
SIAM J. MATRIX ANAL. APPL. c© 2009 Society for Industrial and Applied Mathematics
Vol. 31, No. 1, pp. 40–53
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Abstract. We present eigenvalue bounds for perturbations of Hermitian matrices and express
the change in eigenvalues in terms of a projection of the perturbation onto a particular eigenspace,
rather than in terms of the full perturbation. The perturbations we consider are Hermitian of
rank one, and Hermitian or non-Hermitian with norm smaller than the spectral gap of a specific
eigenvalue. Applications include principal component analysis under a spiked covariance model, and
pseudo-arclength continuation methods for the solution of nonlinear systems.
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1. Introduction. We present perturbation bounds for eigenvalues of Hermitian
matrices that were motivated by two applications: principal component analysis under
a spiked covariance model [25], and pseudo-arclength continuation methods for the
solution of systems of nonlinear equations [7].

Although these applications are very different, they share a common requirement:
The change in the eigenvalues of interest should be determined not by the global
norm of the full perturbation, which can be quite large, but rather by the norm of a
projection of the perturbation on a particular eigenspace. In contrast, most existing
eigenvalue bounds are expressed either in terms of the full perturbation or else in terms
of a residual, and therefore do not provide sufficient information for our applications.

The paper is organized as follows. We start with the most specific class of per-
turbations, Hermitian rank one updates, and then generalize the perturbations first
to Hermitian and then to non-Hermitian matrices. In section 2 we present bounds for
Hermitian rank one updates, and explain why such bounds can be useful in pseudo-
arclength continuation methods. In section 3 we consider Hermitian perturbations
whose norm is smaller than the spectral gap of a specific eigenvalue, and we describe
their use in principal component analysis. In section 4 we extend the bounds to
non-Hermitian perturbations.

Notation. The identity matrix of order k is Ik =
(
e1 . . . ek

)
. The norm

‖ · ‖ denotes the two norm. The eigenvalues of a Hermitian matrix A ∈ C
n×n are

numbered so that

λmin(A) ≡ λn(A) ≤ · · · ≤ λmax(A) ≡ λ1(A).
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The conjugate transpose of a matrix A is denoted by A∗; an overbar, as in A, denotes
elementwise complex conjugation.

We will use two measures for the separation between adjacent eigenvalues of a
Hermitian matrix A ∈ C

n×n: the distance of an eigenvalue λi(A) to its right neighbor,

gapi ≡ λi−1(A) − λi(A), 2 ≤ i ≤ n,

and the minimum of the distance to left and right neighbors,

Gapi ≡ min
j �=i

|λi(A) − λj(A)|.

The two measures are related,

Gapn = gapn, Gap1 = gap2, Gapi = min{gapi, gapi+1}, 1 < i < n.

2. Hermitian rank one updates. We present improved perturbation bounds
for eigenvalues of Hermitian matrices when the perturbation is Hermitian of rank one.

Before describing an application that requires such bounds, we mention that
algorithms for computing eigenvalues and eigenvectors of Hermitian matrices modified
by a rank one matrix are well established [3, 10, 14], [11, section 8.5.3, section 12.5.1];
the corresponding inverse eigenvalue problem has also been investigated [21].

2.1. Numerical continuation. Numerical continuation is the process of solving
systems of nonlinear equations G(u, λ) = 0 for various values of the real parameter λ.
Here G : R

N+1 → R
N is assumed to be sufficiently smooth [12, 20, 22, 29].

Parameter continuation is a method for tracing out a solution path by repeatedly
incrementing λ until the desired value of λ is reached. In each iteration, the current
solution u serves as an initial iterate for, say, Newton’s method to compute a solution
for the next value of λ. Although parameter continuation is simple and intuitive, it
fails at points (u, λ) where the Jacobian Gu is singular.

One can try to circumvent singularities by reparameterizing the problem and in-
troducing the arclength parameter s. Now both u and λ depend on s, and the original
parameter λ is treated as an unknown. The resulting pseudo-arclength continuation
method [12, 20, 22, 29] implements parameter continuation on F (u(s), λ(s)) = 0 with
s as the parameter and solves

F (x, s) =

(
G(x)

N (x, s)

)
= 0, x =

(
u(s)
λ(s)

)
,

where N represents a normalization equation. Pseudo-arclength continuation requires
that the Jacobian

Fx =

(
Gu Gλ

Nu Nλ

)

be nonsingular. The normalization equation is set up so that at a point where
G(u0, λ0) = 0 the row

(
Nu Nλ

)
has unit norm and is almost orthogonal to the

rows of
(
Gu Gλ

)
. Hence Fx is nonsingular at (u0, λ0) if the rank of

(
Gu Gλ

)
equals N . In other words, Fx is nonsingular if Gu is nonsingular, or if the nullspace of
Gu has dimension 1 and Gλ is not in the range of Gu [20, 29]. The latter singularity
is called a limit point, fold point, simple fold, or turning point [4, 5, 23, 27, 29].
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Denote the partial derivatives at (u0, λ0) by Gu = Gu(u0, λ0) and y = Gλ(u0, λ0).
Instead of the singular values of the Jacobian Fx we consider the eigenvalues of

FxF
∗
x =

(
A + yy∗ 0

0 1

)
+ E ,

where A = GuG
∗
u, and we have used the fact that the last row of Fx has unit norm

and is almost orthogonal to the others, so that ‖E‖ is small. To estimate the condition
number of Fx and the convergence rate of a Newton-GMRES method, it suffices to
bound ‖F−1

x ‖ by determining a nontrivial lower bound for the smallest eigenvalue
λmin(A + yy∗) [7]. For this positive semidefinite rank one update, Weyl’s theorem
implies [11, Theorem 8.1.8], [26, Corollary 10.3.1]

λmin(A) ≤ λmin(A + yy∗).

When A is nonsingular, this bound is adequate for our purposes. However, it is useless
at a fold point, because there A is singular and 0 = λmin(A) = 0 < λmin(A + yy∗).
We need a lower bound for λmin(A) that takes into account that y is not in the range
of A and has a nonzero contribution in the eigenspace of λmin(A).

Our objective is to tighten our previous bound [7, Theorem 3.3] and the bounds
in [13]. This is accomplished in Theorem 2.1 below. The results in section 2.2 may
also be of benefit in the construction of nonsingular bordered matrices.

2.2. Smallest eigenvalue. For a given Hermitian matrix A ∈ C
n×n and a

column vector y ∈ C
n, we improve the inclusion interval from Weyl’s theorem for the

smallest eigenvalue of Hermitian rank one updates A± yy∗,

λmin(A) ≤λmin(A + yy∗) ≤ λn−1(A),(2.1)

λmin(A) − ‖y‖2 ≤λmin(A− yy∗) ≤ λmin(A),(2.2)

by taking into account the contribution of y in the eigenspace of λmin(A).
Let A = V ΛV ∗ be an eigenvalue decomposition, where V =

(
v1 . . . vn

)
is

unitary and

Λ =

⎛
⎜⎝
λ1(A)

. . .

λn(A)

⎞
⎟⎠ , λmax(A) = λ1(A) ≥ · · · ≥ λn(A) = λmin(A).

Define the projections of the vector y onto the eigenvectors of A,

yi:j ≡
(
vi . . . vj

)∗
y, 1 ≤ i ≤ j ≤ n.

Below we bound the smallest eigenvalues of the rank one updates in terms of eigen-
values of 2 × 2 matrices (which can be considered as rank one updates of projections
onto two-dimensional subspaces). Explicit expressions for these eigenvalues are given
in Corollary 2.2. A simpler upper bound in Corollary 2.3 emphasizes the influence of
yn and the separation of λmin(A) from the next eigenvalue.

Theorem 2.1 (smallest eigenvalue). Let A ∈ C
n×n be Hermitian, y ∈ C

n, and

L± ≡
(
λn−1(A) 0

0 λn(A)

)
±
(
‖y1:n−1‖

yn

)(
‖y1:n−1‖ yn

)
,

U± ≡
(
λn−1(A) 0

0 λn(A)

)
±
(
yn−1

yn

)(
yn−1 yn

)
.
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Then λmin(L±) ≤ λmin(A± yy∗) ≤ λmin(U±), where

λmin(A) ≤ λmin(L+) ≤ λmin(U+) ≤ λn−1(A),

λmin(A) − ‖y‖2 ≤ λmin(L−) ≤ λmin(U−) ≤ λmin(A).

Proof. Abbreviate αj ≡ λj(A), 1 ≤ j ≤ n, and partition the eigenvalue decompo-
sition of A so as to distinguish the smallest eigenvalue αn = λmin(A).

Λ =

(
Λ1

αn

)
, Λ1 ≡

⎛
⎜⎝
α1

. . .

αn−1

⎞
⎟⎠ ,

and V =
(
V1 vn

)
with V1 ≡

(
v1 . . . vn−1

)
. We derive the bounds by “projecting”

A onto a 2 × 2 matrix with eigenvalues αn and αn−1.
Lower bounds. We start with the positive semidefinite update. Let z be a unit-

norm eigenvector associated with λmin(A + yy∗), i.e., (A + yy∗)z = λmin(A + yy∗)z,
‖z‖ = 1. Express z in the V -basis,

(
z1:n−1

zn

)
=

(
V ∗

1 z
v∗nz

)
= V ∗z.

Then

λmin(A + yy∗) = z∗(A + yy∗)z = z∗1:n−1Λ1z1:n−1 + αn|zn|2 + |y∗z|2

≥ αn−1‖z1:n−1‖2 + αn|zn|2 + |z∗1:n−1y1:n−1 + znyn|2

=
(
z∗1:n−1 zn

) [(αn−1In−1 0
0 αn

)
+

(
y1:n−1

yn

)(
y∗1:n−1 yn

)](z1:n−1

zn

)
.

Let Q be a unitary matrix of order n − 1 so that Qy1:n−1 = ‖y1:n−1‖en−1 and set
w ≡

(
Qz1:n−1

zn

)
, where ‖w‖ = 1. Then

λmin(A + yy∗) ≥ w∗
((

αn−1In−1 0
0 αn

)
+

(
‖y1:n−1‖en−1

yn

)(
‖y1:n−1‖e∗n−1 yn

))
w

≥ λmin

(
αn−1In−2 0

0 L+

)
= min{αn−1, λmin(L+)}.

Applying (2.1) to L+ gives αn ≤ λmin(L+) ≤ αn−1, and

λmin(A + yy∗) ≥ min{αn−1, λmin(L+)} = λmin(L+).

Now consider the negative semidefinite update, and let z be a unit-norm eigen-
vector associated with λmin(A− yy∗), i.e., (A− yy∗)z = λmin(A− yy∗)z, ‖z‖ = 1. As
above one shows λmin(A− yy∗) ≥ min{αn−1, λmin(L−)}. Applying (2.2) to L− gives
αn − ‖y‖2 ≤ λmin(L−) ≤ αn, and

λmin(A− yy∗) ≥ min{αn−1, λmin(L−)} = λmin(L−).

Upper bounds. Since U± are the respective trailing 2 × 2 principal submatrices
of V ∗(A ± yy∗)V , Cauchy’s interlace theorem [26, section 10.1] implies λmin(A ±
yy∗) ≤ λmin(U±). Applying (2.1) to U+ and (2.2) to U− gives λmin(U+) ≤ αn−1 and
λmin(U−) ≤ αn.
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Below we give explicit expressions for the bounds in Theorem 2.1 in terms of the
absolute gap between the two smallest eigenvalues,

gapn ≡ λn−1(A) − λn(A) ≥ 0.

Corollary 2.2 (smallest eigenvalue). In Theorem 2.1

λmin(L±) = λmin(A) +
1

2

(
gapn ± ‖y‖2 −

√
(gapn ± ‖y‖2)

2 ∓ 4gapn|yn|2
)

and

λmin(U±) = λmin(A)+
1

2

(
gapn ± ‖yn−1:n‖2 −

√
(gapn ± ‖yn−1:n‖2)

2 ∓ 4gapn|yn|2
)
.

Implications for numerical continuation. For the application to pseudo-
arclength continuation in section 2.1, it is important to know how |yn| and gapn

influence λmin(A + yy∗), provided λmin(A) < λn−1(A), yn 	= 0, and yn−1 	= 0. This
influence becomes clear in the next bound, which illustrates how much of the increase
in the smallest eigenvalue can be due to the contribution of y in the eigenspace of
λmin(A).

Corollary 2.3. Under the conditions of Theorem 2.1,

λmin(A + yy∗) ≤ λmin(A) + |yn|
√

gapn.

Proof. Abbreviate β = gapn+‖yn−1:n‖2 and γ = gapn|yn|2, and in the expression
for λmin(U+) from Corollary 2.2 write λmin(U+) = λmin(A) + δ, where

δ =
1

2

(
β −

√
β2 − 4γ

)
=

2γ

β +
√

β2 − 4γ
≤ 2

γ

β
≤ √

γ = |yn|
√

gapn.

The last inequality follows from the fact that the term under the square root is non-
negative, i.e., β2 ≥ 4γ.

2.3. Largest eigenvalue. We improve the inclusion interval from Weyl’s theo-
rem for the largest eigenvalue of A± yy∗,

λmax(A) ≤λmax(A + yy∗) ≤ λmax(A) + ‖y‖2,

λ2(A) ≤λmax(A− yy∗) ≤ λmax(A),

by taking into account the contribution of y in the eigenspace of λmax(A).
Theorem 2.4 (largest eigenvalue). Let A ∈ C

n×n be Hermitian, y ∈ C
n, and

L± ≡
(
λ1(A) 0

0 λ2(A)

)
±
(
y1

y2

)(
y1 y2

)
,

U± ≡
(
λ1(A) 0

0 λ2(A)

)
±
(

y1

‖y2:n‖

)(
y1 ‖y2:n‖

)
.

Then λmax(L±) ≤ λmax(A± yy∗) ≤ λmax(U±), where

λmax(A) ≤ λmax(L+) ≤ λmax(U+) ≤ λmax(A) + ‖y‖2,

λ2(A) ≤ λmax(L−) ≤ λmax(U−) ≤ λmax(A).
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Proof. Use the fact that λmax(A) = −λmin(−A), and apply Theorem 2.1.
As in section 2.2, we give explicit expressions for the bounds in Theorem 2.4 in

terms of the absolute gap between the two largest eigenvalues,

gap2 ≡ λmax(A) − λ2(A) ≥ 0.

Corollary 2.5 (largest eigenvalue). In Theorem 2.4

λmax(L±) = λmax(A) +
1

2

(
−gap2 ± ‖y1:2‖2 +

√
(gap2 ± ‖y1:2‖2)

2 ∓ 4gap2|y2|2
)

and

λmax(U±) = λmax(A) +
1

2

(
−gap2 ± ‖y‖2 +

√
(gap2 ± ‖y‖2)

2 ∓ 4gap2‖y2:n‖2

)
.

2.4. Interior eigenvalues. We improve the inclusion intervals from Weyl’s the-
orem for the interior eigenvalues of A± yy∗,

λi(A) ≤ λi(A + yy∗) ≤ λi−1(A), 2 ≤ i ≤ n− 1,(2.3)

λi+1(A) ≤ λi(A− yy∗) ≤ λi(A),(2.4)

by using the bounds for the extreme eigenvalues in Theorems 2.1 and 2.4 on principal
submatrices.

Theorem 2.6 (interior eigenvalues). Let A ∈ C
n×n be Hermitian, y ∈ C

n, and

L
(i)
± ≡

(
λi−1(A) 0

0 λi(A)

)
±
(
‖y1:i−1‖

yi

)(
‖y1:i−1‖ yi

)
,

U
(i)
± ≡

(
λi(A) 0

0 λi+1(A)

)
±
(

yi
‖yi+1:n‖

)(
yi ‖yi+1:n‖

)
.

Then

λmin(L
(i)
+ ) ≤ λmin(A± yy∗) ≤ min{λmax(U

(i)
+ ), λi−1(A)}, 2 ≤ i ≤ n− 1,

where λi(A) ≤ λmin(L
(i)
+ ) ≤ λmax(U

(i)
+ ) ≤ λi(A) + ‖yi:n‖2. Moreover

max{λi+1(A), λmin(L
(i)
− )} ≤ λi(A− yy∗) ≤ λmax(U

(i)
− ), 2 ≤ i ≤ n− 1,

where λi(A) − ‖y1:i‖2 ≤ λmin(L
(i)
− ) ≤ λmax(U

(i)
− ) ≤ λi(A).

Proof. As before, abbreviate αj ≡ λj(A), 1 ≤ j ≤ n.
Lower bounds. Partition the eigenvalue decomposition so that

Λ =

(
Λ1 0
0 Λ2

)
, Λ1 ≡

⎛
⎜⎝
α1

. . .

αi

⎞
⎟⎠ , Λ2 ≡

⎛
⎜⎝
αi+1

. . .

αn

⎞
⎟⎠ ,

and V =
(
V1 V2

)
with V1 ≡

(
v1 . . . vi

)
and V2 ≡

(
vi+1 . . . vn

)
. Since V ∗

1 (A±
yy∗)V1 is a principal submatrix of order i of V ∗(A ± yy∗)V , the Cauchy interlace
theorem [26, section 10.1] implies

λi(A± yy∗) = λi(V
∗(A± yy∗)V ) ≥ λi(V

∗
1 (A± yy∗)V1) = λmin (Λ1 ± y1:iy

∗
1:i) .

Apply the lower bounds in Theorem 2.1. The second term in the maximum follows
from (2.4).
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Upper bounds. Partition

Λ =

(
Λ1 0
0 Λ2

)
, Λ1 ≡

⎛
⎜⎝
α1

. . .

αi−1

⎞
⎟⎠ , Λ2 ≡

⎛
⎜⎝
αi

. . .

αn

⎞
⎟⎠ ,

and V =
(
V1 V2

)
with V1 ≡

(
v1 . . . vi−1

)
and V2 ≡

(
vi . . . vn

)
. Since V ∗

2 (A+
yy∗)V2 is a principal submatrix of order n − (i − 1) of V ∗(A + yy∗)V , the Cauchy
interlace theorem implies

λi(A + yy∗) = λi (V
∗(A + yy∗)V ) ≤ λ1(V

∗
2 (A + yy∗)V2) = λmax (Λ2 + yi:ny

∗
i:n) .

Applying the upper bound in Theorem 2.4 yields λmax (Λ2 + yi:ny
∗
i:n) ≤ λmax(U

(i)
+ ).

The second term in the bound follows from (2.3).
We use the absolute gap between the ith eigenvalue and its right neighbor,

gapi ≡ λi−1(A) − λi(A) ≥ 0, 2 ≤ i ≤ n,

to determine explicit expressions for the bounds in Theorem 2.6.
Corollary 2.7. In Theorem 2.6

λmin(L
(i)
± ) = λi(A) +

1

2

(
gapi ± ‖y1:i‖2 −

√
(gapi ± ‖y1:i‖2)

2 ∓ 4gapi|yi|2
)

and

λmax(U
(i)
+ ) = λi(A)+

1

2

(
−gapi+1±‖yi:n‖2+

√(
gapi+1± ‖yi:n‖2

)2∓ 4gapi+1‖yi+1:n‖2

)
.

3. Hermitian perturbations. We present improved perturbation bounds for
well-separated eigenvalues of Hermitian matrices. As in the previous section, we start
by presenting an application that motivates these bounds.

3.1. Principal component analysis under the spiked covariance model.
Principal component analysis is a common tool in the analysis of high-dimensional
data [15, 17]. Given m samples xi ∈ R

n, stored in a (mean centered) m × n matrix
X, principal component analysis proceeds in three steps: It computes the empirical
covariance matrix C = 1

mX∗X; it finds orthonormal directions with maximal variance
of the data, represented by the largest eigenvalues and eigenvectors of the matrix C;
and at last it determines a low-dimensional representation of the data from linear
projections onto these directions associated with maximal variance.

A common model for the analysis of principal component analysis on high-
dimensional data is a small rank linear mixture or “spiked covariance model” [8, 16,
25]. Under this model, each data sample xi is an independent identically distributed
random vector of the form

x =

k∑
j=1

ujvj + σξ,

where uj are random variables, also referred to as components or latent variables, the
vectors vj ∈ R

n are the responses, ξ ∈ R
n is a multivariate Gaussian noise vector with

identity covariance matrix, and the scalar σ is the level of noise.
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If all k random variables uj are uncorrelated with zero mean and unit variance,
and all eigenvectors vj are orthogonal, then the first k eigenvalues and eigenvector
pairs of the population covariance matrix are (‖vj‖2+σ2, vj). Given that we have only
a finite dataset {xi}mi=1, the question is how close are the eigenvalues and eigenvectors
of the empirical noisy covariance matrix C to their limiting values?

We formulate this problem in terms of matrix perturbation theory by working in
an orthonormal basis whose first k vectors are vj/‖vj‖ and by writing the empirical
covariance matrix as

C = A + E, where A =

⎛
⎜⎜⎜⎝
‖v1‖2 + σ2

. . .

‖vk‖2 + σ2

σ2In−k

⎞
⎟⎟⎟⎠ .

We want to determine under which conditions the first few (largest) eigenvalues
and eigenvectors of C correspond to the first few latent variables and characteristic
responses of A, and how close these noisy estimates are to the unperturbed eigenvalues
and eigenvectors of A. Many papers in statistics have studied the asymptotic distribu-
tion of the eigenvalues and eigenvectors of C in the limit as m → ∞; see [1, 2, 9, 15, 24]
and the references therein. However, in our application we are interested in answers
to these questions for a finite number of samples m.

In the context of matrix perturbation theory, we look for absolute normwise per-
turbation bounds for eigenvalues of Hermitian matrices A and A + E. In partic-
ular, assuming that the signals uj have a significant signal-to-noise ratio, we want
bounds for eigenvalues λj(A) that are well separated from all others, in the sense that
gapj > ‖E‖. Moreover, to obtain sharp bounds we cannot afford to deal with the
global norm of E, but rather we need to restrict ourselves to the contribution of E in
the relevant eigenspace of A. In the present paper, we derive such bounds that depend
on the projection of E onto a space spanned by an eigenvector vj . The analysis is
completed in a second paper [25], where we derive probabilistic bounds of the type
“‖Evj‖ ≤ f(m,n) with probability 1 − δ.”

3.2. Perturbation bounds. Two types of existing two-norm results could po-
tentially be applicable for the application in section 3.1: two-norm bounds that hold
for all eigenvalues, and residual bounds that hold for a few eigenvalues. The best
known example of a two-norm bound for Hermitian matrices A,A + E ∈ C

n×n is
Weyl’s theorem [11, Theorem 8.1.6], [26, Theorem 10.3.1],

|λj(A) − λj(A + E)| ≤ ‖E‖, 1 ≤ j ≤ n.(3.1)

The advantage of (3.1) is that it applies to all eigenvalues of A and A + E. The
disadvantage is that the bound is the same for all eigenvalues and depends on the
global norm of E, which can be quite large, specifically in high dimensions, n � 1
[16].

For a single perturbed eigenvalue, one can either tighten the Bauer–Fike theorem
[6, section 4.6.1], [28, Corollary 3.3] or derive a residual bound from scratch [26, The-
orem 4.5.1] as follows. If wj is a unit norm eigenvector associated with an eigenvalue
λj(A + E), i.e., (A + E)wj = λj(A + E)wj , ‖wj‖ = 1, then

min
i

|λi(A) − λj(A + E)| ≤ ‖Ewj‖.(3.2)
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The problem is that this bound depends on the a priori unknown projection of E onto
the perturbed eigenvector wj . However, by switching the roles of A and A + E, we
obtain, for each eigenvalue λi(A),

(3.3) min
j

|λi(A) − λj(A + E)| ≤ ‖Evi‖, 1 ≤ i ≤ n.

While this bound depends on the projection of E onto an eigenspace of A, it doesn’t
pair up λi(A) with the corresponding perturbed eigenvalue λi(A + E).

Below we show that such a pairing is possible for eigenvalues λi(A) that are well
separated from the other eigenvalues of A, and that the distance between λi(A) and
λi(A+E) is bounded only by the projection of E onto the eigenspace of λi(A), rather
than by the full perturbation E. Now we use the two-sided eigenvalue separation,

Gapi ≡ min
j �=i

|λi(A) − λj(A)|, 1 ≤ i ≤ n.

In the following lemma we present a bound that is probably known, but we were not
able to find it in the literature.

Lemma 3.1. If A,A+E ∈ C
n×n are Hermitian, then for every eigenvalue λi(A)

with Gapi > 2‖E‖

|λi(A + E) − λi(A)| ≤ ‖Evi‖.

Proof. According to (3.3) for every eigenvalue λi(A) there exists an eigenvalue
λj(A + E) such that

|λi(A) − λj(A + E)| ≤ ‖Evi‖.

We now prove that under the gap condition, j = i. Weyl’s theorem implies

|λj(A) − λj(A + E)| ≤ ‖E‖.

Moreover, all other eigenvalues of A are further from λi(A), because for j 	= i,

|λi(A) − λj(A + E)| ≥ |λi(A) − λj(A)| − |λj(A) − λj(A + E)| ≥ Gapi − ‖E‖ > ‖E‖.

This means that for each eigenvalue λi(A) satisfying the gap condition there is exactly
one eigenvalue of A + E at distance less than ‖E‖, and this eigenvalue must be
λi(A + E). Therefore, j = i.

The condition Gapi > 2‖E‖ appears in many other contexts, because it is a suffi-
cient condition that prevents the eigenvalue λi(A+εE) from crossing other eigenvalues
for |ε| < 1 [19, Theorem II.3.9]. Now we improve the gap condition in Lemma 3.1 by
a factor of 2, but at the expense of a multiplicative factor of

√
2 in the perturbation

bound.
Theorem 3.2. If A,A + E ∈ C

n×n are Hermitian, then for every eigenvalue
λi(A) with Gapi > ‖E‖

|λi(A) − λi(A + E)| ≤
√

2‖Evi‖.

Proof. Fix an index i, and let

V ∗AV =

(
λi(A)

Λi

)
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be an eigenvalue decomposition of A, where V is unitary with leading column V e1 =
vi. Partition

V ∗EV =

(
fii f∗

f Ei

)

conformally with V ∗AV . Then we can write V ∗(A + E)V = M + F , where

M ≡
(
λi(A)

Λi + Ei

)
, F ≡

(
fii f∗

f

)
.

From
√
|fii|2 + 4‖f‖2 ≤ |fii| + 2‖f‖ follows

‖F‖ =
1

2

(
|fii| +

√
|fii|2 + 4‖f‖2

)
≤ |fii| + ‖f‖ ≤

√
2‖Evi‖.

Weyl’s theorem (3.1) implies

|λj(M) − λj(M + F )| ≤ ‖F‖ ≤
√

2‖Evi‖, 1 ≤ j ≤ n.

Let λi(A) be the kth eigenvalue of M so that λk(M) = λi(A) and |λi(A)−λk(A+E)| ≤√
2‖Evi‖. We now prove that if Gapi > ‖E‖, then λi(A) is indeed the ith eigenvalue

of M .

Assume Gapi > ‖E‖. Since λj(A) for j 	= i are the eigenvalues of Λi, we can
write the eigenvalues of Λi +Ei as λj(A) + γj for j 	= i. Weyl’s theorem (3.1) implies
|γj | ≤ ‖Ei‖ ≤ ‖E‖. For i + 1 ≤ j ≤ n we have

λi(A) − (λj(A) + γj) ≥ Gapi − ‖E‖ > 0,

and for 1 ≤ j ≤ i− 1

λj(A) + γj − λi(A) ≥ Gapi − ‖E‖ > 0.

This means there are exactly n− i eigenvalues of M that are smaller than λi(A), and
i− 1 eigenvalues that are larger. Thus λi(A) = λi(M).

For every eigenvalue λi(A), Theorem 3.2 bounds the distance to a perturbed
eigenvalue in terms of ‖Evi‖. Since E is Hermitian, ‖Evi‖ = ‖viv∗i E‖ is the orthogonal
projection of E onto the eigenspace of λi(A).

The bound in Theorem 3.2 is tighter than (3.1) for a particular eigenvalue λi(A)
if the projection of E on the eigenspace of λi(A) is small compared to ‖E‖, i.e.,
if

√
2‖Evi‖ ≤ ‖E‖. This is typically the case for random perturbations in high

dimensions, as in principal component analysis. In contrast to (3.1), which matches up
all eigenvalues, Theorem 3.2 bounds the distance between corresponding eigenvalues
of A and A + E only for those eigenvalues of A that are sufficiently well separated
from all other eigenvalues of A.

4. Non-Hermitian perturbations. In section 3 we showed that a small Her-
mitian perturbation E of a Hermitian matrix A changes a well-separated eigenvalue
λi(A) by at most ‖Evi‖ rather than by the full norm ‖E‖. We extend this approach
to general non-Hermitian perturbations E and obtain bounds that are comparable to
those for Hermitian perturbations.
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Since a non-Hermitian perturbation of a Hermitian matrix may lead to a
nondiagonalizable matrix, there is relatively little work on eigenvalue bounds for non-
Hermitian perturbations. A notable exception is the work by Kahan [18, 30], who
proved that all eigenvalues of A + E are included in the union of the regions

{z ∈ C : |z − λk| ≤ ‖E‖ and |
(z)| ≤ ‖(E − E∗)/2‖}.

If one of these regions is isolated from the others, then it contains exactly one eigen-
value, and if both matrices A and E are real, then this eigenvalue must also be real.
Another type of eigenvalue bound for general matrices is a Gershgorin theorem [31],
which in the simplest form states that for a diagonal matrix A = diag(λ1, . . . , λn), all
eigenvalues of A + E are in the union of the disks⎧⎨

⎩z ∈ C : |z − λk − Ekk| ≤
∑
j �=k

|Ekj |

⎫⎬
⎭ .

Below we derive a bound that is sharper whenever a perturbed eigenvalue is close to a
well-separated eigenvalue, where the separation condition involves the two-sided gap

Gapi ≡ min
j �=i

|λi(A) − λj(A)|.

The bound is almost, but not quite, the same as the one for Hermitian perturbations
in Theorem 3.2.

Theorem 4.1. Let A,E ∈ C
n×n, where A is Hermitian, let μ be a (possibly

complex) eigenvalue of A + E, and let λi(A) be an eigenvalue of A closest to μ, i.e.,

|λi(A) − μ| = min
1≤l≤n

|λl(A) − μ|.

If Gapi > 3‖E‖, then

|λi(A) − μ| ≤
√

5‖Evi‖.

Proof. Abbreviate λi ≡ λi(A), and let w be a unit norm eigenvector of μ, i.e.,
(A + E)w = μw, ‖w‖ = 1. By assumption λi is, among all eigenvalues of A, an
eigenvalue that is closest to μ. Thus the Bauer–Fike theorem (3.2) applied to the
Hermitian matrix A and the perturbed eigenvalue μ of the matrix A + E yields

|λi − μ| ≤ ‖Ew‖.(4.1)

We now perform a similarity transformation of A that makes it possible to express
the perturbed eigenvector w in terms of the exact eigenvector vi.

Let W =
(
w W2

)
be a unitary matrix and perform the similarity transformation

W ∗AW =

(
μ− w∗Ew b∗

b M

)
,

where ‖b‖ = ‖W ∗
2 Ew‖ ≤ ‖Ew‖. Isolate the block diagonal part, W ∗AW = D + F ,

where

D ≡
(
μ− w∗Ew

M

)
, F ≡

(
b∗

b

)
.

The matrix D is Hermitian because it consists of principal submatrices of the Hermi-
tian matrix W ∗AW ; in particular the scalar μ−w∗Ew is real. We show in two steps
that μ− w∗Ew is the ith eigenvalue of D.
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1. Under the gap condition Gapi > 3‖E‖, among all eigenvalues of A, λi is the
only eigenvalue closest to μ−w∗Ew, with all other eigenvalues at a distance
of at least ‖E‖.
To show this, apply the Bauer–Fike theorem (3.2) to the leading diagonal
element of D to conclude that there exists an eigenvalue λk(A) so that

|λk(A) − (μ− w∗Ew)| ≤ ‖F‖ ≤ ‖Ew‖.

We show that k = i by showing that μ − w∗Ew is too far away from all
eigenvalues of A but λi. The gap condition implies for j 	= i

|λj(A) − (μ− w∗Ew)| = |λj(A) − λi + λi − μ + w∗Ew|
≥ |λj(A) − λi| − ‖Ew‖ − |w∗Ew|
≥ Gapi − 2‖Ew‖ > ‖E‖.

Therefore λi is the only eigenvalue of A that is close to μ − w∗Ew. Hence
k = i and

|λi − (μ− w∗Ew)| ≤ ‖Ew‖.(4.2)

2. μ− w∗Ew is the ith eigenvalue of D.
As in the proof of Theorem 3.2 we show that this follows from the gap con-
dition. Weyl’s theorem (3.1),

|λl(A) − λl(D)| ≤ ‖F‖ ≤ ‖Ew‖, 1 ≤ l ≤ n,(4.3)

allows us to write the eigenvalues of D as λj(A) + γj , where |γj | ≤ ‖Ew‖.
Assuming Gapi > 3‖E‖, we have for i + 1 ≤ j ≤ n

μ− w∗Ew − (λj(A) + γj) = (μ− w∗Ew − λi) + (λi − λj(A)) + γj

≥ −|μ− w∗Ew − λi| + (λi − λj(A)) − |γj |
≥ Gapi − 2‖Ew‖ > 0,

where the last inequality follows from (4.2). Similarly for 1 ≤ j ≤ i− 1

λj(A) + γj − (μ− w∗Ew) ≥ Gapi − 2‖Ew‖ > 0.

This means there are exactly n − i eigenvalues of D that are smaller than
λi(A), and i− 1 eigenvalues that are larger. Thus μ− w∗Ew = λi(D).

Because μ − w∗Ew is the ith eigenvalue of D, no eigenvalue of M can be the ith
eigenvalue of D. We use this fact to express w in terms of vi. The partitioning of
W ∗AW provides a 2 × 2 system from which one can solve for vi. Abbreviate

(
z1

z2

)
=

(
w∗vi
W ∗

2 vi

)
= W ∗vi.

From Avi = λivi follows

0 = (W ∗AW − λiI)W
∗vi =

(
μ− w∗Ew − λi b∗

b M − λiI

)(
z1

z2

)
.(4.4)
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We show that M − λiI is nonsingular by showing that λi cannot be an eigenvalue of
M . Above we established that no eigenvalue of M can be the ith eigenvalue of D.
Hence λj(M) = λjk(D) for some jk 	= i, and (4.3) and the gap condition imply

|λj(M) − λi| = |λjk(D) − λi| = |(λjk(A) − λi) + (λjk(D) − λjk(A))|
≥ Gapi − ‖E‖ > 2‖E‖ > 0.

Thus λi is not an eigenvalue of M , and M − λiI is nonsingular.
As a consequence we can solve for z2 in (4.4) and obtain z2 = −z1(M − λiI)

−1b.
Since z1 = 0 would imply z2 = 0, and then vi = 0, we must have z1 	= 0. From the
definition of z1 and z2 follows

W ∗vi = z1

(
1

(M − λiI)
−1b

)
.

Multiplying on the left by the unitary matrix W =
(
w W2

)
yields

vi = z1

(
w + W2(M − λiI)

−1b
)
, z1 = 1/

∥∥∥∥
(

1
(M − λiI)

−1b

)∥∥∥∥ .
Solving for w gives

w =
√

1 + ‖(M − λiI)−1b‖2 vi −W2(M − λiI)
−1b,

and a subsequent multiplication by E yields

Ew =
√

1 + ‖(M − λiI)−1b‖2 Evi − EW2(M − λiI)
−1b.

Thus

‖Ew‖ ≤
√

1 + ‖(M − λiI)−1b‖2 ‖Evi‖ + ‖E‖‖(M − λiI)
−1b‖.

To bound ‖(M − λiI)
−1‖ from above, we use the fact from item 2 that μ− w∗Ew is

the ith eigenvalue of D. As a consequence the eigenvalues of M correspond to λj(D)
for j 	= i. This means there is a k 	= i so that

1/‖(M − λiI)
−1‖ ≥ min

j
|λj(M) − λi| = |λk(D) − λi| ≥ |λi − λk(A)| − |λk(D) − λk(A)|

≥ Gapi − ‖E‖ > 2‖E‖,

where the next-to-last inequality follows from (4.3). Hence

‖(M − λiI)
−1b‖ ≤ ‖Ew‖

2 ‖E‖ ≤ 1

2
.

At last, we substitute this into the above bound for ‖Ew‖ to obtain

‖Ew‖ ≤
√

5

2
‖Evi‖ + ‖E‖‖Ew‖

2 ‖E‖ ≤
√

5

2
‖Evi‖ +

‖Ew‖
2

,

so ‖Ew‖| ≤
√

5‖Evi‖. The result follows by substituting this bound for ‖Ew‖ in
(4.1).
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