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Partial least squares (PLS) is one of the most common regression algorithms in chemistry, relating

input–output samples (xi, yi) by a linear multivariate model. In this paper we analyze the PLS

algorithm under a specific probabilistic model for the relation between x and y. Following Beer’s law,

we assume a linear mixture model in which each data sample (x, y) is a random realization from a

joint probability distribution where x is the sum of k components multiplied by their respective

characteristic responses, and each of these components is a random variable. We analyze PLS on this

model under two idealized settings: one is the ideal case of noise-free samples and the other is the

case of an infinite number of noisy training samples. In the noise-free case we prove that, as expected,

the regression vector computed by PLS is, up to normalization, the net analyte signal. We prove that

PLS computes this vector after at most k iterations, where k is the total number of components. In the

case of an infinite training set corrupted by unstructured noise, we show that PLS computes a final

regression vector which is not in general purely proportional to the net analyte signal vector, but has

the important property of being optimal under a mean squared error of prediction criterion. This

result can be viewed as an asymptotic optimality of PLS in the limit of a very large but finite training

set. Copyright # 2005 John Wiley & Sons, Ltd.

1. INTRODUCTION

Partial least squares (PLS) is one of the most common

regression algorithms in the field of chemometrics in gen-

eral, and spectroscopy in particular [1–3]. In the typical

setting, given a finite training set with n samples (xi, yi),

PLS builds a linear relationship between x and y that is then

used for prediction of y for new data x.

The main assumption of PLS is that the data x, although

possibly residing in a high-dimensional space, depend line-

arly on only a small number of latent variables. PLS esti-

mates these latent variables as projections of the original

input variables of x and uses them to construct the regression

vector relating x to y [3,4]. Much theoretical work and many

simulations have been devoted to explaining what PLS does

and why it works so well in practical spectroscopic applica-

tions, characterized by high collinearity in the input data and

lack of specificity at any individual predictor variable (see

e.g. References [1,5,6] and references cited therein). In some

simulation studies of PLS the probabilistic model considered

for the input and output is that data samples (x, y) follow a

joint multivariate Gaussian distribution [7–9]. However, as

pointed out by Wold [4], in these models the data matrix

reaches full rank as the number of samples tends to infinity,

and therefore this modeling approach is inconsistent both

with the underlying assumptions of PLS and with the basic

physics and chemistry of real systems for which measure-

ments are taken.

Following Wold’s observation, in this paper we analyze

the PLS algorithm under a probabilistic model for data

samples that is motivated by physics and chemistry (Beer’s

law) and thus more closely resembles typical data measured

in actual systems. We therefore assume a linear mixture

model where each data sample (xi, yi) is a random realization

from a generally unknown probability space in which x is the

linear sum of k random components each multiplied by its

characteristic (spectral) response vector. While this model

has been used in many simulation studies and also as a

benchmark for proposed new algorithms [10–13], it seems

that the theoretical analysis of PLS on such a model has not

been fully explored.

In this paper we consider the PLS algorithm on this model

under two different settings. The first is the idealized case of

an error-free training set, while the second is the case of a

noisy but infinite training set. This second case can be

viewed as the asymptotic limit of a finite training set when

the number of samples n!1. The more complicated (and

more interesting) theoretical analysis of PLS predictions

based on a finite and noisy training set will be published

separately [14].

The main results of our analysis are as follows. First we

show that in the ideal noise-free case the regression vector

computed by PLS is, as expected and up to a normalization

constant, equal to the net analyte signal (NAS) vector [15,16],

giving a zero prediction error. We prove that, similar to the
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case of principal component regression (PCR), this vector is

constructed in at most k iterative steps, where k is the total

number of components in the input data. Our analysis also

clarifies in statistical terms an issue that has received a lot of

attention in the literature, namely the chemical interpretation

of the various projections computed by PLS [2,17,18]. In

general we find that the projections and loadings computed

by PLS are complex linear combinations of the pure spectra

of the various components with coefficients that depend

both on the physical interference amongst these spectra as

well as on their statistical correlations with the substance of

interest. Therefore these loadings and projections can differ

substantially if a new finite data set is used for calibration,

even though the resulting regression vector remains the

same. Therefore, much to the regret of the analytical chemist,

a chemical interpretation of the loading and projection

vectors of PLS is quite difficult if not impossible in complex

multi component systems.

In addition we show that the error of prediction in PLS

with a sub optimal number of latent variables can in some

cases be dominated by interfering components with a large

variance, even though these may be totally uncorrelated and

unrelated with the substance of interest. This provides a

theoretical motivation for various preprocessing algorithms

that attempt to remove variability in the data that is un-

correlated with y, such as multiplicative scatter correction

(MSC), standard normal variate (SNV) and orthogonal signal

correction (OSC) [19–21].

In the setting of an infinite training set of samples cor-

rupted by unstructured noise, we show that PLS is optimal

under a mean squared error criterion. Moreover, similar to

the recent analysis of Brown [22], we show that the resulting

regression vector is not equal to a scaled version of the NAS,

but rather depends in general on the level of noise and on all

components in the system, their spectral responses and

statistical correlations. Therefore, although various prepro-

cessing algorithms such as OSC, hybrid linear analysis

(HLA) or others [12,13,21] that attempt to remove variability

in the data that is uncorrelated with the substance of interest

may give more robust results for small training samples,

they are suboptimal for prediction purposes in the asymp-

totic limit of a large training set.

The paper is organized as follows. In Section 2 we briefly

present the PLS algorithm, while in Section 3 we define the

specific input model considered in this paper. The main

results for the noise-free case are derived in Section 4, while

those for the noisy samples appear in Section 5. An applica-

tion of these results is given in Section 6. We conclude with a

summary and discussion in Section 7.

2. THE PLS ALGORITHM

2.1. Notation
We denote vectors by boldface lowercase letters, as in v. The

Euclidean norm of a vector v is denoted jjvk and its

dot product with a vector w is denoted v �w. Random

variables are denoted by italic lowercase letters, as in y and

u1. The mean of a random variable y is Efyg, its variance is

Var(y) and its covariance with another random variable u is

Cov(y, u).

2.2. A probabilistic version of PLS
Consider a calibration (training) set of n samples fxi; yigni¼1,

where xi 2 Rp are the predictor or input variables and yi 2 R

are the response or output variables. PLS computes a linear

calibration model based on this finite training set, whose

final output is a regression vector r 2 Rp such that subse-

quent predictions of y for new data points x are given by

ŷy ¼ �yyþ r � ðx � �xxÞ

where �xx and �yy are the mean values of training set inputs and

outputs respectively.

While the original PLS algorithm is defined on a finite data

set described by two finite input and output matrices X and

Y, in recent years various authors have developed a prob-

abilistic derivation of PLS, thus allowing its interpretation in

terms of stochastic variables [6,23,24].

Since in this paper we analyze PLS under a specific

stochastic model for inputs and outputs, following

References [6,24], we describe this statistically derived ver-

sion of PLS. Let A be a user-defined maximal number of

iterative steps of the algorithm, x0 ¼ x � �xx, and with some

abuse of notation we assume that y is already mean centered.

For a¼ 1 . . . , Amax:

1. Find projection wa such that xa� 1 �w best correlates with

y. Up to a normalization constant the best projection is

given by

wa ¼ Efxa�1yg

2. Compute the coefficient of the ath latent variable:

ta ¼ xa�1 � wa

3. Compute the ath regression score:

qa ¼
Efytag
VarðtaÞ

4. Compute the ath spectral loading:

pa ¼
Efxa�1tag
VarðtaÞ

5. Project the score ta:

xa ¼ xa�1 � tapa

The output of PLS after a steps is ŷy ¼ �yyþ
Pa

j¼1 qjtj, which

can equivalently be written as

ŷy ¼ �yyþ ra � ðx � �xxÞ

As derived in References [6,24], this version of PLS is

defined in a population setting with an infinite amount of data

points so that expectations are over the corresponding joint

probability densities for (x, y). However, for a finite number

of samples, replacing all expectations over infinite popula-

tions by their sample estimates recovers the original sample

PLS algorithm.

3. A PROBABILISTIC MODEL
OF THE INPUT DATA

While PLS can be applied to multivariate regression pro-

blems in many diverse fields, we focus our attention on the

typical spectroscopic application, namely the determination
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of analyte concentration from the corresponding (typically

near-infrared) spectral data. The reason for this is twofold.

Firstly, spectroscopy is one of the most important and

common applications of the PLS algorithm, and secondly,

in this setting we can formulate an approximate physical

model that relates the input x to the output y, based on Beer’s

law.

In this setting the input data x are usually taken as the

logarithm of the absorbance or reflectance spectrum. Beer’s

law states that in the absence of non-linear effects the

logarithm of the spectrum is proportional to the analyte

concentration y multiplied by its characteristic response

spectrum v0 [1,2]. In the presence of many substances, under

the assumption of additivity and neglecting possible inter-

actions between the substance of interest and other sub-

stances, the resulting spectral data x are then proportional to

the sum of all the substances in the material, each multiplied

by their characteristic spectrum. In real life measurements,

typically there are additional contributions to the resulting

spectra due to the measuring device, such as an additive

baseline shift, a random or deterministic machine drift or, in

general, a more complicated characteristic spectrum of the

measuring device. Physically there can also be temperature

effects as well as noise from other sources and various other

errors introduced by the measurement process [2].

Therefore the actual spectral data that one encounters in

real life situations are rather complex. In order to mathema-

tically analyze and understand the results of the PLS algo-

rithm in this setting, some simplifications are obviously

needed. In this paper we consider a simplified probabilistic

model of the spectral data based on Beer’s law and analyze

the PLS algorithm under such a model. We thus assume that

the noise-free data points (x, y) are random realizations from

an underlying (and generally unknown) probability space

with kþ 1 random variables, denoted y and u1, . . . ,uk, as

follows:

x ¼ yv0 þ
Xk
i¼1

uivi ð1Þ

while the noisy data are given by

~xx ¼ x þ �n ð2Þ

In (1), x is the spectrum, y is the substance of interest in

prediction, v0 2 Rp is its characteristic spectral response and

the remaining vectors vi are the characteristic spectral re-

sponses associated with the random variables ui respec-

tively. In the absence of noise the measured spectrum is x,

while in its presence it is ~xx given by (2), where n is a random

noise vector in Rp whose p co-ordinates are independent

identically distributed random variables with zero mean and

unit variance, and � is a measure of the level of noise. The

random variables ui, sometimes denoted components, can be

either other physical substances present in the material or

measures of other physical phenomena that contribute to the

measured signal. Examples of the latter phenomena include

the random amplitude of a deterministic machine signal,

particle size-dependent light scattering and random optical

path length, to name just a few. Input–output relations of the

form (1) have been considered in the literature [3,11,18] and

used as a benchmark in various simulation studies and tests

of new algorithms [10,12,13,25–27]. In Section 4 we present a

theoretical analysis of PLS on error-free inputs of the form

(1), while the case of inputs corrupted by noise according to

(2) is considered in Section 5.

We note that quite a lot of analysis on the PLS algorithm

has been performed on a different, more general and thus

abstract model of input–output relations, namely that x is a

multidimensional Gaussian process with correlation matrix

R and y¼ b � xþ e, where e is a zero-mean random error (see

e.g. References [8,23]). One of the differences in the analysis

between this model and Equations (1) and (2) is that in our

case the predictions of PLS can be compared with the actual

parameters of the problem, and a chemical interpretation of

PLS with regard to the spectral responses vi can be

performed.

3.1. The net analyte signal vector
We start our analysis with the ideal error-free case. The

problem at hand is therefore the prediction of the sub-

stance y given the error-free signal x, under the assumption

that x and y are related via Equation (1). In principle, if all

the response vectors vi were known, then any vector r that

is not orthogonal to v0 but is orthogonal to all vi for i� 1

would give a perfect error-free regression of y, since in that

case

x � r ¼ ðv0 � rÞyþ
X
j

ðvj � rÞuj ¼ Const � y

which differs from y only by an easily evaluated normal-

ization constant.

One such vector that has received considerable attention

in the literature is the net analyte signal (NAS) vector [15,16].

This vector is defined as the part of the response v0 of the

substance y that is orthogonal to the response vectors vi of all

other components. Specifically, if fzjgmj¼1 is an orthonormal

basis for Span fv1; . . . ; vkg, then

NASðyÞ ¼ v0 �
Xm
i¼1

ðv0 � ziÞzi

Typically, however, not all response vectors of all variables

are known, nor is there even an explicit knowledge of exactly

how many components are present in the system. PLS is thus

a method to calculate a regression vector r without such

explicit knowledge. In this paper we prove that, as expected

and known empirically, in the case of error-free data the

output of the PLS algorithm is exactly the NAS up to a

normalization constant. Recently, various authors have con-

sidered other approaches to compute the NAS directly,

either when the response v0 of the substance of interest y is

known, as in the HLA algorithm by Berger et al. [12], or even

without its explicit knowledge, as in References [13,15,28].

Since in the error-free case all these algorithms are equiva-

lent, e.g. they all compute the appropriately normalized

version of the NAS, they should all have similar predictive

performance when relatively small noise is added to the

signals, as indeed is reported in various simulation studies

[25,26]. A detailed theoretical comparison of their perfor-

mance when there is also error in the spectra will be

considered in a separate publication.
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4. ANALYSIS OF THE PLS ALGORITHM

4.1. PLS with two components
We start our analysis with one of the simplest possible

examples, in which each data point (spectral measurement)

x is the result of only two underlying components y and u1,

with corresponding spectra v0 and v1, where y is the sub-

stance of interest in prediction. Thus

x ¼ yv0 þ u1v1 ð3Þ

Since prior to application of the PLS algorithm the calibration

data are mean centered, then without loss of generality we

assume that Efyg ¼ Efuig ¼ 0. For future use we define the

quantities

Vy ¼ VarðyÞ; c1 ¼ Covðy; u1Þ; Vu1
¼ Varðu1Þ

We assume that y and u1 indeed represent two different

components, not perfectly correlated and with different

spectral signals. These conditions translate mathematically

into c2
1=VyVu1

< 1 and v1 6¼ cv0 for any scalar c.

The first step in PLS is to compute the projection w1 that

best correlates with y. Up to normalization it is given by

w1 ¼ Efxyg ¼ Vyv0 þ c1v1 ð4Þ

In the case of the more general model (1) with a total of

kþ 1 components,

w1 ¼ Vyv0 þ
X
j

cjvj

where cj is the covariance between uj and y. Note that in

general the first projection is not proportional to the pure

response v0 of the substance of interest y. Assuming that

the response vectors {vj} are linearly independent, w1 is

proportional to v0 if and only if all correlations cj between y

and all other components in the system vanish. This find-

ing clarifies in mathematical terms the statement of

Haaland and Thomas [11] that ‘the quality of ŵw1 is depen-

dent to some degree on relative intensities of spectral

bands . . . ’. Equation (4) shows that the important factor

determining the first projection w1 is not the physical

interference between v0 and the spectral responses of other

vectors, but rather the statistical correlation in the calibra-

tion set between y and the other substances.

The second PLS step is the computation of the latent

variable t1 as

t1 ¼ x � w1 ¼ ðyv0 þ u1v1Þ � ðVyv0 þ c1v1Þ
¼ yðVykv0k2 þ c1v0 � v1Þ
þ u1ðc1kv1k2 þ Vyv0 � v1Þ

ð5Þ

while in the next step we compute the score

q1 ¼ Eft1yg=Varðt1Þ. In PLS with only one latent

variable the predicted value for a new data point x is

then given by

ŷy1 ¼ q1t1 ¼ q1w1 � x

To compute q1 explicitly for this example, we thus need to

calculate Eft1yg and Varðt1Þ. For ease of notation we define

the two quantities

A ¼ Vykv0k2 þ c1v0 � v1; B ¼ c1kv1k2 þ Vyv0 � v1 ð6Þ

so that t1 ¼ Ayþ Bu1 and Varðt1Þ ¼ A2Vy þ B2Vuþ 2ABc1: In

terms of A and B, q1 is given by

q1 ¼ Efyt1g
Varðt1Þ

¼
AVy þ Bc1

A2Vy þ B2Vu1
þ 2ABc1

The most common measure of the performance of PLS is the

mean squared error of prediction (MSEP). In the case of only

one latent variable we obtain

MSEP ¼ Efðy� ŷy1Þ
2g

¼ B2 Vu1
Vy � C2

1

A2Vy þ B2Vu1
þ 2ABc1

ð7Þ

Note that if B¼ 0 then the mean squared error of prediction

after one latent variable is zero. According to (6), B depends

both on the interference between the spectral responses v0

and v1 and on the correlation between the random variables

y and u1. Thus B is equal to zero when u1 is uncorrelated

with y and has an orthogonal non-interfering response, or

when

Covðy; u1Þ
VarðyÞ ¼ � v0 � v1

kv1k2

This analysis clarifies the importance of the statistical

correlation of the substance y with other components in

the system. It shows that in general the optimal number of

components needed for PLS calibration is not necessarily

equal to the rank of the spectral data matrix [11]. In

our example, when B¼ 0, PLS with only one latent variable

is optimal even though the spectral matrix has a rank of

two.

Before proceeding to the next iterative step in the algo-

rithm, we consider the following two examples.

Example 1
Consider the case in which v0 � v1 ¼ 0 and c1 ¼ 0. Then,

according to (6), B¼ 0 and thus t1 ¼ Vykv0k2y is a constant

multiple of y. The normalization factor q1 ¼ 1=Vykv0k2, so

that indeed ŷy1 ¼ q1t1 ¼ y, yielding a zero prediction error

after only one latent variable, in accordance with (7). As

already noted by Kvalheim and Karstang [17], this result

also extends to the more general model (1) with an arbi-

trary number of components, as long as they are all

uncorrelated with y and all their responses are orthogonal

to v0. This, however, is a very idealized case seldom if ever

encountered in practice.

Example 2
Consider now the more common case in which u1 is not

correlated with y, i.e. c1¼ 0 but v0 � v1 6¼ 0. Now B 6¼ 0 and the

first latent variable t1 contains a contribution from u1:

t1 ¼ Vykv0k2yþ Vyðv0 � v1Þu1

In this case

q1 ¼ Eft1yg
Vðt1Þ

¼
V2

ykv0k2

V3
ykv0k4 þ V2

yðv0 � v1Þ2Vu1

¼ kv0k2

Vykv0k4 þ ðv0 � v1Þ2Vu1
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and obviously ŷy1 6¼ y. The mean squared error of prediction

with one latent variable is

MSEP ¼ Efðy� q1t1Þ2g

¼ Vy
ðv0 � v1Þ2Vu1

Vykv0k4 þ ðv0 � v1Þ2Vu1

ð8Þ

The mean squared error is obviously less than the normal-

ization factor Vy, which is the mean squared error obtained

by the trivial (and uninformative) prediction ŷy ¼ 0,

which corresponds to predicting ŷy ¼ �yy before mean center-

ing. As seen from (8), the prediction error of PLS with only

one variable depends both on the variance of u1 and on the

physical interference between the characteristic spectrum

of u1 and that of y. For example, if u1 has a much larger

variance than y and a non-negligible interference of its

response with that of y, then prediction with only one

latent variable will be extremely poor. This phenomenon

of an unrelated component with a much larger

spectral variation than that of the substance of interest

occurs rather frequently in spectroscopy. Three physical

examples are a random baseline shift, scattering effects and

particle size effects. Equation (8) shows the importance of

detection and removal of such large effects in the spectral

data prior to the application of the PLS algorithm, thus

providing a theoretical motivation for various preproces-

sing algorithms with this goal in mind, such as MSC and

SNV [1] or the more recent orthogonal signal

correction [21]. From our analysis it is also clear that

removal of such components should lead to a decrease in

the optimal number of latent variables needed for calibra-

tion, as indeed is observed in simulations and in real data

sets.

4.2. PLS with two substances and
two latent variables
We now proceed with the computation of the loading vector

p1 and the second latent variable t2. For simplicity we

compute this loading vector explicitly only for the second

example in which c1¼ 0 but v0 � v1 6¼ 0.

Since the projection w1 is defined up to a normalization

constant, we choose w1 ¼ v0=kv0k2 and denote � ¼
v0 � v1=kv0k2. With these definitions the first latent variable

and its variance simplify to

t1 ¼ yþ �u1; Varðt1Þ ¼ Vy þ �2Vu1

Therefore

p1 ¼ Efxt1g
Varðt1Þ

¼ Efðyv0 þ u1v1Þðyþ �u1Þg
1 þ �2

¼ 1

Vy þ �2Vu1

ðVyv0 þ �Vv1
v1Þ

ð9Þ

The data x1 are computed by subtraction of the product t1p1

from the original (mean-centered) data x:

x1 ¼ x � t1p1

¼ 1

Vy þ �2Vu1

ðVyVu1 � �Vu1
yÞðv1 � �v0Þ

Under our assumptions, v1 6¼ �v0, so that x1 6¼ 0. The second

projection computed by PLS is

w2 ¼ Efyx1g ¼
Vu1

Vy

Vy þ �2Vu1

ð��Þðv1 � �v0Þ

Since this projection is defined up to a normalization con-

stant, we choose to take

w2 ¼ v1 � �v0

kv1k2 � �2kv0k2
ðVy þ �2Vu1

Þ ð10Þ

Thus the second latent variable is t2 ¼ x1 � w2 ¼Vyu1 � �Vu1
y

and its corresponding score q2 is given by

q2 ¼ Efyt2g
Varðt2Þ

¼ � �

�2Vu1
þ Vy

Indeed, ŷy ¼ q1t1 þ q2t2 ¼ y, so that, as expected, PLS with

two latent variables yields a zero prediction error, since the

model (3) contains two components and no noise.

In terms of the original input x, the PLS regression is

ŷy ¼ 1

kv0k2 � ðv0 � v1Þ
kv1k2

v0 �
v0 � v1

kv1k2
v1

 !
� x

¼ r � x

ð11Þ

where the regression vector r is, up to normalization, equal

to the NAS v0 � v0 � v1=kv1k2v1. Thus, in the absence of noise

and when u1 is not correlated with y, the PLS algorithm

computes the net analyte signal as its regression vector

without explicit knowledge of the response vectors v0 and

v1. This result is not specific for the case of two substances or

the case of no correlation between them. In the next subsec-

tion we prove that in a general noise-free setting with an

arbitrary number of components the regression vector com-

puted by PLS is equal to the net analyte signal up to a

normalization constant. Obviously, in this ideal setting this is

also the regression vector computed by PCR and other

multivariate algorithms [28].

4.3. The number of latent variables
In the PLS literature it is often stated that the total number of

latent variables should be at least equal to the total number

of expected factors in the measured spectrum [1,3]. In this

subsection we formalize this statement in the context of the

probabilistic input model (1). We thus assume that each

spectral data point depends on the substance of interest in

prediction, y, and on an additional set of k random variables,

u1; . . . ; uk, through relation (1). We assume that

v0 =2 Spanfv1; . . . ; vkg and that the (kþ 1)� (kþ 1) covariance

matrix C of y and u1, . . . ,uk is of full rank. Otherwise, as in the

case of closures, at least one random variable is linearly

dependent on the others and an equivalent model with a

smaller number of random variables can be formulated.

Note that the last assumption implies that we have a calibra-

tion set of at least kþ 1 data points. Similarly we assume that

all vectors vi are linearly independent. Otherwise an equiva-

lent reduced model with fewer random variables can be

defined. We can now prove the following theorem.

Theorem 1
Under the above conditions, after at most kþ 1 latent vari-

ables, the error produced by the PLS algorithm is zero.
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Proof
According to Reference [24], at each step of the PLS algo-

rithm a new score t is computed such that it is uncorrelated

with all previous scores and such that it has maximal

correlation with y. Under the assumptions of our probabil-

istic model, each such score is a linear combination of all the

substances, i.e.

ti ¼ �
ðiÞ
0 yþ

Xk
j¼1

�
ðiÞ
j uj

where the coefficients �
ðiÞ
j depend on the correlations be-

tween the various random variables as well as on the dot

products of their characteristic spectral responses. The con-

dition of no correlation between ti and all other latent

variables tj means that the vectors aðiÞ ¼ ð�ðiÞ
0 ; . . . ; �

ðiÞ
k Þ are

orthogonal under the quadratic form C, since

Eftitjg ¼ aðiÞCðaðjÞÞ0 ¼ 0

where a0 is the transpose of the row vector a. Since we

assumed that C is a full rank matrix, it follows that the

vectors aðiÞ are independent in Rkþ1. Therefore, with at most

kþ 1 such vectors, it is possible to find a linear combination

of them that gives the first variable y. Once this is achieved,

the error in the prediction of y is zero and the PLS algorithm

stops. &

The proof of this theorem, as well as the analysis of PLS

with two latent variables presented in the previous subsec-

tion, also clarifies some points concerning the interpretation

of the latent variables and of the projection vectors wi.

According to this statistical analysis, the latent variables ti
are all linear combinations of the original components, and

the projection vectors wj are linear combinations of the

spectral responses of these components. The exact coeffi-

cients for all these combinations are in general complex

functions of the statistical correlations between the different

components and of the physical interferences between their

corresponding spectral responses. Therefore, as is well

known empirically, for complex systems with many possibly

correlated components, chemical interpretation of these vec-

tors and latent variables is usually not feasible. Moreover, as

proven in the next subsection, although different finite data

sets with different correlations between the various compo-

nents in them would yield different intermediate projections,

their end result remains the same, an appropriately scaled

version of the NAS.

4.4. PLS¼NAS
Theorem 2
Under the above conditions, in the absence of noise, the

regression vector computed by PLS corresponding to a zero

prediction error is a constant times the net analyte signal.

Proof
According to the previous theorem, after at most kþ 1 steps,

PLS achieves a zero prediction error. Assume that PLS

achieves this zero prediction error after l steps. The corre-

sponding predictor is thus given by

ŷy ¼
Xl
i¼1

qiti

The coefficients ti are all given by projections ~wwi of the

original data. The projections ~wwi are in general different

from the original projections ~wwi, because at each iteration

of the PLS algorithm we subtract the quantity tapa from the

current data xa�1. Thus

ŷy ¼ x �
Xl
i¼1

qi ~wwi

 !

and the regression vector r is given by

r ¼
Xl
i¼1

qi ~wwi

By construction, each of these projections ~wwi is a linear

combination of the original vectors vi. Therefore there exist

coefficients �0; . . . ; �k, such that

r ¼ �0v0 þ
Xk
i¼1

�ivi

Since ŷy ¼ y (perfect prediction with zero error), �0 6¼ 0

and the vector r must be orthogonal to all the other

vectors fvigi�1. Therefore, by definition, the vector r is

equal to the net analyte signal up to a normalization

constant. &

5. PLS IN THE PRESENCE OF NOISE

In this section we relax the idealized assumption of error-

free data and consider the effect of noise in the spectral data

on the PLS algorithm. We restrict our analysis to the popula-

tion setting with an infinite training set. These results can

therefore be viewed as the asymptotic limit of PLS on noisy

data as the size of the training set n ! 1. The analysis of PLS

with a finite and noisy calibration set is considered in

Reference [14].

We first consider a system with a single component, for

which we assume input data of the form

~xx ¼ yv0 þ �n ð12Þ

where n is a random noise vector in Rp whose p co-ordinates

are all independent identically distributed random variables,

uncorrelated with the substance y and normally distributed

with zero mean and unit variance, and � is a measure of

noise strength.

We follow the steps of the PLS algorithm. In the infinite

population setting, the best projection w1 is unaffected by

noise and in this case given by w1 ¼ Efy~xxg ¼ Vyv0. The

corresponding latent variable t1, however, does contain a

noise contribution:

t1 ¼ w1 � ~xx ¼ Vyðkv0k2yþ �n � v0Þ

A simple computation shows that

q1 ¼ Efyt1g
Varðt1Þ

¼ 1

Vykv0k2 þ �2

Therefore the PLS predictor is

ŷy ¼ q1t1 ¼
Vy

Vykv0k2 þ �2
ðjjv0jj2 yþ �n � v0Þ
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which corresponds to a shrunk version of the noise free

regression vector

r ¼
Vykv0k2

Vykv0k2 þ �2

v0

kv0k2
ð13Þ

This shrinkage of the regression vector leads to a prediction

bias towards the mean

jEfŷy j ygj ¼
Vy

Vy þ �2
jyj < jyj

with a corresponding mean squared error of prediction

MSEP ¼ �2

kv0k2

1

1 þ �2

Vykvk2

This shrinkage, due to the fact that PLS is an inverse

calibration procedure, has been studied extensively by var-

ious authors [1,7,29,30]. An interesting property in the con-

text of the assumed model (12) for the spectra is that with an

infinite training set the regression vector (13) is optimal under

a mean squared error of prediction criterion. As we now

show, this optimality is true in the more general case of (2)

with an arbitrary number of components.

Theorem 3
For an infinite training dataset sampled according to (1) and

(2), PLS regression is optimal under a mean squared error of

prediction criterion.

Proof
For simplicity we prove the theorem for the case in which for

error-free samples PLS requires kþ 1 latent variables for a

zero prediction error. This implies in particular that the

vectors fvjgkj¼0 are linearly independent. Let ropt be the

optimal regression vector that minimizes the mean squared

error of prediction

min
r2Rp

Efðŷy� yÞ2g ð14Þ

where ŷy ¼ x � r, and let rPLS be the regression vector com-

puted by PLS.

To find the optimal regression vector ropt, we decompose it

as

ropt ¼
Xk
j¼0

�jvj þ
Xp�k�1

j¼1

�jv
?
j ð15Þ

where the set fv?
j g

p�k�1
j¼1 is an orthogonal completion of

fvjgkj¼1 to a basis of Rp. Inserting (15) into (14) and taking

partial derivatives with respect to �j and �j, we obtain a

linear system whose solution gives �j ¼ 0 for all j. Therefore

ropt 2 Spanfvjgkj¼0. We now consider the regression vector

computed by PLS. By construction,

ŷyPLS ¼
Xk
i¼0

qiti

where ti ¼ x � ~wwi, and thus

rPLS ¼
X
i

qi ~wwi

A careful examination of the steps in PLS shows that, in the

case of unstructured noise, both fwig and fpig belong to

Spanfvjgkj¼0. In addition, each ~wwi can be written as

~wwj ¼ wi �
X
j<i

ai;jwj

for some coefficients ai;j. Since fwig are orthogonal [5], it

follows that f ~wwig are linearly independent and therefore

form a basis for Spanfvjgkj¼0. The regression vector computed

by PLS is simply the result of an ordinary least squares

regression on these projections. This is equivalent to mini-

mizing (14) under the restriction that rPLS 2 Spanf ~wwjgkj¼0.

However, since the result is independent of the choice of a

basis and depends only on the underlying vector space, and

since Spanf ~wwjgkj¼0 ¼ Spanfvjgkj¼0, it follows that rfPLSg ¼
rfoptg.

We remark that PLS is not the only procedure that is

asymptotically optimal. A similar proof shows that PCR is

also asymptotically optimal in the presence of noise under

the same conditions. Finally, note that in the presence of

noise the optimal regression vector is not purely propor-

tional to the NAS. Rather, it contains small perturbations of

the order of �2 in the directions of all the other components in

the system, with coefficients that depend on their statistical

correlations and physical interferences. Therefore preproces-

sing algorithms that attempt to remove variability in the

spectrum that is uncorrelated with y are in general asymp-

totically suboptimal for prediction purposes. They may,

however, yield better and more robust predictions in the

case of small finite training sets, since these methods require

in general a smaller number of latent variables.

6. EXAMPLES

6.1. Three components with closure
In the paper by Haaland and Thomas [11] the following

example of a system with three components is presented.

The noise-free spectral signal is given by

x ¼ yv0 þ u1v1 þ u2v2 ð16Þ

where the variables y, u1 and u2 satisfy the closure constraint

yþ u1 þ u2 ¼ 1 ð17Þ

From a calibration set of 16 noise-free samples the first

projection vector w1 as well as the resulting regression vector

found by PLS are calculated numerically and a discussion of

the interpretation of these two vectors is given.

In this subsection we show how these two quantities can

be computed analytically by our analysis and discuss some

of the implications of these results for interpretation pur-

poses. From the graphs presented in Reference [11], we

estimate the unspecified response vectors by

v0 ¼ 0:7exp � t� 15

6

� �2
" #

þ 2exp � t� 55

4

� �2
" #

v1 ¼ 2:35exp � t� 45

5

� �2
" #

þ 1:4exp � t� 82

6

� �2
" #

v2 ¼ 1:4exp � t� 51

5

� �2
" #

þ exp � t� 78

5

� �2
" #
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Combining Equations (16) and (17), one can equivalently

write the signal as

x ¼ v2 þ yðv0 � v2Þ þ u1ðv1 � v2Þ

From the 16 samples given in the simulated example of

Reference [11], we have that Efyg ¼ Efu1g ¼ 1=3. Therefore,

after mean centering, we obtain a signal with only two

components, i.e.

x ¼ ðy� 1=3Þðv0 � v2Þ þ ðu1 � 1=3Þðv1 � v2Þ

In addition, Var(y)¼ 14/900¼ 0.0155 and Cov((y� 1/3),

(u1� 1/3))¼ 0.1038. Therefore, according to (4), the first

projection is

w1 ¼ VarðyÞðv0 � v2Þ
þ Covððy� 1=3Þ; ðu1 � 1=3ÞÞðv1 � v2Þ

¼ 0:0155v0 þ 0:1038v1 � 0:119v2

Note that this vector is not equal to v0 owing to the correla-

tions between the different components in the system. This

vector is plotted in Figure 1 (left) and indeed resembles the

one computed numerically in Reference [11] by the PLS

algorithm (their Figure 3-B). According to our analysis, the

regression coefficient found by PLS should be equal (up to

normalization) to the net analyte signal. In Figure 1 (right)

we have plotted the net analyte signal corresponding to v0.

This vector indeed resembles in shape the one found com-

putationally in Reference [11] (their Figure 3-C). The differ-

ences between the two vectors are due to our approximation

of the unspecified response vectors.

Another few remarks about the simulation data of Refer-

ence [11] are relevant. First of all, as an outcome of our

analysis, we see that PLS with two latent variables will give

a zero prediction error even though there are three compo-

nents in the spectral data. As noted by Haaland and Thomas

[11], this is due to the constraint (17), which mathematically

yields a new model with only two random variables.

Addition of a random baseline and a random drift means

mathematically addition of two more components (random

variables). Therefore, according to our analysis, since these

four response vectors are linearly independent, the noise-free

data would require four latent variables to achieve a zero

prediction error, as is indeed observed in their simulations.

Another important point concerns calibration design, i.e.

how should calibration samples be chosen for an optimal

prediction. Our analysis shows that in the noise-free case the

exact population of the calibration set (with possible differ-

ent correlations between the random variables) is unimpor-

tant as long as all possible different spectral components are

present in the calibration set, because, by the end of the day,

the regression vector computed by the PLS algorithm is the

net analyte signal times a multiplicative constant. In the ideal

noise-free case this result is independent of the training set

size and the exact correlations amongst the different random

variables present in the training set. An answer to this

question in the case of noisy measurements is the subject

of future research.

6.2. A three-component system
As a second example we consider a system with three

independent components y, u1 and u2 and corresponding

spectra v0, v1 and v2, shown in Figure 2 (left). All three

spectra are sums of Gaussians with different centers, widths

and amplitudes. In this example, only the substance u1 has a

spectrum interfering with that of y. However, PLS requires

three latent variables to achieve a zero prediction error, with

the resulting regression vector shown in Figure 2 (right). The

intuitive explanation for this result is as follows. To compute

the value of y from the signal x, we need to take out

the contribution of the only interfering substance u1, for

example by estimating the value of u1 and its spectral

response v1. However, substance u2 is interfering with u1,

and this interference (with u1!) also needs to be taken into

Figure 1. The first projection vectorw1 (left) and the net analyte signal

(right) corresponding to the example of Reference [11].

Figure 2. The three spectra of the three components (left), from top

to bottom v0, v1 and v2 respectively, and the corresponding net

analyte signal (right).
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account. Therefore, even though u2 does not directly inter-

fere with y, PLS requires three latent variables for a zero

prediction error.

Another point shown in this figure is that the final regres-

sion vector can have a region of non-vanishing coefficients

where the original substance does not have any signal re-

sponse at all [31]. Therefore wavelength selection schemes that

retain regions where the regression vector is large are not

necessarily optimal, as pointed out also in Reference [32]. In

this specific example, retaining only the first 60 wavelengths

gives a model with only two latent variables instead of three.

In the case of finite and noisy calibration data, depending on

the noise level and on the number of calibration samples,

taking only these wavelengths could possibly yield improved

overall performance of the final regression model.

6.3. A noisy two-component system
Consider an infinite training set with noisy data according to

~xx ¼ yv0 þ u1v1 þ �n

For simplicity we analytically analyze the optimal regression

in the case where kv0k ¼ kv1k ¼ Vy ¼ Vu1
¼ 1, with c1¼ 0, so

there is no correlation between y and u1. In this case the

optimal regression vector (also computed by PLS) is

ropt ¼
1

ð1 þ �2Þ2 � �2
½ðv0 � �v1Þ þ �2v0�

where � ¼ v0 � v1, so that v0 � �v1 is the net analyte signal

vector and the corresponding optimal mean square error of

prediction is

MSEPopt ¼ �2 1 þ �2

ð1 þ �2Þ2 � �2

¼ �2

1 � �2

1 þ �2

1 þ 2�2 þ �4

1 � �2

ð18Þ

Note that in the presence of noise the optimal regression

vector is not equal to the net analyte signal. Rather, it is a

shrunk version of it added by a small amount of the pure

spectral response v0. The larger the noise, the more the

regression vector is tilted in the direction of the pure spec-

trum v0, as also seen in the simulations of Brown [22].

Instead of PLS, we now consider a regression model built

by HLA [12], one of many methods that first attempt to

remove the effects of u1 from the noisy spectrum. In this case

the resulting regression vector constructed from an infinite

training set is simply the net analyte signal vector, with a

mean squared error of prediction given by

MSEPHLA ¼ �2

1 � �2
ð19Þ

Comparing (19) and (18), we see that if � and � are small then

both methods have a similar performance. The advantage of

PLS comes about when either the noise � is large or the

interference between the spectral responses v0 and v1 is

large, leading to an � close to unity.

7. SUMMARY

In this paper we have presented a mathematical and

statistical analysis of PLS under a specific probabilistic

model of the input data based on Beer’s law. Our analysis

provides a theoretical verification of some empirically

well-known and observed properties of PLS. It shows

that in the error-free case the output of PLS is a scaled

version of the net analyte signal vector. In the case of an

infinite but noisy training set, while PLS is optimal under a

mean squared error criterion, the resulting regression

vector is not purely proportional to the net analyte signal,

but rather depends in general on all the components and

spectral responses in the system.

Our analysis is limited to the cases of either a finite

error-free setting or a noisy but infinite population setting.

While many simulations have studied the effects of various

parameters on PLS and other competing algorithms in the

presence of a finite and noisy training set, a theoretical

statistical analysis in this case is still an open research

problem [14].

Acknowledgements
The authors would like to thank Frederick Warner for

many interesting discussions.

REFERENCES

1. Martens H, Naes T. Multivariate Calibration. Wiley:
Chichester, 1989.

2. Naes T, Isaksson T, Fearn T, Davies T. User-friendly Guide
to Multivariate Calibration and Classification. NIR Publica-
tions, Chichester, 2002.

3. Wold S, Sjostrom M, Eriksson L. PLS-regression: a basic
tool of chemometrics. Chemometrics Intell. Lab. Syst. 2001;
58: 109–130.

4. Wold S. Discussion. Technometrics 1993; 35: 149–156.
5. Hoskuldsson A. PLS regression methods. J. Chemometrics

1988; 2: 211–228.
6. Helland IS. Some theoretical aspects of partial least

squares regression. Chemometrics Intell. Lab. Syst. 2001;
58: 97–107.

7. Frank I, Friedman JH. A statistical view of some
chemometrics regression tools. Technometrics 1993; 35:
109–148.

8. Helland IS, Almoy T. Comparison of prediction methods
when only a few components are relevant. J. Am. Statist.
Assoc. 1994; 89: 583–591.

9. Garthwaite PH. An Interpretation of partial least
squares. J. Am. Statist. Assoc. 1994; 89: 122–127.

10. Thomas E, Haaland D. Comparison of multivariate cali-
bration methods for quantitative spectral analysis. Anal.
Chem. 1990; 62: 1091–1099.

11. Haaland D, Thomas E. Partial least-squares methods
for spectral analyses. 1. Relation to other quantitative
calibration methods and the extraction of qualitative
information. Anal. Chem. 1988; 60: 1193–1202.

12. Berger A, Koo TW, Itzkan I, Feld MS. An enhanced
algorithm for linear multivariate calibration. Anal. Chem.
1998; 70: 623–627.

13. Xu L, Schechter I. A calibration method free of optimum
factor number selection for automated multivariate ana-
lysis. Experimental and theoretical study. Anal. Chem.
1997; 69: 3722–3730.

14. Nadler B, Coifman RR. An exact asymptotic formula for
the error in CLS and in PLS: the importance of feature
selection in multivariate calibration. J. Chemometrics
(submitted).

15. Lorber A, Faber K, Kowalski BR. Net analyte signal cal-
culation in multivariate calibration. Anal. Chem. 1997; 69:
1620–1626.

PLS, Beer’s law and the NAS 53

Copyright # 2005 John Wiley & Sons, Ltd. J. Chemometrics 2005; 19: 45–54



16. Lorber A. Error propagation and figures of merit for
quantification by solving matrix equations. Anal. Chem.
1986; 58: 1167–1172.

17. Kvalheim OM, Karstang TV. Interpretation of latent-
variable regression models. Chemometrics Intell. Lab. Syst.
1989; 7: 39–51.

18. Seasholtz MB, Kowalski BR. Qualitative information
from multivariate calibration models. Appl. Spectrosc.
1990; 44: 1337–1348.

19. Geladi P, MacDougall D, Martens H. Linearization and
scatter-correction for near-infrared reflectance spectra
of meat. Appl. Spectrosc. 1985; 39: 491–500.

20. Barnes RJ, Dhanoa MS, Lister SJ. Standard normal vari-
ate transformation and de-trending of near-infrared
difiuse reflectance spectra. Appl. Spectrosc. 1989; 43:
772–777.

21. Wold S, Antti H, Lindgren F, Ohman J. Orthogonal sig-
nal correction of near-infrared spectra. Chemometrics
Intell. Lab. Syst. 1998; 44: 175–185.

22. Brown CD. Discordance between net analyte signal the-
ory and practical multivariate calibration. Anal. Chem.
2004; 76: 4364–4373.

23. Helland IS. Partial least squares regression and statistical
models. Scand. J. Statist. 1990; 17: 97–114.

24. Gustafsson M. A probabilistic derivation of the partial
least-squares algorithm. J. Chem. Info. Comput. Sci. 2001;
41: 288–294.

25. Goicoechea H, Olivieri A. Enhanced synchronous spec-
trofluorometric determination of tetracycline in blood
serum by chemometric analysis. Comparison of partial
least-squares and hybrid linear analysis calibrations.
Anal. Chem. 1999; 71: 4361–4368.

26. Goicoechea H, Olivieri A. Wavelength selection by net
analyte signals calculated with multivariate factor-based
hybrid linear analysis (HLA). A theoretical and experi-
mental comparison with partial least-squares (PLS). Ana-
lyst 1999; 124: 725–731.

27. Coelho CJ, Harrop Galvo RK, Araujo M, Pimentel MF,
Cirino da Silva E. A solution to the wavelet transform
optimization problem in multicomponent analysis. Che-
mometrics Intell. Lab. Syst. 2003; 66: 205–217.

28. Bro R, Andersen C. Theory of net analyte signal vectors
in inverse regression. J. Chemometrics 2003; 17: 646–652.

29. Butler NA, Denham MC. The peculiar shrinkage proper-
ties of partial least squares regression. J. R. Statist. Soc. B
2000; 62: 585–593.

30. De Jong S. PLS shrinks. J. Chemometrics 1995; 9: 323–326.
31. Lorber A, Kowalski BR. The effect of interferences

and calibration design on accuracy: implications for
sensor and sample selection. J. Chemometrics 1988; 2:
67–79.

32. Brenchley JM, Horchner U, Kalivas JH. Wavelength
selection characterization from NIR spectra. Appl. Spec-
trosc. 1997; 51: 689–699.

54 B. Nadler and R. R. Coifman

Copyright # 2005 John Wiley & Sons, Ltd. J. Chemometrics 2005; 19: 45–54


