
Memoryless control of boundary concentrations of diffusing particles

A. Singer* and Z. Schuss†

Department of Applied Mathematics, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel

B. Nadler‡

Department of Mathematics, Yale University, 10 Hillhouse Ave., P. O. Box 208283, New Haven, Connecticut 06520-8283, USA

R. S. Eisenberg§

Department of Molecular Biophysics and Physiology, Rush Medical Center, 1750 Harrison St., Chicago, Illinois 60612, USA
(Received 3 August 2004; published 22 December 2004)

Flux between regions of different concentration occurs in nearly every device involving diffusion, whether
an electrochemical cell, a bipolar transistor, or a protein channel in a biological membrane. Diffusion theory
has calculated that flux since the time of Fick(1855), and the flux has been known to arise from the stochastic
behavior of Brownian trajectories since the time of Einstein(1905), yet the mathematical description of the
behavior of trajectories corresponding to different types of boundaries is not complete. We consider the
trajectories of noninteracting particles diffusing in a finite region connecting two baths of fixed concentrations.
Inside the region, the trajectories of diffusing particles are governed by the Langevin equation. To maintain
average concentrations at the boundaries of the region at their values in the baths, a control mechanism is
needed to set the boundary dynamics of the trajectories. Different control mechanisms are used in Langevin
and Brownian simulations of such systems. We analyze models of controllers and derive equations for the time
evolution and spatial distribution of particles inside the domain. Our analysis shows a distinct difference
between the time evolution and the steady state concentrations. While the time evolution of the density is
governed by an integral operator, the spatial distribution is governed by the familiar Fokker-Planck operator.
The boundary conditions for the time dependent density depend on the model of the controller; however, this
dependence disappears in the steady state, if the controller is of a renewal type. Renewal-type controllers,
however, produce spurious boundary layers that can be catastrophic in simulations of charged particles, be-
cause even a tiny net charge can have global effects. The design of a nonrenewal controller that maintains
concentrations of noninteracting particles without creating spurious boundary layers at the interface requires
the solution of the time-dependent Fokker-Planck equation with absorption of outgoing trajectories and a
source of ingoing trajectories on the boundary(the so called albedo problem).
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I. INTRODUCTION

We consider particles that diffuse between two regions
where average concentrations are maintained at constant un-
equal values(see Fig. 1). Flux between regions of different
concentration occurs in nearly every device involving diffu-
sion, whether an electrochemical cell, a bipolar transistor, or
a protein channel in a biological membrane. Continuum
theories of such diffusive systems describe the concentration
field by the(time independent) Nernst-Planck equation with
fixed boundary concentrations[1–7].

The microscopic theory underlying diffusion describes
motion of particles by Langevin’s equations[3,5,8–10] ev-
erywhere, except at the boundaries. The behavior of the
Langevin trajectories at the boundaries depends on the inter-
action between the particles and the boundaries. Thus, for
example, outgoing trajectories can be terminated(absorbed);

reflected(or otherwise reinjected); delayed; and so on. None
of this is described by the Langevin equations. Brownian
dynamics cannot describe such boundary behavior, because
Brownian particles have no definite velocity, being functions
of infinite variation. Particles with positive(e.g., incoming)
velocities can be distinguished from those with negative
(e.g., outgoing) velocities, only if their velocity is well de-
fined [8]. The Langevin equations are often directly inte-
grated in simulations[11–21].

In devices, the interaction between the trajectories and the
boundaries must be specified because the inputs, outputs, and
power supplies of devices are at their boundaries; in physical
systems, the boundaries are where charge, matter, and energy
are injected into a device; in biological systems boundaries
represent reservoirs maintained at a(nearly) fixed electro-
chemical potential by active processes of the cell.

The formulation of boundary conditions for the particle
concentration is obvious in macroscopic models, but formu-
lation of boundary conditions for the underlying trajectories
is not so clear cut, particularly because many different physi-
cal or computational control mechanisms can maintain a
constant average density at prescribed locations, usually near
the boundaries[11–15,19,22–28]. Many boundary conditions
used in Brownian and Langevin simulations produce spuri-

*Electronic address: amits@post.tau.ac.il
†Electronic address: schuss@post.tau.ac.il
‡Electronic address: boaz.nadler@yale.edu
§Electronic address: beisenbe@rush.edu

PHYSICAL REVIEW E 70, 061106(2004)

1539-3755/2004/70(6)/061106(8)/$22.50 ©2004 The American Physical Society061106-1



ous boundary layers that do not exist at those locations in the
physical systems being simulated. Spurious boundary layers
are particularly damaging to simulations of charged particles.
A boundary layer leads to large fluctuations in the electro-
static field which spreads over the entire simulation region.
This was clearly demonstrated in Ref.[16] for a problem
with equal boundary concentrations in a simulation with a
buffer zone.

In this paper we provide a general description of the con-
centration and flux of noninteracting particles diffusing be-
tween constant average concentrations near the boundaries.
We study renewal-type controllers that maintain fixed con-
centrations near the boundaries, determining the time course
both of concentration(in phase space) and current. This kind
of controllers is often used in simulations. We show that the
concentration is a weighted sum of “left” and “right” con-
centrations, each of which satisfies a different integro-partial-
differential equation and different boundary conditions. In
the steady state the phase space concentration is the weighted
sum of the solutions of two stationary solutions of the so
calledalbedoproblem[29–34]. The albedo problem was first
posed by Wang and Uhlenbeck[35] in 1945 and its analytic
solution was first found by Marshall and Watson[36]. Fur-
ther progress was made by Hagan, Doering, and Levermore
[37,38], who used complex analysis to solve the half range
expansion problem. The solution employed here was found
by Kłosek[39]. The weights in the sum of “left” and “right”
concentrations are the rates at which the controllers inject
trajectories into the system.

Different control mechanisms that maintain the same con-
centrations near the boundaries produce different time opera-
tors that govern the evolution of the “left” and “right” con-
centrations. Each evolution is non-Markovian. The removal
and injection—or re-injection—of particles into the system
by renewal-type boundary controllers are described by
renewal-type integral operators that govern the time evolu-
tions of these concentrations, in contrast to the Fokker-
Planck or Nernst-Planck equations that are commonly used.

The description of this simplified model of diffusion of
noninteracting particles is apparently different: we include a
detailed description of the physical mechanism that main-
tains the nonequilibrium state of the system. Similar descrip-
tions are needed when particles interact.

II. FORMULATION

We consider a system composed of two finite macro-
scopic volumes containing electrolyte solutions of different
ionic species, connected by a macroscopic or microscopic
channel. A control mechanism keeps different average con-
centrations in the two volumes, so that a steady current flows
through the system(see Fig. 1), thus keeping it out of equi-
librium. As seen in the figure, the control mechanism is lo-
cated only on parts of the boundaries of the system, at mac-
roscopic distances away from the connecting channel. The
control mechanism re-injects exiting trajectories at one or the
other boundaries in a way that maintains average fixed con-
centrations near the boundaries at all times. We have in
mind, for example, a typical setup used to measure the dif-
fusion of ions through a protein channel of a biological cell
membrane that separates two solutions of different fixed con-
centrations[1]. Alternatively, all trajectories are reflected at
the boundary so that the system reaches equilibrium after a
long time, but the long lasting transient regime is the non-
equilibrium regime in which an almost steady current flows
between the baths. This time behavior occurs when the num-
ber of particles that flow through the channel during the pe-
riod of measurement is much smaller than the total number
of ions in either bath.

The problem at hand is to describe the steady diffusion
current flowing between the two baths, in terms of the mo-
lecular properties of the diffusing ions, such as their radii and
interaction forces, as a function of the experimentally con-
trolled variables, such as the concentrations in the two baths
and the external potential, and as a function of the system
geometry, e.g., the geometry and charge distribution of the
channel.

The particles diffuse in a domainV that consists of the
two macroscopic volumes and the connecting channel. We
assume that there areNh ions of species hsh
=Ca++,Na+,Cl−, . . .d in V, which are numbered at timet
=0, ohN

h=N, and we follow their trajectories,x j
hstd

=(xj
hstd ,yj

hstd ,zj
hstd) at all timest.0 [x j

hstd is the location of
the j th ion of speciesh at time t].

For future use, the coordinate and velocity vectors of all
ions in the 3N-dimensional configuration space, are denoted

by x̃=sx1
h1, . . . ,xNh1

h1 ,x1
h2, . . . ,xNh2

h2 , . . .d and ẋ̃ or ṽ.

Equations of motion

As in Ref.[5], we assume that the motion of an ion in the
solution is overdamped diffusion in a field of force. The
source of the noise and friction is the thermal motion of the
solvent (e.g., water) and both are interrelated by Einstein’s
fluctuation-dissipation principle[3]. More specifically, our
starting point is a memoryless system ofN coupled Langevin

FIG. 1. The concentration cell of experimental electrochemistry
and molecular biophysics. The regionV typically consists of small
parts of two large baths of effectively constant concentrations, sepa-
rated by a permeable membrane in experimental electrochemistry,
or (in biophysics) an impermeable membrane containing one or
more channels.
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equations for the dynamics of all particles of the different
speciesh=Ca++,Na+,Cl−, . . .,

ẍ j
h + ghsx j

hdẋ j
h =

f j
hsx̃d
Mh +Î2ghsx j

hdkBT

Mh ẇj
h, s j = 1,2, . . . ,Nhd,

s1d

where a dot on top of a variable means differentiation with
respect to time,ghsxhd is the location dependent friction co-
efficient per unit mass, andMh is the effective mass of an ion
of speciesh. The force f j

hsx̃d on the j th ion of speciesh
includes all ion-ion interactions and thus depends on the lo-
cations of all ions. The functionsẇj

h are, by assumption,
independent standard Gaussian white noises. The parameter
kB is Boltzmann’s constant andT is absolute temperature. As
seen in Fig. 1, some parts of the boundary]V are reflecting,
while other parts contain the control mechanism. At the
boundary]V, the random trajectories of the Langevin equa-
tions (1) are either reflected or are redirected by the external
control mechanism.

III. RENEWAL CONTROLS

The solution of Eq.(1) depends on the specific choice of
control mechanism. We first analyze controls for one-
dimensional noninteracting systems because the treatment of
three-dimensional interacting particle systems is more com-
plicated. In this section we show that renewal controls(to be
defined in Sec. III C) reproduce correct macroscopic proper-
ties such as total net flux and concentration profile, but also
produce nonphysical boundary layers for noninteracting dif-
fusive particle systems.

Consider particles diffusing in the intervalV=f0,dg. The
control mechanism maintains average concentrationsCL and
CR at 0!xL,xR!d, respectively,away from the bound-
aries, where concentrations are actually measured. Each par-
ticle satisfies a Langevin equation

ẍ + gẋ + U8sxd = Î2geẇ. s2d

In order to complete the description of the dynamics we have
to describe the motion of particles at the boundaries, i.e., to
describe the action of the control mechanism.

A. Probabilistic control

A possible control mechanism operates as follows: when a
particle reaches either one of the boundaries, it tosses a Ber-
noulli coin with probabilitiessL ,Rd, L+R=1, L, Rù0. The
control mechanism decides to re-enter the particle at the left
boundaryx=0 with probabilityL, and to re-inject the particle
to the bath at the right boundaryx=d with probabilityR. The
re-injections occur at random times; a particle that reached
the boundary at timet, is delayed in the boundary a random
time T and re-injected at timet+T. The random timeT is a
non-negative random variable with PDF,

qssdds= Probhsø T , s+ dsj. s3d

The velocity of injection is distributed according to pre-
determined distributionssLsvd andsRsvd of the left and right

sources, respectively. For example, if both sources are Max-
wellian, then

sLsvd =
2

Î2pe
e−v2/2e = sRs− vd, v . 0. s4d

As shown below, the precise velocity distribution of the
sources is unimportant for measurement of concentrations
away from the boundaries.

The dynamics(1) and the boundary behavior provide a
complete description of the trajectories, and therefore deter-
mine the probability distribution of the random particle tra-
jectories in the system at any time. Assuming, as we may,
that the precise velocity distribution is unimportant, there are
only two parameters to be determined, namely, the fixed
number of particles in the systemN and the re-injection
probability R. These two parameters determine uniquely the
two measured concentrationsCL andCR.

Let pisx,v ,td be the probability of finding theith particle
at locationx and velocityv at time t, given that it was in-
jected to the bath at timet=0, from either the left or right
boundary with probabilitiesR andL, and the corresponding
velocity distributionssL andsR. Since the particles are inde-
pendent and interchangeable, we find thatp1=p2=¯ =pN,
and setpsx,v ,td=p1sx,v ,td. Let psx,vd be thesteady state
density of a single particle, i.e.,psx,vd=limt→` psx,v ,td.
The steady state concentration at locationx is given by

Csxd = NE
−`

`

psx,vddv. s5d

We use renewal theory[40] to calculatepsx,vd. Suppose
the device was turned on at timet=0. Let t0 be the first time
that the particle was injected into the system. Then the prob-
ability of finding the particle in locationsx,vd of the phase
space at timet is given by

psx,v,td =E
0

t

psx,v,tut0 = sdqssdds. s6d

Let t1 be the first passage time of the particle to the bound-
ary. Conditioning ont1 yields

psx,v,td =E
0

t

qssddsE
0

`

psx,v,tut0 = s,t1 = rd

3pst1 = r ut0 = sddr, s7d

wherepst1=r u t0=sd=pst=r −sd=0 for r ,s. We separate the
integral into two parts,
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psx,v,td =E
0

t

qssddsE
0

t

psx,v,tut0 = s,t1 = rdpst = r − sddr

+E
0

t

qssddsE
t

`

psx,v,tut0 = s,t1 = rdpst = r − sddr

=E
0

t

qssddsE
0

t

psx,v,t − rdpst = r − sddr + fsx,v,td,

s8d

where

fsx,v,td =E
0

t

qssddsE
t

`

psx,v,tut0 = s,t1 = rdpst = r − sddr.

s9d

Changing the order of integration in Eq.(8) we obtain

psx,v,td =E
0

t

psx,v,t − rddrE
0

t

qssdpst = r − sdds+ fsx,v,td

=E
0

t

psx,v,t − rdspt p qdsrddr + fsx,v,td

= sp p pt p qdstd + fsx,v,td, s10d

wherep denotes convolution. Taking the Laplace transform
of the equation gives

p̂sx,v,ud =
f̂sx,v,ud

1 − p̂tsudq̂sud
. s11d

The steady state distribution is given by

psx,vd = lim
t→`

psx,v,td = lim
u→0

up̂sx,v,ud = lim
u→0

u f̂sx,v,ud
1 − p̂tsudq̂sud

.

s12d

Both numerator and denominator of the right hand side van-
ish asu tends to 0. Expanding the denominator in Taylor
series, we find that

psx,vd =
f̂sx,v,u = 0d

ktl + kTl
, s13d

wherektl is the mean first passage time(MFPT), andkTl is
the mean delay time before re-injection.

To evaluatef̂sx,v ,u=0d, we consider a Langevin particle
in the intervalf0,dg which is injected at timet=0 at x=0
with velocity distributionsLsvd. When the particle reaches
one of the boundaries, it is absorbed, and its trajectory is
terminated at once. Letp̃Lsx,v ,td be the probability density
function of the particle(p should not to be confused withp̃L;
the subscriptL stands forleft). The densityp̃L satisfies the
Fokker-Planck equation,

]p̃L

]t
= Lx,vp̃L = − v

]p̃L

]x
+

]

]v
hfgv + U8sxdgp̃Lj + eg

]2p̃L

]v2 ,

s14d

with the initial condition

p̃Lsx,v,t = 0d = dsx − 0+dsLsvd, s15d

and the absorbing boundary conditions

p̃Lsx = 0−,v,td = 0, v . 0, s16d

p̃Lsx = d,v,td = 0, v , 0. s17d

Equations(14)–(17) define the time dependent albedo prob-
lem. In the limit of high friction a new time scale is often
used[10],

t̂ = t/g, s18d

so Eq.(14) is rewritten as

1

g

]p̃L

]t̂
= Lx,vp̃L. s19d

We define the function

PLsx,vd =E
0

`

p̃Lsx,v, t̂ddt̂ =
1

g
E

0

`

p̃Lsx,v,tddt. s20d

The functiongPLsx,vd is the average time that a particle
spends at locationsx,vd prior to its absorption, given that it
was injected from the left electrode at timet=0. It follows
from Eqs.(14)–(17) that PL, the solution of the steady state
albedo problem, satisfies

Lx,vPL = −
1

g
dsx − 0+dsLsvd, s21d

with the absorbing boundary conditions

PLsx = 0−,vd = 0, v . 0,

PLsx = d,vd = 0, v , 0. s22d

The MFPT to the boundaryktLl of a particle that was in-
jected from the left electrode is given by

ktLl =E
0

dE
−`

`

gPLsx,vddxdv. s23d

Similarly, we definegPR as the mean time spent by a trajec-
tory at the pointsx,vd prior to its absorption, given that it
was injected to the bath from the right electrode atx=d at
time t=0. The functionPR satisfies similar equations, and its
integral is the MFPTktRl.

Using the definition offsx,v ,td, Eq. (9), and changing the
order of integration, we find that
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f̂sx,v,u = 0d =E
0

`

fsx,v,tddt

=E
0

`

dtE
0

t

qssdds

3E
t

`

psx,v,tut0 = s,t1 = rdpst = r − sddr

=E
0

`

qssddsE
s

`

pst = r − sddr

3E
s

r

psx,v,tut0 = s,t1 = rddt. s24d

We identify the inner two integrals as the mean total time
that a particle had spent in thesx,vd location of phase space
prior to its first absorption. Sincee0

` qssdds=1, we find that

f̂sx,v,u = 0d = LgPLsx,vd + RgPRsx,vd, s25d

and

psx,vd =
LgPLsx,vd + RgPRsx,vd

LktLl + RktRl + kTl
, s26d

from which the concentration in phase space is given by

Csx,vd = Npsx,vd = N
LgPLsx,vd + RgPRsx,vd

LktLl + RktRl + kTl
. s27d

Equation(27) relates the probabilistic control mechanism to
its resulting phase space steady state concentration, that sat-
isfies the steady state Fokker-Planck equation with flux
boundary conditions(21).

B. Rate control

Another possible renewal control consists of two sources,
placed at the left and right boundaries, which inject particles
into the system. When a particle reaches the right or left
boundary, its trajectory is terminated at once. The sources
inject particles at identical independent distributed(i.i.d.) in-
terarrival random timesTL andTR, whose probability density
functions arefLstd and fRstd, respectively. The rates of injec-
tion are defined as

lL =
1

kTLl
, lR =

1

kTRl
. s28d

Note that the number of particles in the system does not
remain fixed for this rate control mechanism. For any rect-
angleA, f0,dg3R, we denote byNA

Lstd the number of par-
ticles in A at time t, that were originated at the left source.
ThenNA

Lstd satisfies a set of renewal equations[40],

ProbhNA
Lstd = 0j = Probhsxstd,vstdd ¹ Aj

3FE
0

t

fLssd ProbhNA
Lst − sd = 0jds

+E
t

`

fLssddsG , s29d

ProbhNA
Lstd = 1j = Probhsxstd,vstdd P Aj

3FE
0

t

fLssd ProbhNA
Lst − sd = 0jds

+E
t

`

fLssddsG + Probhsxstd,vstdd ¹ Aj

3E
0

t

fLssd ProbhNA
Lst − sd = 1jds, s30d

ProbhNA
Lstd = nj = Probhsxstd,vstdd P Aj

3E
0

t

fLssd ProbhNA
Lst − sd = n − 1jds

+ Probhsxstd,vstdd ¹ Aj

3E
0

t

fLssd ProbhNA
Lst − sd = njds, n . 1.

s31d

Thus the expected value ofNA
Lstd is given by

kNA
Lstdl = o

n=1

`

n ProbhNA
Lstd = nj = Probhsxstd,vstdd P Aj

3FE
0

t

fLssdkNA
Lst − sdlds+E

0

`

fLssddsG
+ Probhsxstd,vstdd ¹ Aj ·E

0

t

fLssdkNA
Lst − sdlds

= Probhsxstd,vstdd P Aj +E
0

t

fLssdkNA
Lst − sdlds.

s32d

Dividing by the areauAu of A and taking the limituAu→0, we
obtain the number of particles per unit length and per unit
velocity, which we call the phase space densityCLsx,v ,td. It
satisfies the renewal equation

CLsx,v,td = p̃Lsx,v,td + sfL p CLdsx,v,td. s33d

Taking the Laplace transform with respect tot, we find that

ĈLsx,v,ud =
p̂̃Lsx,v,ud

1 − f̂ Lsud
, s34d

and the steady state density is given by
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CLsx,vd = lim
t→`

CLsx,v,td

= lim
u→0

up̂̃Lsx,v,ud

1 − f̂ Lsud
=

p̂̃Lsx,v,0d
kTLl

= lLp̂̃Lsx,v,0d. s35d

We obtain from Eq.(20) that

p̂̃Lsx,v,0d =E
0

`

p̃Lsx,v,tddt = gPLsx,vd. s36d

The linearity of the expectation implies that the steady state
concentration is

Csx,vd = CLsx,vd + CRsx,vd = glLPLsx,vd + glRPRsx,vd.

s37d

C. Renewal control

Even though the two control models described above are
different, and have different time evolution(e.g., the number
of particles inside the domain is bounded byN for the
former, and unbounded for the latter), they haveidentical
steady state phase space concentrations. Indeed, choosing

lL =
NL

LktLl + RktRl + kTl
, lR =

NR

LktLl + RktRl + kTl
,

s38d

we find that Eqs.(27) and(37) are identical. This is no mere
coincidence:both controls are special cases of renewal
controls.

Definition 1. A source that injects particles into the do-
main at random times0=T0øT1øT2. . .øTnø . . ., such that
Yn=Tn−Tn−1 are i.i.d. with kY1l,` is called a renewal
source.

Definition 2. A control made of renewal sources located
at the absorbing boundary of the domain is called a renewal
control.

Theorem 1. The steady state phase space concentration
of a renewal control is given by Eq.(37), wherelL=1/kY1

Ll,
lR=1/kY1

Rl are the rates of the left and right renewal
sources, respectively.

Proof. The proof is given in the previous subsection.

D. Calculation of PL and PR: The albedo problem

As seen above, all renewal control mechanisms require
the knowledge ofPL and PR, which are the solutions of the
steady state albedo problem. It was shown in Ref.[39] that
PL is given by

PLsx,vd =
1

Î2pe
e−v2/2ee−Usxd/eQsx,vd, s39d

whereQ=QBL
L +QBL

R +QOUT, with QBL
L,R the boundary layer so-

lutions, which decay exponentially fast away from the
boundaries, andQOUT the outer solution, given by

QOUTsx,vd = CFE
0

x

eUszd/edz−
1

g
veUsxd/eG + D + Osg−2d,

s40d

with

C =
eUs0d/e

gÎe

zs 1
2d + B0

L

e 0
deUszd/edz

+ Osg−2d,

D = −
eUs0d/e

gÎe
FzS1

2
D + B0

LG + Osg−2d, s41d

whereB0
L is a constant that depends on the velocity distribu-

tion of the left source, andz denotes the Riemann zeta func-
tion fzs 1

2
d=−1.460 035. . .g. The outer solutionQOUT approxi-

mates Q at distancesOsg−1d away from the boundaries.
Similar expressions can be written forPR.

E. Concentration profile and net flux

Equation(27) gives the concentration atx, which is estab-
lished by the probabilistic control mechanism, as

Csxd =
NgfLPLsxd + RPRsxdg
LktLl + RktRl + kTl

. s42d

Therefore

CL

CR
=

LPLsx1d + RPRsx1d
LPLsx2d + RPRsx2d

. s43d

We now solve Eq.(43) for the yet-undetermined parameterL
that keeps constant concentrationsCL and CR. Since L=1
−R, the solution is given by

L =
CRPRsx1d − CLPRsx2d

CLfPLsx2d − PRsx2dg − CRfPLsx1d − PRsx1dg
. s44d

Substituting in Eq.(42) we find that

Ng

ktl + kTl
=

CL

LPLsx1d + RPRsx1d
, s45d

and the two parameters of the control mechanism,N andL,
are uniquely determined. We assume that the left and right
sources have the same velocity density distribution,sLsvd
=sRs−vd ,v.0, which guaranteesB0

L=B0
R;B0. The resulting

concentration atx away from the boundary is given by

Csxd

=
CLefUsx1d−Usxdg/ee x

x2eUszd/edz+ CRefUsx2d−Usxdg/ee x1

x eUszd/edz

e x1

x2eUszd/edz
,

s46d

which is the same as given in Eq.(3.5) of Ref. [8]. Note that
the constant factorz s 1

2
d+B0 cancels out, and therefore it

cannot be seen, if only concentrations are measured. The
total net flux is given by
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Jsxd = NE
−`

`

vpsx,vddv =
Ng

ktl + kTlE−`

`

vPsx,vddv,

s47d

whereP=LPL+RPR. The flux is constant and to leading or-
der in g−1 is given by

J =
e

g

CLeUsx1d/e − CReUsx2d/e

e x1

x2eUszd/edz
. s48d

We see that the macroscopic net flux(48) is Osg−1d, and
coincides with that given in Eq.(3.7) of Ref. [8] and in Ref.
[1]. Theorem 1 then implies that Eqs.(46) and(48) describe
the concentration and the flux for all renewal control
mechanisms.

IV. DISCUSSION

The renewal controls studied here maintain systems of
noninteracting particles at constant average concentrations
near the boundaries, and away from the boundaries they pro-
duce the stationary Nernst-Planck equation of classical dif-
fusion theory.

We have proven that all renewal controls produce the
same steady state concentration and flux, even though their
time evolutions can differ qualitatively. However, renewal
controls—that are widely used in computer simulations—are
problematic because they produce spurious boundary layers.
These boundary layers are expected to appear in interacting
particle systems driven out of equilibrium by renewal
controls.

The existence of such boundary layers may be of little
importance if the particles interact only through short range
forces, such as Lennard-Jones forces, or the forces that pre-
vent overlap of hard spheres. However, the boundary layers
can have a catastrophic effect for particles that interact
through long range forces, such as ions that interact electro-
statically. The net charge carried by only a tiny fraction of
the total number of ions is, after all, responsible for electrical
signaling in the nervous system and the electrical potentials
in electrochemical cells and these potentials extend over
large distances, from micron to many meters, e.g., in the
neurons of whales[41] as well as in inorganic applications
from batteries to the trans-Atlantic cable[42–46].

The boundary behavior of diffusing particles has been
studied for many types of boundaries, including absorbing,
reflecting, sticky boundaries, and more[40,47]. In Ref. [22]
a sequence of Markovian jump processes is constructed such
that their transition probability densities converge to the so-
lution of the Nernst-Planck equation with given boundary

conditions, including fixed concentrations and sticky
boundaries.

As mentioned above, replacing the baths with renewal
sources is a mathematical idealization that can produce arti-
ficial boundary effects. The renewal control effectively ter-
minates trajectories at boundaries and starts new trajectories
there. Most experiments do not. In real physical systems,
particles that reach the boundary usually move into a “guard”
region, from which they often return to the domain(with
some probability), with a given time distribution. To capture
this behavior by a mathematical model, the entire pdf of the
first passage time for the albedo problem has to be found, not
only its first moment. The spurious boundary layers will be
avoided if the correct time course of recycling trajectories in
and out of the domain is used. We postpone this calculation,
which we could not find in the literature, to a future paper.

The time evolution of systems whose average concentra-
tions near the boundaries are maintained by renewal controls
is complicated and cannot be described, in general, by a
single partial differential equation. We have shown that the
phase space concentration is a sum of two components, each
of which satisfies a different integral-partial-differential
equation with different boundary conditions. Only in the
steady state does the concentration satisfy the Fokker-Planck
equation with boundary conditions identical to those of the
steady state albedo problem. Although the overdamped limit
is a useful approximation inside the domain, it cannot be
used near the boundaries, where the full Fokker-Planck equa-
tion has to be solved. For particle systems with only short
range interactions, the outer solution—which is the solution
to the Smoluchowski equation—determines the concentra-
tion and correlation functions away from the boundaries.
One can hope that a simple boundary condition can be found
for such systems, similar to the simple boundary condition
that exists for noninteracting systems.

From the theoretical point of view, the absence of a rig-
orous mathematical theory of the boundary behavior of
Brownian trajectories diffusing between fixed concentra-
tions, based on the physical theory of the Brownian motion,
is a serious gap in classical physics. This paper is a step
toward the bridging of this gap.
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