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Classical least squares (CLS) and partial least squares (PLS) are two commonmultivariate regression

algorithms in chemometrics. This paper presents an asymptotically exact mathematical analysis of

the mean squared error of prediction of CLS and PLS under the linear mixture model commonly

assumed in spectroscopy. For CLS regression with a very large calibration set the root mean squared

error is approximately equal to the noise per wavelength divided by the length of the net analyte

signal vector. It is shown, however, that for a finite training set with n samples in p dimensions

there are additional error terms that depend on r2p2=n2, where r is the noise level per co-ordinate.

Therefore in the ‘large p—small n’ regime, common in spectroscopy, these terms can be quite large

and even dominate the overall prediction error. It is demonstrated both theoretically and by

simulations that dimensional reduction of the input data via their compact representation with a

few features, selected for example by adaptive wavelet compression, can substantially decrease these

effects and recover the asymptotic error. This analysis provides a theoretical justification for the need

to perform feature selection (dimensional reduction) of the input data prior to application of

multivariate regression algorithms. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multivariate regression problems arise in the analysis of data

in diverse applications. When the number of samples, n, is

(much) larger than the number of regressors, p, and the

corresponding matrices are well conditioned, standard

methods such as ordinary least squares (OLS) can be typi-

cally applied. However, in many scientific fields, including

chemometrics in general and spectroscopy in particular, the

common situation is that the number of samples is much

smaller than the number of variables (n � p), in which case

ordinary least squares is indeterminate and thus inapplic-

able. The remarkable fact that predictions are possible even

in this setting stems from the (sometimes hidden) property

that, although the data are presented in a high-dimensional

space, they actually have a much lower intrinsic dimension-

ality d � n. For example, in a spectroscopic measurement of

a system with three components at 1000 different wave-

lengths, although the measured spectrum is represented in

a 1000-dimensional space, it is typically assumed to be in a

three-dimensional subspace (or at most a five-dimensional

subspace if the measuring device adds a random baseline

shift and a random slope to the signal).

In this setting, for which standard methods such as

OLS fail, classical least squares (CLS) and partial least

squares (PLS) are two common and very successful

algorithms applied in practice [1–4]. These methods are

sometimes viewed as performing dimensional reduction,

since in both CLS and PLS the data are projected onto a

few data-dependent directions and regression is performed

in this lower-dimensional subspace. The two methods differ

in the way this subspace is defined and in the regression

method employed in it. CLS, also known as the K-matrix

method, is a direct method that requires full knowledge of all

components in the training samples of the measured system

and is thus typically applicable only to very simple systems

[3]. Recently, however, modifications of the algorithm to

include unmodeled interferences have been suggested

[5,6], thus possibly extending its applicability. PLS, on the

other hand, is an indirect method that requires only knowl-

edge of the concentration of the substance of interest, is thus

more applicable than CLS and is the de facto standard

calibration method in spectroscopy [4].

An important theoretical and practical question is what is

the expected performance of these algorithms on future

samples given calibration on a finite and noisy training set,

and how does this performance compare with that of com-

peting algorithms such as principal component regression

(PCR) and ridge regression (RR)? In the chemometrics
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literature this problem was tackled mainly by direct applica-

tion of CLS, PLS and competing algorithms both on real data

sets and on simulated data sets that follow a linear mixture

model (see e.g. References [7–10]). In their seminal paper,

Thomas and Haaland [9] investigated the effects of eight

different parameters on the prediction error of CLS, PLS and

PCR by extensive Monte Carlo simulation studies. Wentzell

and Vega-Montoto [10] also made an extensive numerical

comparison of PLS and PCR with simulated data containing

many components. The main conclusion of these studies is

that most algorithms have a similar performance, with each

algorithm having its own regime of superiority so that no

one algorithm is everywhere optimal. On the theoretical

front, various works have attempted to estimate the predic-

tion error for specific data sets using various approximations

for error propagation [11–14], but no explicit formulae for

the linear mixture case were given.

In the statistical literature the subject of multivariate

calibration has been addressed in many works [15–20].

Much effort was put forth to elucidate the PLS algorithm

from a statistical point of view [21–24], although a theory for

the performance of PLS under the linear mixture model with

a finite and noisy training set was not considered. In terms of

theoretical formulae for the expected mean squared error of

prediction, most attention has been devoted to the study

of other multivariate regression algorithms such as the

generalized least squares and best linear predictor

algorithms and not of the more common CLS and PLS

algorithms. In addition, most works consider only the case

of more observations than variables, n > p, since these algo-

rithms become indeterminate when n < p. To overcome this

indeterminacy, minimal length regressors were proposed

[18,19]. Theoretical work on the mean squared error of

prediction was mainly done on the univariate case (only

one component in one dimension), where both asymptotic

and exact expressions for the root mean squared error of

prediction (RMSEP) as well as confidence regions have been

derived for various regressors [16,20,25].

Although both CLS and PLS perform a dimensional re-

duction, it is known empirically that an initial dimensional

reduction of the input data prior to application of these

algorithms is often very beneficial in practice. Most work

on this type of feature selection prior to application of

multivariate algorithms has focused on methods to opti-

mally select a subset of the original variables (wavelength

selection). Both Xu and Schechter [26] and Spiegelman et al.

[27] gave a theoretical justification for wavelength selection

based on an approximate analysis of the uncertainty error in

the computation of the regression vector under a linear

mixture model.

In this paper we extend these results and provide a

mathematical analysis of the expected RMSEP for both CLS

and PLS under the linear mixture model. For CLS we show

that, although the asymptotic error for a very large training

set is given by the noise level divided by the length of the net

analyte signal vector [11,28], for a finite training set of n noisy

samples there are additional correction terms of order

Oð1=nÞ, Oð1=n2Þ, etc. The interesting property we find is

that, although the 1=n term is typically multiplied by an Oð1Þ
coefficient, the 1=n2 term is multiplied by �2p2, where � is the

noise per co-ordinate and p is the dimensionality of the input

data. Therefore in the ‘large p—small n’ regime, common in

spectroscopy involving many more variables than samples,

this correction term may actually dominate the overall error.

From a statistical point of view these results are not surpris-

ing. In classification problems it is well known that the

performance of standard classification algorithms such as

Fisher’s linear discriminant analysis is greatly degraded in

the ‘large p—small n’ setting, since there appear correction

terms of the form �2p=n [29,30]. Therefore our results can be

viewed as the analogues of these well-known formulae to

multivariate calibration problems.

Indeed, many papers in the chemometrics literature show

empirically that an initial dimensional reduction prior

to application of PLS, typically achieved in practice by

wavelength selection, is quite beneficial in decreasing

prediction errors. Our error analysis, showing that some

error terms are of the form �2p2=n2, provides the theoretical

justification for this empirical finding, as also concluded by

Spiegelman et al. [27] and Xu and Schechter [26]. However,

while both these works (as well as many others) suggest

wavelength selection as the method of choice to perform

this initial dimensional reduction, in this paper we show

mathematically that, for complex systems with many

interfering components and lack of specificity at any single

wavelength, wavelength selection methods have severe

limitations and cannot in general achieve optimal prediction

errors. In contrast, we propose to use adaptive wavelet

feature selection algorithms [31,32] to perform this initial

dimensional reduction, and present some simulation results

that show their empirical success in achieving near-optimal

prediction errors. Thus our analysis provides a justification

and a better theoretical understanding of the role of wavelets

as a tool for feature selection prior to multivariate calibra-

tion. A survey of the recent literature indeed reveals

an increasing use of wavelets in the analysis of spectroscopic

signals, with empirical reports that this use decreases

(sometimes) the prediction errors of multivariate regression

algorithms [33–37].

The paper is organized as follows. In Section 2 we define

the probabilistic model of the input data and the multivariate

calibration problem. The analysis of CLS and PLS under this

model is described in Section 3. The issue of feature selection

is described in Section 4. Section 5 presents numerical

simulations that verify the results of our analysis. We

conclude with a discussion and summary in Section 6.

Mathematical proofs appear in the Appendix.

2. MULTIVARIATE CALIBRATION UNDER
THE LINEAR MIXTURE MODEL

2.1. Notation
We denote vectors by boldface lowercase letters, e.g. v, and

matrices by bold capital letters, e.g. C. The Euclidean norm of

a vector v is denoted kvk and its dot product with a vector w

is denoted v �w. Random variables are denoted by italic

lowercase letters, e.g. u0 and u1, while the mean of a random

variable u is Efug. Noisy estimates of noise-free quantities

have a hat on top, e.g. v̂v and ûu.
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2.2. The linear mixture model
We consider the standard multivariate calibration problem

in spectroscopy, namely the determination of analyte

concentration from the absorbance spectrum of a complex

multicomponent system, under the following probabilistic

setting for the input data. We consider a system containing k

different components, denoted u1; u2; . . . ; uk, where each

component uj is a random variable with mean �j and unique

spectral response vector vj 2 Rp. We denote by Cp the k� k

(population) matrix of second moments of these random

variables, with entries C
p
i;j ¼ Efuiujg. If all the averages

�j ¼ 0, then Cp is the covariance matrix. Therefore, with

some abuse of notation, we sometimes refer to Cp as the

covariance matrix.

We assume that Cp is of full rank and that the vectors

fvjgkj¼1 are linearly independent in Rp, as otherwise a

reduced model with fewer random components can be

formulated. Based on Beer’s law, we further assume that

the noise-free logarithm of the spectrum, denoted x, is

linearly related to the components via

x ¼
Xk
j¼1

ujvj ð1Þ

whereas the measured spectrum is noisy and given by

~xx ¼ xþ �n ð2Þ

where n is a random noise vector in Rp whose p co-ordinates

are independent identically distributed random variables

with zero mean and unit variance and � is a measure

of the level of noise. We assume that u1 is the substance

of interest and, without loss of generality, scale all the other

interfering components u2; . . . ; uk so that their corresponding

spectral responses have unit norm (kvjk ¼ 1 for j � 2). This

scaling has no effect on the final prediction of u1.

The basic multivariate calibration problem can be cast as

follows. Given a finite training set of n noisy samples,

f~xxi;uigni¼1, related via Equations (1) and (2), with

ui ¼ ðui;1; ui;2; . . . ; ui;kÞ the vector of components for the ith

sample, construct a regression fzunction f : Rp ! R to accu-

rately predict u1 from future samples ~xx. Since we assume a

linear relation between components and spectra, in this

paper we focus on linear regressors of the form

ûu1 ¼ fð~xxÞ ¼ r � ~xx

where r is the constructed regression vector. Note that in this

paper we consider models without an intercept and therefore

we do not mean center the data. As described below, mean

centering, which is a preprocessing step typically employed in

practice, does not qualitatively change our results.

Although this paper is written with a focus on chemo-

metric applications, referring to ~xx as the spectrum and ui as

the analyte concentrations, our analysis is general and thus

applicable to any other data modeled by Equations (1) and

(2). In the statistics literature the linear mixture model (1) is

also known as the standard multivariate linear regression

model [38], while problems in which the predictor variables

are noisy as in Equation (2) are generally termed ‘error-in-

variables’ (EIV) problems.

The model (1)–(2) has been used extensively as a bench-

mark in many simulation studies and in tests of new

algorithms [9,10,26,39]. In this paper we present an asymp-

totic theory for the prediction error of both CLS and PLS on

this model. For simple systems with a single component we

obtain explicit formulae, asymptotically exact in the limit of

small noise, for the expected mean squared error of predic-

tion as a function of the number of training samples, n, the

noise level � and the dimension p of the signals. Although for

complex multicomponent systems the explicit computation

of the different constants is essentially algebraically intract-

able, the prediction error has similar qualitative features as

in the case of a single-component system, where an explicit

formula is available.

3. THE EXPECTED PREDICTION ERROR

3.1. Classical least squares
For the paper to be reasonably self-contained, we first briefly

describe the steps in the classical least squares algorithm.

Given a finite training set f~xxi;uigni¼1, in CLS we first compute

estimates fv̂vjg for the (unknown) spectral responses fvjg by

least squares minimization:

min
fvjg

Xn
i¼1

~xxi �
Xk
j¼1

ui;jvj

������
������

2

The solution is

v̂v1

v̂v2

..

.

v̂vk

0
BBB@

1
CCCA ¼ C�1

Ef~xxu1g
Ef~xxu2g

..

.

Ef~xxukg

0
BBB@

1
CCCA ð3Þ

where C is the k� k matrix of second moments of the k

components u1; . . . ; uk in the training set, assumed to be of

full rank.

We denote by V̂V the k� k matrix of spectral interferences,

with entries V̂Vi;j ¼ v̂vi � v̂vj. Then the regression vectors com-

puted by CLS for the k different components are given by

r1

r2

..

.

rk

0
BBB@

1
CCCA ¼ V̂V

�1

v̂v1

v̂v2

..

.

v̂vk

0
BBB@

1
CCCA ð4Þ

Finally, prediction of u1 for new spectra ~xx is given by

ûu1 ¼ ~xx � r1

The question considered in this paper is how well ûu1

approximates the unknown value u1, and specifically what

can be said about the mean squared error of prediction

Efðûu1 � u1Þ2g, when the regression vector r1 is constructed

from a finite and noisy training set. Before considering the

case of finite n, we first state the following well-known result

about CLS regression as the number of training samples

approaches infinity.

Theorem 1

As n ! 1, the regression vector computed by CLS for the jth

component is given by

rj ¼
v?j

kv?j k
2
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where v?j is the net analyte signal vector of the jth component

[11]. The corresponding root mean squared error of predic-

tion is given by

RMSEPðCLS; n ¼ 1Þ ¼ �

kv?j k
ð5Þ

A proof of this theorem appears in the Appendix. It

shows that, as n ! 1, CLS computes all spectral responses

fvjg without error, and by Equation (4) also computes

an error-free net analyte signal vector. The prediction

error is therefore due only to the noise in the new unseen

spectral data, and for an unbiased estimator CLS yields the

optimal prediction possible under a mean squared error

criterion.

When the regression vector is computed from a finite set of

noisy samples, the prediction errors may be significantly

larger than in Equation (5), since various estimates in the

CLS algorithm become noisy. Intuitively, multivariate

calibration is more difficult either when different compo-

nents are highly correlated in the training set or when there

are non-negligible interferences amongst the different

spectral responses vj. In order to quantify these effects, we

define

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

u2
i;j

s
ð6Þ

and denote by �0 the minimal eigenvalue of the covariance

matrix C of the training set. In addition, we define V to be the

k� k matrix of interferences of the noise-free spectral re-

sponses v1; . . . ; vk, with entries Vi;j ¼ vi � vj, and denote by �0

its smallest eigenvalue.

The following theorem and its corollary, both proven in

the Appendix, quantify the prediction error in CLS with a

finite training set.

Theorem 2

Let r1 denote the estimated regression vector computed by

CLS with a finite number of training samples. Then

r1 ¼ v?1
kv?1 k

2
þ �ffiffiffi

n
p vs

�0�0
f1 þ

�2

n

s2

�2
0�0

f2 þOð�3Þ ð7Þ

where v ¼ maxj kvjk, s ¼ maxj sj, f1 is a random noise vector

in Rp whose p co-ordinates all have zero mean and Oð1Þ
variance and f2 is a vector whose p co-ordinates are all OðpÞ.
The p co-ordinates of f1 are all linear combinations of the

noises ni in the training set, with the exact coefficients being

complex functions of the covariance matrix C and the

spectral responses vj. The vector f2, on the other hand, is a

complex quadratic function of the original noises in the

training set, such that all its p co-ordinates are OðpÞ.
Equation (7) shows that for the case of a finite training set

there can be substantial differences between the noise-free

net analyte signal and the one estimated by CLS. The

following corollary quantifies the expected mean squared

error of prediction given the form (7) for the estimated

regression vector. The expected squared prediction error is

defined as the squared prediction error averaged over all

possible noises in the n spectra of the training set, while

keeping the concentration values fixed.

Corollary 1
The expected mean squared error of prediction for u1 admits

the form

EfMSEPðCLS; nÞg ¼ Efðûu1 � u1Þ2g

¼ �2

v?1
�� ��2

1 þ c1

n
þ �2p2

n2
ðc2 þ oð1ÞÞ

� � ð8Þ

where the constants c1 and c2 are complicated functions of

the covariance matrices C and Cp and the spectral responses

vj but are independent of �, n and p.

Example 1
In the case of a system with a single component u1 (k ¼ 1) the

coefficients in (7) and (8) can be evaluated explicitly. Speci-

fically, given a training set of n samples of the form

~xxi ¼ uivþ �ni, where for simplicity the subscript notation is

dropped from v1 and u1, the estimate v̂v can be written as

v̂v ¼ vþ �ffiffiffi
n

p
s
n̂n ð9Þ

where s is given by (6) and

n̂n ¼ 1ffiffiffi
n

p
s

Xn
i¼1

uini

is a normal random variable in Rp whose p co-ordinates all

have zero mean and unit variance. The regression vector is

r ¼ v̂v=kv̂vk2, leading to the following predicted value ûu for a

new noisy sample ~xx:

ûu ¼ u
vk k2

v̂vk k2
þ �ffiffiffi

n
p

s

n̂n � v
v̂vk k2

 !
þ �

n � v̂v
v̂vk k2

The corresponding expected mean squared error of predic-

tion is

EfMSEPg ¼ �2

vk k2

"
1 þ 1

n

Efu2g
s2

þ �2

vk k2s2

Efu2g
s2

p2 � 8p� 24

n2
� p� 4

n

� �
þOð�4Þ

#

ð10Þ

A detailed derivation of this formula appears in the

Appendix. In principle it is obtained by an expansion of

various quantities as power series in �. Note that when p ¼ 1

we recover the well-known asymptotic formula for the

expected MSEP in univariate calibration [40], up to an

additional 1=n term due to mean centering (obviously absent

in our formula, as we did not mean center the data).

We note that, for the case of a single component, Nishii

and Krishnaiah [41] derived an exact formula for the

expected MSEP in terms of moments of a Poisson random

variable. Therefore Equation (10) can be derived by comput-

ing the asymptotic expansion of the moments of the Poisson

random variable in their formula. This approach, however,

is not applicable to more complex systems where exact

expressions for the MSEP are unknown.

3.2. Partial least squares
While CLS is a direct calibration procedure requiring knowl-

edge of all components in the system, PLS is an inverse
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calibration method that requires knowledge of only the

analyte of interest. Owing to the difference between direct

and inverse calibration, in the presence of noisy data the

regression vectors of PLS and CLS differ even in the asymp-

totic limit n ! 1. The following theorem, proven in

Reference [24], characterizes the limiting behavior of PLS

as n ! 1 on inputs of the form (1) and (2). For the analysis

we assume that k latent variables are needed in the noise-free

case to reach a zero prediction error.

Theorem 3
Assume that training samples f~xxi;uigni¼1 are random realiza-

tions from a population model with covariance matrix Cp.

Then C ! Cp as n ! 1 and the regression vector computed

by PLS with k latent variables converges (with probability

one) to the optimal one under a mean squared error criterion.

In other words, as n ! 1, the regression vector computed

by PLS, denoted rPLS, is equal to the optimal vector

that minimizes the (population) mean squared prediction

error

min
r2Rp

Efðu1 � ~xx � rÞ2g

where averaging is with respect to all possible values for the

k concentrations u1; . . . ; uk and over all possible noise vectors

n in ~xx, all weighted by their corresponding probabilities. In

general, owing to the presence of noise, rPLS is not directly

proportional to the net analyte signal vector [24]. However, it

can be shown that

rPLS ¼ v?1

v?1
�� ��2

þ �
X
j

�jvj þOð�2Þ

where the coefficients �j are complex functions of the covar-

iance matrix Cp and the spectral responses vj. The following

theorem shows that, nonetheless, the effect of a finite and

noisy training set on PLS is similar to its effect on CLS.

Theorem 4
Let rPLSðnÞ denote the regression vector computed by PLS

with k latent variables based on a finite number, n, of training

samples. Then

rPLSðnÞ ¼ rPLS þ �1
�ffiffiffi
n

p f1 þ �2
�2

n
f2 þOð�3Þ ð11Þ

where f1 is a random noise vector in Rp whose p co-ordinates

all have zero mean and unit variance, while f2 is a random

noise vector whose p co-ordinates are all OðpÞ. The p co-

ordinates of f1 are all linear combinations of the noises ni in

the training set, with the exact coefficients being complex

functions of C and vj. Similarly, all p co-ordinates of f2 are

quadratic in the noises ni, and the coefficients �1 and �2

depend only on C and vj but not on �, n and p.

In contrast to CLS, where explicit bounds on �1 and �2

can be derived, similar formulae for PLS are much more

difficult to compute, since PLS is an iterative algorithm.

In the Appendix we follow the first few steps in the PLS

algorithm, sketching the proof that the regression vector

has the form (11). A regression vector of this form, in turn,

leads to the following estimate for the expected prediction

errors.

Corollary 2
The expected mean squared error of prediction of PLS

admits the asymptotic form

EfMSEPðPLSÞg ¼ MSEPðPLS; n ¼ 1Þ

1 þ c1

n
þ c2

�2p2

n2
ð1 þ oð1ÞÞ

� � ð12Þ

where c1 and c2 are complex functions of C;Cp and the

spectral responses vj but are independent of �, n and p.

The proof of this corollary is essentially the same as that

for the case of CLS and is thus omitted.

Example 2
Consider PLS on a single-component system. In this case,

exact calculations of c1 and c2 are possible. First we consider

the limit n ! 1, where the optimal regression vector is

given by

rPLS ¼ V1

V1 vk k2þ�2
v

with V1 ¼ Efu2
1g and the subscript notation dropped from

v1. The corresponding optimal root mean squared prediction

error is

RMSEPðPLS; n ¼ 1Þ ¼ �

vk k
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ �2= vk k2V1

q ð13Þ

However, in the case of a finite training set and up to Oð�2Þ
the expected MSEP is given by

EfMSEPðPLSÞg � �2

vk k2B2

"
1 þ 1

n

V1

s2

þ �2

vk k2s2

V1

s2

ðpþ nÞ2 þ 4ðpþ nÞ
n2

þO
p

n

� � !#

ð14Þ

where

B2 ¼ 1 þ �2

vk k2s2

 !2

þ �2

vk k2s2n
ð4pþ 2nÞ þOð�4Þ

The derivation of (14) is similar to that of (10) for CLS with

a single component and is therefore not described in detail.

Comparison of (14) and (10) reveals that both PLS and CLS

with one component have a similar performance and a

similar behavior in the ‘large p—small n’ regime as long as

�=skvk � 1. Only when �=skvk is significantly larger than

zero is B significantly larger than one, so that the shrinkage

of PLS and its associated MSE superiority over CLS are

evident.

3.3. Implications and applications

3.3.1. ‘The good, the bad and the ugly’ in multivariate
calibration
Equations (7) and (8) for CLS and their analogues for PLS

show that there are three main factors influencing the

expected mean squared prediction error. The first factor

(the good) is the sensitivity �=kv?1 k, i.e. the noise strength

divided by the length of the net analyte signal vector. The

norm of the net analyte signal measures how unique the
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spectrum of the analyte of interest is in comparison with the

spectra of the other interfering components, and the larger it

is, the smaller are the prediction errors. The second factor

(the bad) is the degree of statistical correlation between all

components in the training set and the amount of interfer-

ence of their spectral components, as measured by the

eigenvalues �0 and �0 respectively. The larger the correla-

tions or spectral interferences, leading to smaller values of �0

or �0, the worse is the expected prediction error. The last

factor (the ugly) is the effect of the dimensionality of the

signals. With all other parameters kept fixed, the higher the

dimension, the more noisy are the various estimates,

possibly leading to quite large prediction errors.

3.3.2. Errors in the ‘large p—small n’ regime
Many papers on univariate calibration consider the asymp-

totic expansion of the error only up to the Oð1=nÞ terms and

do not explicitly consider the higher-order Oð1=n2Þ term.

While in univariate calibration the Oð1=n2Þ term is indeed

typically negligible with respect to the lower-order terms in

n, this is not necessarily so in multivariate calibration, and

more so in the ‘large p–small n’ regime typical of spectro-

scopic applications. This is because, as seen from (8) and (12),

these terms are multiplied by p2, which can be very large.

Therefore in the ‘large p—small n’ regime, common in spec-

troscopy, it is this third term that can be the dominant one.

3.3.3. Calibration design
Equation (7) for the form of the regression vector in CLS

provides a hint toward a good calibration design. A training

set with large correlations between the different compo-

nents, leading to a small value of �0, yields a relatively large

error in the regression vector and thus a larger prediction

error. Therefore in a controlled calibration setting the differ-

ent components should have as large a variance as possible

(if data are mean centered) and be as uncorrelated with each

other as possible.

3.3.4. The effect of mean centering
Mean centering of the spectral signals x and the concentra-

tions uj according to their mean values in the training set is a

common preprocessing algorithm, typically used to remove

a baseline shift (not present in our model). One interesting

question is the effect of mean centering on the prediction

performance of CLS or PLS. With the aid of (10) and (14) we

note that mean centering the concentrations leads to a

decrease in the value of s1, now being equal to the standard

deviation of the training set concentrations. This in turn

increases the value of �2=s2
1kvk

2 and thus increases the root

mean squared error of prediction. This analysis provides a

mathematical explanation for the numerical study of

Seasholtz and Kowalski [42] that reported an increase in

the RMSEP upon mean centering of their simulated data.

4. DIMENSIONAL REDUCTION, FEATURE
SELECTIONANDWAVELET COMPRESSION

Historically, CLS and PLS as well as PCR and other

multivariate calibration algorithms were regarded as full

spectrum methods, which eliminate the need for

wavelength selection [26]. Part of this is due to the fact

that, as proven by Lorber and Kowalski [12], the length of

the net analyte signal vector is an increasing function of the

number of co-ordinates, so asymptotically as n ! 1 there is

no need for wavelength selection under the linear mixture

model. However, in the chemometrics literature there are

many papers showing that, although PLS performs a dimen-

sional reduction through its computed projections, an initial

dimensional reduction prior to application of PLS is often

beneficial (if not critical) in decreasing prediction errors. This

initial step, in which the dimensionality of the signals is

reduced, is often referred to as feature or variable selection,

with the most common methods being algorithms that

choose a subset of the wavelengths (see e.g. References

[26,27,43]). In this section we formalize this empirical finding

in the context of our mathematical analysis. However, we

also show mathematically that, for complex systems with

many interfering components and lack of specificity at any

single wavelength, wavelength selection techniques cannot

in general achieve optimal prediction errors. Based on the

vast statistical literature on the properties and asymptotic

optimality of wavelets for signal compression (dimensional

reduction) [44,45], we propose to use adaptive wavelet

feature selection for this purpose [31,32].

Let T : Rp ! Rk denote a feature selection or dimensional

reduction transformation that takes the original p-dimen-

sional signals and outputs a k-dimensional representation

with k � p. Specifically, we consider the family of possible

feature selection transformations defined via the projection

of the original signals into k orthonormal vectors w1; . . . ;wk:

TðxÞ ¼ ðw1 � x;w2 � x; . . . ;wk � xÞ ð15Þ

In particular, this family includes all wavelength selection

methods, where each projection wj chooses a single

wavelength.

Consider the expected prediction error when applying

CLS for example on the reduced signals. Since T is a linear

operator, for a signal x corrupted by a noise vector np 2 Rp,

we have that

Tð~xxÞ ¼ Tðxþ �npÞ ¼ TðxÞ þ �TðnpÞ

Since T is composed of k orthonormal projections, under the

Gaussian noise model it follows that, if np is a standard

multivariate normal random variable in p dimensions, then

TðnpÞ is a standard multivariate normal in k dimensions.

Therefore the reduced signals TðxÞ follow the same linear

mixture model (1)–(2), only in a k dimensional space with the

spectral responses vj replaced by TðvjÞ. Therefore the same

formulae for the expected MSEP, Equations (8) and (12),

apply, only with the net analyte signal vector v?1 replaced by

Tðv?1 Þ and the number of co-ordinates p, replaced by k.

Specifically, for CLS we have that

EfMSEPðCLSðTxÞÞg ¼ �2

Tðv?1 Þ
�� ��2

1 þ c1

n
þ c2

�2k2

n2
ð1 þ oð1ÞÞ

� �

ð16Þ
This formula reveals the requirements from the dimen-

sional reduction operator T. It should be constructed such

that the length of the net analyte signal vector is

almost preserved (kTðv?1 Þk � kv?1 k) and yet the signals are

represented by as few features as possible (k � p). If the net
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analyte signal vector was known, then a single projection

with w1 ¼ v?1 would suffice. Since it is typically unknown a

priori, a different criterion for the construction of T is needed.

Wavelength selection schemes, and specifically those that

choose specific wavelengths based on their individual pre-

dictive ability, are obviously suboptimal in complex systems,

even though they may still achieve better prediction errors as

compared with full spectrum methods. The reason is that it

is possible to have spectral regions which are totally uncor-

related with the substance of interest and yet carry important

information for calibration, and thus have non-negligible

values of the net analyte signal in them (see e.g. Reference

[24] and the numerical example in the next section).

Since the net analyte signal is typically unknown a priori, a

possible different criterion is to simultaneously compress all

signals in the training set as best as possible by representing

each of them with only k features. If this compression is

almost perfect, then kTðv?1 Þk � kv?1 k. For a single smooth

signal corrupted by noise and sampled at p points (wave-

lengths), retaining only the set of wavelet coefficients above a

certain threshold is asymptotically almost optimal [44]. The

problem with this approach is that each signal will have its

own specific set of k wavelet features, whereas for multi-

variate calibration we require a set of k features that can

simultaneously describe all the spectra in the training set.

While there are many possible methods to solve this pro-

blem, in this paper we focus on its solution via the joint best

basis (JBB) algorithm [31,32]. In the JBB algorithm an ortho-

normal basis of wavelet features is constructed that best

describes the data under a given (additive) cost functional,

for example minimization of the overall entropy of the

signals as measured in this basis. A dimensional reduction

transformation T can then be defined by choosing the k most

significant coefficients (with the highest entropy) in this

construction. In the next section we present numerical

results that show this approach to be almost optimal for

prediction purposes.

We note that performing this initial dimensional reduction

with the joint best basis algorithm has some additional

advantages. The first is that this algorithm is fast, with

complexity of the order of Oðnplog pÞ operations. The

second is that wavelet operations are required only at the

model-building stage. Once the regression coefficient is

found in terms of these wavelet features, a regression vector

in terms of the original variables can be constructed and used

subsequently for new predictions without requiring any

wavelet transformations. Finally, for this dimensional reduc-

tion step it is possible to use additional spectral samples for

which knowledge of their chemical concentrations is un-

known, as is the case when a large test set is already

available. This leads to much better estimates of the best

spectral features and to smaller reconstruction and predic-

tion errors. Note that this use of additional test samples for

the initial dimensional reduction is not possible with many

wavelength selection algorithms.

Although under the linear mixture model wavelength

selection schemes are in general inferior to wavelet compres-

sion, for practical data sets wavelength selection may be

beneficial in at least two cases not covered in our simple

model: (i) removal of spectral regions where the spectral

intensities are not linearly related to the concentrations; (ii)

removal of spectral regions with much higher noise than

others. Therefore a combination of initial wavelength selec-

tion followed by dimensional reduction via adaptive wavelet

features may prove to yield better prediction errors on real

data sets.

5. NUMERICAL RESULTS

In this section we present the results of Monte Carlo simula-

tions on data with one and two components that follow

Equations (1) and (2). In the case of a single component we

also compare the results with the theoretical Equations (10)

and (14). The vectors v1 and v2 used in the simulations are

the digitized versions of

v1ðtÞ ¼ exp � t� 0:15

0:1

� �2
" #

þ 2 exp � t� 0:7

0:1

� �2
" #

v2ðtÞ ¼ exp � t� 0:725

0:1

� �2
" #

þ 0:5 exp � t� 0:6

0:05

� �2
" # ð17Þ

sampled at p equidistant points in the unit interval t 2 ½0; 1�
and normalized to have unit L2 norm. The functions v1ðtÞ
and v2ðtÞ are shown in Figure 1 (left). As obvious from

our analysis, the exact shape of the vectors is unimportant,

as it is only the length of the net analyte signal that affects

the overall error. We note that, in our simulations, increasing

the dimension p while keeping the noise level per

Figure 1. The two vectors v1 and v2 used in the simulations (left). The root mean

squared error of prediction as a function of dimension for CLS regression with one

component (middle) and for PLS (right).
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co-ordinate and the norms of the vectors v1 and v2 fixed

yields a harder calibration problem. This is in contrast to the

simulations of Thomas and Haaland [9] in which an increase

in the dimension yields an easier calibration problem owing

to the increase in the norm of the spectral response vectors.

In Figure 1 (middle) the root mean squared error of

prediction for CLS is compared with the theoretical Equation

(10), while in Figure 1 (right) the performance of PLS is

compared with Equation (14). For these graphs we took u1 to

be uniformly distributed in the region ½0; 1�, � ¼ 0:02, n ¼ 15

training samples and 8000 test samples. Keeping the values

of u1 in the training and test samples fixed, spectral signals in

different dimensions p between 24 and 1024 were randomly

generated by adding Gaussian noise to the signals, after-

wards building a regression vector from the training set and

testing its performance on the test samples. This procedure

was repeated 80 times (with the u1s fixed, generating new

noises each time) for statistical accuracy.

The choices of these parameters lead to values of

�2p2=n2s2
1kv1k2 between 0.01 and about 22.4. As seen from

the graphs, in this range of values there is excellent agree-

ment between theory and simulations. For small p the

RMSEP is only slightly larger than the asymptotic value of

�=kv1k ¼ 0:02. However, for large values of p e.g. p ¼ 800,

the RMSEP is more than three times as large. Another point

shown in the graphs is that indeed, as predicted by the

theoretical formulae, CLS and PLS have a similar perfor-

mance, since in these simulations �=s1kv1k � 1.

In the middle and right figures we also present the results

of first applying the joint best basis algorithm, retaining only

the best 10 features, and then applying CLS or PLS respec-

tively. For the computations we used Coiflets of order two as

the underlying wavelets, although the specific choice of the

wavelet does not much affect the results. As seen from the

graphs, an initial dimensional reduction by this data-driven

adaptive wavelet compression yields almost the optimal

asymptotic error. The choice of k ¼ 10 features was some-

what arbitrary. In principle the number of features k, can be

viewed as a meta-parameter with the optimal value chosen

by cross-validation.

For the case of two components the length of the net

analyte signal vector is kv?1 k � 0:4933. Therefore the optimal

error of CLS is �=kv?1 k � 0:0405, with PLS having a similar

asymptotic error since �=skv?1 k � 1. In Figure 2 we show the

RMSEP as a function of dimension for both PLS on the full

spectrum and PLS on the best 10 features as computed by the

joint best basis algorithm. These runs were done with n ¼ 20

training samples, with the second component u2 also uni-

formly distributed on [0,1] but independent of u1. Once

again the full spectrum method suffers from a sharp increase

in the prediction error as a function of dimension, while

applying an initial feature selection yields much smaller

prediction errors, only slightly larger than the optimal pre-

diction error, regardless of the initial dimension.

We now compare the performance of the common wave-

length selection algorithm of Reference [43] with feature

selection by the JBB algorithm. We present results for

p ¼ 128, where PLS with two latent variables on the full

spectrum leads to a root mean squared error of prediction

of 0.077, while PLS-JBB gives an error of 0.047. In the

wavelength selection scheme [43], each wavelength 14j4p

is regressed on the concentration u1 and a regression coeffi-

cient �j is computed as well as an estimate for the variance of

the residual error, �2
j . Wavelengths are ordered according to

j�jj=�2
j and the top k are used to construct a model. In this

scheme, k is a meta-parameter whose value is chosen such

that it minimizes the prediction error on an independent test

set. By looking at Figure 2 (left), it is evident that the net

analyte signal vector has a non-negligible contribution from

the right half of the spectrum, where, owing to interferences

with u2, none of these wavelengths are highly correlated with

u1. Therefore most of these wavelengths are not chosen,

which leads to suboptimal prediction errors. The prediction

error as a function of k for this wavelength selection scheme is

plotted in Figure 2 (right), showing that wavelength selection

is beneficial compared with the full spectrum method, as it is

able to decrease the RMSEP from 0.077 for the full spectrum

method to about 0.063 with about k ¼ 35 wavelengths. How-

ever, its performance is still far from the asymptotic one and

much worse than that of PLS on the first 10 wavelet features

of the JBB algorithm, shown in the same figure.

6. SUMMARY AND DISCUSSION

In this paper we have presented a mathematical analysis of

the expected prediction errors of CLS and PLS under the

Figure 2. The net analyte signal vector for the two-component system (left). The root

mean squared error of prediction as a function of dimension for full spectrum PLS and

for PLS on the first 10 JBB co-ordinates (middle). The RMSEP as a function of the

number of wavelengths chosen, k out of p ¼ 128, in comparison with the prediction

error of JBB as a function of the number of wavelet features, k (right).
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linear mixture model, showing large errors of the order of

�2p2=n2 when there are many more variables than observa-

tions. The same analysis applies to many other full spectrum

methods, such as PCR, HLA, OSC and ridge regression, and

stresses the importance of feature selection prior to

multivariate calibration.

This finding is contrary to the typical description of these

methods in the literature as performing dimensional reduc-

tion and thus eliminating the need for feature selection.

Therefore, the use of PLS as a dimensional reduction tool

in spectroscopy, as well as its recent use in other areas with a

large number of variables and a small number of samples,

such as functional MRI [46] and gene expression data [47],

should be carefully re-examined.

For the case of continuous signals, as in spectroscopy, we

demonstrated the usefulness of data-driven wavelet meth-

ods in performing this initial dimensional reduction step,

and their advantage over standard wavelength selection

schemes. For the case of non-continuous signals, as in gene

arrays, wavelet analysis is not applicable and other feature

selection methods need to be derived.
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APPENDIX

A.1. Proofs of Theorems 1 and 2

A.1.1. Proof of Theorem 1
The estimates v̂vj are given by (3), where C is the covariance

matrix of the components uj in the training set. As n ! 1,

according to the law of large numbers, C ! Cp and

Ef~xxujg ! Efxujg both with probability one. Therefore in

the limit n ¼ 1 the estimates computed by CLS are inde-

pendent of the noises and coincide with those for noise-free

data. In particular, v̂vj ¼ vj and thus

r1

r2

..

.

rk

0
BBB@

1
CCCA ¼ V�1

v1

v2

..

.

vk

0
BBB@

1
CCCA ¼

v?1 = v?1
�� ��2

v?2 = v?2
�� ��2

..

.

v?k = v?k
�� ��2

0
BBBB@

1
CCCCA

A.1.2. Proof of Theorem 2
According to (3), the estimates v̂vj depend on the averages

Ef~xxujg, which can be written as

Ef~xxujg ¼ Efxujg þ
�

n

Xn
i¼1

uj;ini ¼ Efxujg þ
�ffiffiffi
n

p sjgj ð18Þ

where each gj is a linear combination of the original n noises

ni, appropriately scaled such that its p co-ordinates have zero

mean and unit variance. Therefore combining (18), (3) and

Theorem 1 gives

v̂v1

v̂v2

..

.

v̂vk

0
BBB@

1
CCCA ¼

v1

v2

..

.

vk

0
BBB@

1
CCCAþ �ffiffiffi

n
p C�1

s1g1

s2g2

..

.

skgk

0
BBB@

1
CCCA

Since the matrix C is symmetric and positive definite, it has

a set of k eigenvalues 0 < �0 � �1 � � � � � �k�1. The eigenva-

lues of C�1 are 1=�0 > 1=�1 > � � � > 1=�k�1. Therefore the

noises gj are expanded in length by at most 1=�0. Specifically,

each of the estimated spectral response vectors can be

written as

v̂vj ¼ vj þ
�ffiffiffi
n

p s

�0

Xk
i¼0

�jigi

for some coefficients �ji which depend on the covariance

matrix C but are all Oð1Þ and are independent of the noises

gi, and where s ¼ max sj. Therefore we can write

v̂vj ¼ vj þ "n̂nj ð19Þ

where " ¼ �s=
ffiffiffi
n

p
�0 and each n̂nj is a random noise vector,

linearly dependent on the original training noises ni, whose p

co-ordinates all have zero mean and Oð1Þ variance.

Recall that V̂V is the k� k matrix of spectral interferences

computed from the noisy estimates v̂v and that V is the

corresponding noise-free matrix. Then, using (19),

V̂Vi;j ¼ v̂vi � v̂vj ¼ Vi;j þ " n̂ni � vj þ n̂nj � vi
� �

þ "2n̂ni � n̂nj ð20Þ

or, in matrix notation, V̂V ¼ Vþ "R1 þ "2R2, where

ðR1Þi;j ¼ n̂ni � vj þ n̂nj � vi; ðR2Þi;j ¼ n̂ni � n̂nj ð21Þ

Note that the entries of R1 are all linear in the noises and are

all OðvÞ, where v ¼ max kvjk. In addition, the entries of R2

are all quadratic in the noises. Moreover, the diagonal entries

of R2, equal to knjk2, are all OðpÞ. The reason is that all p

co-ordinates of the vector nj have zero mean and Oð1Þ
variance and therefore kn̂njk2 ¼

Pp
i¼1 n̂n

2

j;i ¼ OðpÞ.
We assume the noises are small enough so that the

perturbed matrix V̂V is invertible (see also the discussion in

Section A.2). In that case, to leading order in " the inverse of

V̂V is given by

V̂V
�1 ¼ I� "V�1R1 � "2V�1R2 þ "2ðV�1R1Þ2 þOð"3Þ

h i
V�1

ð22Þ

Inserting (22) and (19) into (4) gives the following expansion

for the estimated regression vectors:

r̂r ¼ V�1vþ "V�1 n̂n� R1r
� �

þ "2 ðV�1R1Þ2r�V�1R2r�V�1ðR1V
�1 � R2Þn̂n

h i
þOð"3Þ

ð23Þ

where r̂r ¼ ð̂rr1; r̂r2; . . . ; r̂rkÞ and n̂n ¼ ðn̂n1; n̂n2; . . . ; n̂nkÞ, with similar

definitions for v and r.

Since n̂n and the entries of R1 are all linear in the original

noises, we obtain that the Oð"Þ correction to rj is linear in the

original noise vectors. In terms of magnitude, these noise

vectors are expanded at most by 1=�0, where �0 is the lowest

eigenvalue of the noise-free matrix V. Similarly, the Oð"2Þ
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term is quadratic in the noises. The leading order term

multiplying "2 is the second one involving V�1R2r, since

all the diagonal entries in R2 are OðpÞ. This term also scales as

"2=�0. Therefore Equation (7) follows.

A.1.3. Proof of Corollary 1
Given the form (7) for the regression vector, the predicted

value ûu1 for a new noisy sample ~xx can be written as

ûu1 ¼ ~xx � r̂r1 ¼ ðxþ �nÞ � r1 þ �1
�ffiffiffi
n

p f1 þ �2
�2

n
f2 þOð�3Þ

� �

with suitably defined constants �1 and �2. Since the noise n is

independent of f1; f2 and the concentrations in x, we have

that

Efðûu1 � u1Þ2g ¼ �2Efðn � r1Þ2g þ �2
1

�2

n
Efðx � f1Þ

2g

þ �2
2

�4

n2
Efðx � f2Þ

2g þOð�6Þ
ð24Þ

As n ! 1, all terms other than the first vanish and we

recover Equation (5), since

Efðn � r1Þ2g ¼ r1k k2¼ 1

kv?j k
2

The expected value of the second term in (24) gives a

constant c1 ¼ OðEfkxk2gÞ which is independent of p, since

all p co-ordinates of f1 have Oð1Þ variance. The expected

value of the third term, however, is of the order of p2Efkxk2g,

since all p co-ordinates of f2 are OðpÞ. Hence Equation (8)

follows.

A.2. Derivation of Equation (10)
We rewrite Equation (9) for v̂v as

v̂v ¼ vk k v0 þ "n̂n
� �

where v0 ¼ v=kvk is a vector of unit norm and

" ¼ �=ðs
ffiffiffi
n

p
kvkÞ. Then

v̂vk k2¼ vk k2ð1 þ 2"v0 � n̂nþ "2kn̂nk2Þ

and

ûu� u ¼ �u"
v0 � n̂nþ "kn̂nk2

1 þ 2"v0 � n̂nþ "2kn̂nk2
þ �

n � v̂v
kv̂vk2

Since the noise n in a new sample is independent of the

noise n̂n derived from the noises in the training set, we can

compute the averages of the first and second terms

separately. We use the property that if n is a standard

multivariate Gaussian random variable in Rp then

Efðn � vÞ2g ¼ kvk2 to obtain that

Efðûu� uÞ2g ¼ "2Efu2g ðn̂n � v0 þ "kn̂nk2Þ2

ð1 þ 2"v0 � n̂nþ "2kn̂nk2Þ2
þ �2

vk k2
ð25Þ

Note that, as n ! 1, " ! 0 and we recover the single-

component version of (5). To compute the expected MSEP

for finite n, we need to average the right-hand side of (25)

over all possible noise vectors n̂n due to all possible noises in

the training set. Under the assumption that the noises follow

a Gaussian distribution, the vector n̂n can in principle obtain

any value. Therefore there is an exponentially small

probability that v̂v ¼ 0, leading to an infinite expected

MSEP. The same phenomenon occurs in the analysis of the

expected MSEP in the univariate case. This technical pro-

blem is overcome by assuming that the noise has compact

support with a cut-off at s standard deviations, with

1 � s < kvk=", so that v is never zero.

In this case we define the random variables

A ¼ ðn̂n � v0Þ2 þ 2"ðn̂n � v0Þkn̂nk2 þ "2kn̂nk4

B ¼ kv0 þ "n̂nk4

C ¼ 1 þ 2"n̂n � v0 þ "2kn̂nk2

ð26Þ

and denote by �A; �B and �C their respective means. In terms

of these random variables the expected MSEP of the CLS

predictor for a training set with given fixed values fuigni¼1 is

EfMSEPðCLSðnÞÞg ¼ "2Efu2gE A

B

� �
þ �2

vk k2
E

1

C

� �
ð27Þ

where expectancies are over the truncated noise vector n̂n in

the finite training set. In the limit of "2p � 1 and with the

truncation of the noise n̂n at s standard deviations,

jC� �Cj=�C < 1 with probability one and it is thus possible

to approximate

E
1

C

� �
¼ E

1

�cð1 þ C��C

�C
Þ

( )
� 1

�C
1 � E

(
C� �C

�C

" )

þE
C� �C

�C

� �2
( )#

¼ 1

1 þ "2p
1 þ 4"2 þOð"4Þ
	 


ð28Þ

and, similarly,

E
A

B

� �
� 1

�B
2�A � EfABg

�B
þ EfAðB� �BÞ2g

�2
B

 !
ð29Þ

where

�A ¼ EfAg ¼ 1 þ "2ðp2 þ 2pÞ
�B ¼ EfBg ¼ 1 þ "2ð2pþ 4Þ þ "4ðp2 þ 2pÞ

ð30Þ

and

EfABg ¼ 1 þ "2ðp2 þ 12pþ 72Þ
þ "4ð2p3 þ 21p2 þ 70pþ 72Þ þOð"6Þ

EfAðB� �BÞ2g ¼ 48"2 þOð"4Þ
ð31Þ

Combining (27)–(31) and the definition of " yields Equation (10).

A.3. Proof of Theorem 4
We sketch the proof that PLS has similar correction terms to

its computed regression vector as in CLS regression by

following the first few steps of the algorithm. In the first

step an estimate of the first projection is computed as

ŵw1 ¼ 1

n

Xn
j¼1

~xxju1;j ¼ w1 þ
�ffiffiffi
n

p s1n̂n1

where

n̂n1 ¼ 1ffiffiffi
n

p
s1

Xn
j¼1

u1;jnj
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is a random variable with zero mean and unit variance in all

of its p co-ordinates. The next step in PLS is the computation

of the scores in the training set:

t̂tj ¼ ~xxj � ŵwj ¼ tj þ � nj �w1 þ
sffiffiffi
n

p n̂n1 � xj
� �

þ �2 s1ffiffiffi
n

p nj � n̂n1

Notice that, since n̂n1 is a linear combination of the training set

noises, one of the terms in nj � n̂n1 involvesknjk2 ¼ OðpÞ. When

taking all the multiplying factors into account, each term t̂tj is

corrupted, amongst other terms, by a quantity of the order of

u1;j�
2OðpÞ=n. An analysis of the next iterative steps in PLS

shows that the Oð�Þ corrections to both the first score and

the first spectral loading are linear in the noises, while the

Oð�2Þ corrections contain terms which are OðpÞ. The same

analysis applies to all the subsequent iterative steps in PLS,

even though the exact computation of the coefficients is

mathematically intractable.
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