0),  over, some of our results are limited by the underlying as-
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sumptions. For example, our analysis is at the level of thditer). We solve Eq(A1) in cylindrical coordinates, because
implicit solvent (primitive) model, in which solvent water there is no dependence on the an@léut only on the coor-
molecules are described as an effective dielectric coefficientinates (x,r). In the regionx<0, we write ¢(X)=py(X)

In addition, we neglectin the bath the effects of the finite +¢(x), where ¢ satisfies a homogeneous Laplace equation,
size of ions. Incorporation of these finite-size effects in ho-and ¢(x) is the Coulombic potential created by a point
mogeneous solutions is a well studied problem, with We||chargeq located aix, in @ homogeneous region with uniform
established theories such as the mean spherical approxim@ielectric coefficients(x)=¢.,. Separation of variableg(x)

tion and the hypernetted chain theory, to name just a few x(x)R(r) gives

[41,42,44—-4% Appropriate incorporation of similar theories

into the confined geometry near and inside a protein channel o , R
remains an open research problg47—51. X'= 22X andR' + =+ MR=0. (A2)
APPENDIX A: AN ION INSIDE A DIELECTRIC The corresponding solutions of the modified Bessel equation
MEMBRANE (A2) with a negative sign are linear combinationsl gfand

Ko, which are singular either at=0 or r=«. Since ¢ is

In this section, we investigate the square root dependencgerywhere finite and decays at infinity, all solutions with a
of the reaction field force on bath concentrations, using gegative sign are excluded. In addition, for the positive sign,
much simpler setting that allows mathematical analysis.  only one solution of the corresponding Bessel equation,

The three-dimensional spa&¥ is composed of two infi-  namely,J,(r), is admissible. The other independent solution,
nite regions, a bath and a membrane, with dielectric coeffiy (1) s singular atr=0.
cientse, ander, separated by thg-z plane ax=0. A single The general solution in this region can then be written as
chargeq is located atxy=(-Xg,0,0) inside the membrane,
while in the bath region there is a simple 1:1 electrolyte with
average concentratignat infinity. Note that a similar prob- B(X1) = o(x,1) + f AN Ip(Nr)eVdA, (A3)
lem, in which the patrticle is inside the domain occupied by 0
the electrolyte, rather than inside the dielectric wall, wasyhereA(\) is yet to be determined.
considered by Stillingef52]. _ _ Now consider the homogeneous solution for the region

Let ¢(x|xo) describe the electric potential throughout y~ o Here separation of variables leads to
space and lep(x|x,) and n(x|xg) describe the conditional
positive and negative concentrations, given the presence of a
discrete positive ion of charggat x,. Then ¢ satisfies Pois-
son’s equation

o0

R!
X"=7\2X, R' + " +(\?- K¥»R=0. (A4)

Similar analysis shows thaf= «?, and therefore the general

V [eV ¢]=-[e(p—n)+qdx-Xo)]. solution forx>0 is
We consider an equilibrium mean-field approach, in which .
the concentrationp andn are the solutions of the Boltzmann Wx,r) = f B(\)J ()\r)e—\e’x2+,<2xd)\
equation with the same potentia ' 0 0 ’

— edlkgT — edlksT i . .
p(x) = pe ", n(x) = pe**e". whereB()\) is another yet undetermined function.

We consider an ion far away from the interface, so the po-
tential ¢ inside the bath is everywhere less thdgT/e. In 1. Equal dielectric coefficients
this case, linearization of the exponentials leads to the linear-

ized Poisson-Boltzmann equation, First consider the case of equal dielectric coefficients on

both sides of the interface, that is,=¢,. In this case, the
_ p two constraints on the yet undetermined functiéds) and
V [eVl=-]adx=xo) - Zﬁd’ : B(\) are continuity of the potential and continuity of its nor-

) _ ) o mal derivative atk=0. These two conditions are
In the two different regions, this equation is

K¢, x>0 ¢o(0,r) + f AN)Jp(Nr)dA = f B(\)Jo(Ar)d\,
— 0 0
Ad=1_ 4 (X = Xo), x<0, (AD)
€0€m -
where mﬂf’r) + J NAN)Jg(Ar)dA

0

_ |2 .
= EoskaT == J \”)\2 + KZB()\)Jo()\r)d)\ .

0

is the reciprocal of the Debye length, and equ#ig3.1 A
for £,=80, wherep is measured in units of molagsnoles/ Inserting the expression
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FIG. 5. The electrostatic force on an ion in-
side a dielectric wall as a function of bath con-
centrationC, at a distance ok,=3 A from the
wall (left), and as a function of the distangg,
for constant bath concentration d€=0.5M

' ‘ . (right).
% 05 1 15 2
C (Molar)
q x> 1
)= ’ F(C,xq) = )
D) o X a2 (X0 drogem 200

and rearranging terms gives

fx )\AO\) -B(M)
0 A

so that for either very large concentrations or very large dis-
q tances from the wall, the reaction field increases linearly as a
function of concentration. The other extreme—whenis
very close to the wall—is inconsistent with the linearization
of the nonlinear PB equation.
g% In our biological application, we are interested in dis-
Arrepeo (@ + 132 tances which are of the order of a few angstroms, and con-
centrations that range between 50 mM and 2 M. In this

Using known Hankel transforms, we obtain the linear systenf@nge, xX,=0(1). Expansion of Eq(A7) in powers ofkxg

JoAr)d\ == —— ,
A = oo o 12

® ‘J’ﬁ
f )\{A()\) + \)\%B()\)}Jo()\r)d)\ =

0

of equations -1 gives
A - B() = - 1 —e™o, o’
Amegem F(CX)=——7—
477808b(2X0)
Nt 2 q X[0.275 + 0.23Tkxy — 1)] + O(kXo — 1)2,
A\) + ——B(\) = ———e ™Mo,
A Amegem
o with similar expansions near other values«of,. Becausex
whose solution is scales like the square root of the concentration, we obtain a
) square root dependence of the force on concentration.
q A=VAT+ K|
AN = / %o, (A5)
darepem| N+ N2+ K2

2. Different dielectric coefficients

Inserting Eq.(A5) into Eq. (A3), we find that the reaction

field force on the discrete chargexgis given by In the caseen# ey, the continuity equations are

(7 oo
F(C,Xo) = - q;l] A()\)JO()\I’)e)‘Xd)\:| A()\) _ B()\) [ q e—)\XO,
XLJo (X,N)=(~Xq,0) 4megem
2 * 2\
=- 9 f )\|:’— > 1|e?Xod)\.
dregemt N+ NS+ K N2+ 2
£ AN) + £ B(\) = 5N
(A6) b\ MArregem '
To study the effect of bath concentrations, present inside the
coefficientk, we change variables=«u to obtain Solving for A(\) gives
2.2 * / 2
gk Vitpu—p 5
F(Cxo) = P =g € du. (AT) A =g W2+ K2
TeEMJ o V1 tuttpu A()\) _ q &\ K oMo

. . . dremeg N + £ N2 + K

This is a Laplace transform type integral, for which we have

not been able to find a closed-form solution. Asymptotic

analysis shows that for largex,, the integral is approxi- where ¢,=¢,/e,,. Therefore, the force at the fixed charge
mately location is
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e Mo\ .

2 «© )\2 2_1 + 2 2
F(Cxg) = — fx (o= *oin

—_—
47T€m80 0 ()\ + gr\")\z + K2)2

Note that when there are no bath concentrati@¥s0), that is
k=0, we obtain that

2 (=]
-1
F(Ox) = — J B =\ e 2\
TemEoJo & F
P &-1 1

" Ameneg e, + 1(2%0)%

PHYSICAL REVIEW E 70, 051912(2004

electric component due only to the different dielectric coef-
ficients of the two regions. We have then

PK?  2s fw

= Iz
Amegemer+ 1),

which indeed reduces to E¢A6) wheneg,=1. Similar analy-
sis shows that this force also increases as the square root of
the concentration wherxy,=0(1).

In Fig. 5, the force as a function of bath concentrations is
plotted for a charged particle at a distance of 3 A from the

wall (left) for two cases, one witlk,=¢,,=80 and the other
with ¢,,=5. Note that in the case of a dielectric wall, the

[ 2
vV +1- _
7 ,LLe

oF(C,%o) 2ookdp,

ep’+ 1+u

which is the familiar expression for the dielectric boundaryforce is stronger than in its absence, because the force bath

force on a particle near a dielectric wall.

ions exert on the fixed ion is larger in this case. Moreover,

Because we are interested in the effects of the bath corthe shielding force decreases monotonically as a function of
centrations on the overall force, we consider the difference,, for fixed g,. Specifically, the shielding force more than
SF(C,%p)=F(C,%p)—F(0,xp), which removes the purely di- doubles wherz,, is reduced from 80 to 5.
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