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Parametric Joint Detection-Estimation of the

Number of Sources in Array Processing
Noam Arkind and Boaz Nadler∗

Abstract

Detection of the number of signals and estimation of their directions of arrival (DOAs) are fundamen-

tal problems in signal array processing. In this paper we present three main contributions to this problem.

First, we show that there is an explicit relation between model selection and the breakdown phenomena

of the Maximum Likelihood estimator (MLE). Second, we provide a simple formula for the location of

the breakdown of the MLE, using tools from extreme value theory. This gives an explicit formula for

the signal strength required for reliable detection. Third, we apply these results and propose a new joint

detection-estimation algorithm with state-of-the-art performance. We present computer simulations that

demonstrate the performance of our algorithm, compared to other popular methods.

Index Terms

joint detection-estimation, statistical hypothesis tests, extreme value theory, MLE breakdown phe-

nomena.

I. INTRODUCTION

Detection of the number of sources impinging on an array of sensors and estimation of their parameters,

such as directions of arrival (DOA), source strength, etc., are important and well studied problems in signal

array processing (see for example [17], [20], [7]). Some popular algorithms for parameter estimation,

such as MUSIC and ESPRIT, assume that the number of signals is a-priori known. These methods rely on

non-parametric or semi-parametric algorithms to detect the number of sources [8], [14], [15], [27], [31],
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[33], [16], [22], [18]. Other approaches, often more computationally intensive, perform joint detection

and estimation using the full knowledge of the array geometry [20], [2], [1], [6].

In this paper we consider the problem of joint detection-estimation of the number of signals and their

DOAs. We propose a method based on a series of hypotheses tests, where for each test, a generalized

likelihood ratio test (GLRT) approach is used. Using tools from extreme value theory, we present a

statistical analysis of this technique. Our analysis reveals an intimate connection between the model order

selection problem, the distribution of extreme values, and the performance breakdown phenomena of the

maximum likelihood estimator (MLE). We then derive a simple explicit expression for the location of the

MLE breakdown, which is used to set the threshold in the GLRT. Finally, we analyze the model order

overestimation probability of the new proposed algorithm. Using computer simulations, we demonstrate

the superior detection performance of our algorithm, compared to other popular methods.

II. PROBLEM FORMULATION

We consider the problem of detecting the number of sources impinging on an array of p sensors. While

our analysis is quite general, for simplicity we focus on the case of a uniform linear array (ULA), where

we derive explicit results.

We thus consider a one-dimensional ULA consisting of p equally-spaced sensors with half-wavelength

inter-sensor distance. The time-dependent observations received at the array are assumed to have the

following form:

x(t) =

K∑

i=1

si(t)a(θi) + ση(t) (1)

where t is time, K is the number of signals, si are the signal waveforms, θi are the corresponding

directions of arrival (DOA) relative to the array axis, η is a p × 1 complex valued noise vector with

distribution CN (0, Ip), and σ is the noise level. The steering vector a(θ) ∈ Cp is the response of the

array to a unit strength signal emitted from direction θ and depends on the array geometry. In the case

of a ULA,

a(θ)j = eiπ(j−1) sin(θ), j = 1, . . . , p. (2)

The model (1) can also be written in matrix notation as follows

x(t) = A(Θ)s(t) + ση(t), (3)

where A(Θ) = [a(θ1), . . . ,a(θK)], and s(t) = [s1(t), . . . , sK(t)]T .

We assume that the signals si(t) are narrow-band stochastic complex Gaussian processes, with ampli-

tude and phase that vary slowly relative to the propagation time. For simplicity, we also assume that the
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noise level is known and without loss of generality σ = 1. Note that no further assumptions are made

on the sources. In particular, the results presented in this paper hold even for fully correlated signals.

The problem we address is as follows: At discrete times t1, . . . , tn, we observe n samples x(t1), ...,x(tn)

from the model (1). Given these n noisy observations, the task is to estimate the unknown number of

signals K and their DOAs θ1, . . . , θK .

III. PREVIOUS WORK

As outlined above, there are two key tasks in signal array processing: i) Detection of the number of

sources. ii) Estimation of the signals parameters. Some methods differentiate the two tasks, solving each

separately. Other algorithms address both tasks simultaneously, via joint detection-estimation methods.

For stand-alone estimation algorithms, detecting the correct number of sources is crucial, since the success

of the estimation step may be very sensitive to detection errors [21].

The various detection algorithms can be divided into several groups, see for example Table 1 in [16].

One group consists of non-parametric detection methods, which do not assume any knowledge of the

array structure. These methods use only the eigenvalues of the sample covariance matrix

R̂ =
1

n

∑

j

xjx
H
j . (4)

Two popular non-parametric algorithms to detect the number of signals, based on information theoretic

criteria, are AIC (Akaike’s information criterion) and MDL (minimum description length) [28], [30].

Statistical analysis of these non-parametric methods reveals a close connection to random matrix theory

[18], [19]. In fact, this connection is used in [18] to devise a new non-parametric detection algorithm,

with significantly improved performance over the MDL estimator.

A second type consists of semi-parametric detection algorithms, which utilize partial knowledge on

the sensor array geometry. A common assumption is that sensors can be divided into pairs, with the

sensors in each pair separated by a fixed known translation vector. These methods detect the number of

signals using the resulting rotational invariance property of the signal subspace ([16], [22] for example).

Another example is the method by Abramovich, Spencer, and Gorokhov [2], [3], which assumes the

array is fully augmentable, i.e. the set of all inter-sensor distances is complete D = {1, . . . , p − 1}. In

this approach, a series of (sphericity) tests is used,

H0 : R
−1
2

k R̂R
−1
2

k = σ2I vs. H1 : R
−1
2

k R̂R
−1
2

k 6= σ2I,

where Rk ∈ Ωk, the set of positive definite Toeplitz covariance matrices having the smallest p − k

eigenvalues all equal to σ2. To decide between the two hypotheses, a GLRT is employed, taking the
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following form

Λ =

(
det(R̂−1

k R̂)

[1pTr(R̂
−1
k R̂)]p

)n

> threshold

where R̂k ∈ Ωk maximizes Λ.

The main reason for the popularity of the various non-parametric and semi-parametric methods is

their low computational complexity, which makes them useful for real-time applications. However, it was

realized early on that non-parametric methods are typically not optimal for detection, as they do not utilize

the full known structure of the array manifold. Hence, a third group are parametric detection methods

which take advantage of full knowledge of the array geometry. Many of these methods perform a series

of hypotheses tests to decide between different possible number of sources. For example, Otterstern,

Viberg, Stoica and Nehorai [20] proposed a joint detection-estimation scheme, based on a series of

decision problems, each solved by a generalized likelihood ratio test (GLRT). For increasing values of

the number of signals k, their test decides between the following two hypotheses,

H0 : R = A(Θk)SA(Θk)
H + σ2I vs. H1 : R is arbitrary

where R is the population covariance matrix of the input x(t), and S ∈ Ck×k is the signal covariance

matrix. The GLRT takes the form Λ > threshold, where

Λ = 2n(max
Θ

log det(AŜA− σ̂2I)− log det(R̂)), (5)

A = A(Θ) is the matrix composed of the steering vectors, σ̂ = σ̂(Θ) is the MLE of the noise power,

and Ŝ = Ŝ(Θ) is the MLE of the signal covariance matrix. In [20] it is shown that at the correct model

order, the random variable Λ in Eq. (5) follows a Chi-square distribution with p2 − k2 − k − 1 degrees

of freedom, hence the threshold in Eq.(5) can be easily set given any target false alarm rate.

While these parametric methods typically have better detection performance than various non-parametric

methods, we claim that their performance may still be significantly improved, in particular for arrays with

a large number of sensors. The reason is that the tests employed by these methods compare at each step

a specific parametric hypothesis against a completely general alternative on the covariance matrix, in the

sense that their union is the complete parameter space. Hence, these methods have low statistical power

in any specific direction and in particular, in directions corresponding to possible additional signals.

In this paper we present a new joint detection-estimation method. It is also based on a series of

hypothesis tests, but with a key difference that at each step we test one parametric hypothesis against a

parametric alternative. Note that our method is closely related to the algorithm proposed in [6], though

our analysis is more extensive, including an appropriate threshold for the corresponding GLRT, and a
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theoretical analysis of the asymptotic properties of the algorithm. Our algorithm is also related to the

parametric MDL [12], which takes the form

k̂MDL = argmin
k

{
−L(Θ̂

(k)
ML) +

1
2 |Θk| log n

}
,

where L = log f(x|Θ(k)) is the log-likelihood function, Θ̂
(k)
ML is the MLE and |Θk| is the minimal

number of parameters need to characterize the distribution function f completely (for a ULA with K

sources, |Θk| = k(n+1)). A key result of this paper is that the penalty of the parametric MDL estimator

is un-necessarily too large, and can be reduced significantly, leading to better detection performance. Our

findings are similar to those in the non-parametric setting, where the O(log(n)) penalty term of MDL

is also too large. There, an appropriate penalty is derived from Random Matrix Theory considerations

[18], whereas here it is derived using extreme value theory.

As illustrated in section VI, the new proposed method has excellent detection performance compared

to the non-parametric method by Kritchman and Nadler [18], the semi-parametric method by Silverstein

[22] and the parametric method by Otterstern et. al. [20].

IV. MAIN RESULTS

We present three main contributions on the problem of joint detection-estimation of the number of

sources and their parameters, under the parametric assumption of a fully known array geometry.

First, we examine the connection between the detection of the number of sources, which is a model

selection problem, and the MLE breakdown phenomena. Second, we investigate the properties of the

GLRT when a single source is present. Finally we present a joint detection-estimation algorithm with

state-of-the-art performance, and a statistical analysis of its asymptotic properties. Proofs of the various

theorems appear in section V.

A. Model Selection and The MLE Breakdown Phenomena

For simplicity we first consider the problem of detecting a single signal. Later on we extend this

analysis to an arbitrary number of signals. We thus consider the case where either no source is present

(K = 0), or only a single source is present (K = 1). Detecting the presence of a signal can be formulated

as an hypotheses testing problem as follows:

H0 : no sources are present (K = 0) vs.

H1 : one source is present (K = 1). (6)
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A standard method to decide between these two hypotheses is via the generalized likelihood ratio test

(GLRT). Under the assumption that the noise level σ is known, the GLRT takes the following form [23]

Tn,p(θ̂ML) =
1

nσ2

n∑

j=1

|〈xj ,
a(θ̂ML)

‖a(θ̂ML)‖〉|
2 > threshold (7)

where θ̂ML is the maximum likelihood estimator of the unknown DOA. Notice that Eq. (7) holds for

any array geometry. The key question is thus how to set the threshold in (7).

To find an appropriate threshold, it is instructive to analyze the behavior of θ̂ML and of Tn,p(θ̂ML)

under the different hypotheses H0 and H1. First, notice that under H0, when no signals are present,

the DOA θ is a non-existent nuisance parameter which cannot be estimated. In statistical terms, this is

a singular situation, where the GLRT does not follow a χ2 distribution. Rather, as we show below, its

distribution is closely related to the supremum of a certain stochastic process and can be approximated

using tools from extreme value theory. This situation is typical in parametric model selection problems,

see [9], [10] for similar examples.

In contrast, under H1 the DOA θ is an actual physical parameter, and its MLE is asymptotically

consistent [26]. However, it is well known that for small sample sizes or weak signals, the MLE suffers

from a ”breakdown phenomena” in its performance ([1], [5], [25] for example). In more detail, below

a certain threshold of either the SNR or of the number of samples, the MLE error increases rapidly,

starting to significantly deviate from the Cramer-Rao lower bound. The reason for the large estimation

error is the emergence of a random outlier θ′, unrelated to the actual unknown θ, yet having a higher

likelihood due to noise. Hence, for sample size too small or signal strength too weak, even if a signal is

present, its DOA cannot be reliably estimated.

In typical applications where the DOA is the parameter of interest, it is thus meaningless to declare that

a signal is present if its DOA cannot be reliably estimated. This key observation leads to the following

model selection or joint detection-estimation principle:

Detect only what can be reliably estimated (8)

For our analysis we shall call θ̂ML a reliable estimate of θ if it is located inside the main lobe of

the beamformer spectrum (the lobe that corresponds to the true DOA θ), see figure 1 for an example.

We remark that if the MLE θ̂ML is inside the main lobe, then its mean square error is close to the

Cramer-Rao lower bound.

Note that the model selection principle in Eq. (8) is quite general and applicable to many parametric

model selection problems, where it is of interest not only to detect the presence of signals but also
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Fig. 1. The correlation |〈a(θ1),a(θ2)〉|
p

as a function of θ2 for fixed θ1

to estimate their corresponding parameters. This principle suggests that the threshold in Eq. (7) should

correspond to the location of the MLE breakdown. Hence it is necessary to estimate this location, and

devise a diagnostic test, that for given observed data, assesses if the ML estimate is above or below this

threshold. In other words, without knowledge of θ, we need to test whether θ̂ML is a reliable estimate of

θ, and indeed a signal is present, or if the data consists of pure noise (or contains a very weak signal),

and thus θ̂ML is random. This close relation between the model selection problem, the MLE breakdown

phenomena and the statistical properties of extremes, is illustrated in figure 2.

B. Single Source Detection and The MLE Breakdown location

Following the reasoning above, we begin by introducing a simple diagnostic test for the presence of

a single signal.

Theorem 1. Consider n observations from the model (1) under the null hypothesis H0 of no sources

(K = 0). Let α ¿ 1 be a desired false alarm rate, and let

th(α) = 1 +
C(p, α)√

n
(9)

where

C(p, α) =

√
2 ln 1

α + ln
(
p2−1
6

)
. (10)

Then, as n → ∞
Pr

[
max

−π

2
6θ6π

2

Tn,p(θ) > th(α)|H0

]
6 α+Φc(C(p, α)), (11)

where Φc(x) = 1− Φ(x) =
∫∞
x

e−u2/2√
2π

du.
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Note that while Eq. (11) is proved only in the limit n → ∞, in practice, as demonstrated in section

VI, expressions (9), (10) are quite accurate even for small values of n. Furthermore, notice that the

term Φc(C(p, α)) in Eq. (11) is negligible for practical values of p and α. For example, for p = 5 and

α = 0.01, this term is about 0.0005. From Eq. (10), we see that for small p and α ¿ 1, the first term is

dominant, and the threshold th(α) has a very weak dependence on p.

Theorem 1 implies that if

max
θ

Tn,p(θ) > th(α) (12)

with α ¿ 1, then the probability that the data consists only of pure noise is small. Hence condition

(12) is a strong statistical indication for the presence of a signal. Consider thus Eq (12) as a diagnostic

test for signal detection. There are two key questions associated with this test. The first is which signal

strengths can be detected (with high probability) by this test. The second question is whether θ̂ML is a

reliable estimate of θ, assuming that Eq. (12) holds, and that a signal is present. The following theorem

provides an answer to both of these questions.

Theorem 2. Let {xj}nj=1 be n observations from the model (1) with a single source s(t) (K = 1).

Consider detection of the signal using Eq. (12) with th(α) given by (9) and α ¿ 1.

If the signal strength satisfies

σ2
s = E[|s|2] > C(p, α) + Φ−1(1− ε)

p
√
n

(13)

with p À 1, then as n → ∞, the signal s(t) will be detected with probability at least 1 − ε, and θ̂ML

will be a reliable estimate of θ with probability at least

1− δ = 1− 2Φc

(
1

2
(1− 1

π2
)(C(p, α) + S1−ε)

)
. (14)

In section VI we show that in practice this theorem is quite accurate even for a relative small number

of samples.

From theorem 2 it follows that the right hand side of Eq. (13) is an approximate expression for the

location of the MLE breakdown. In particular, for signal strength below this threshold, the probability

that θ̂ML is a reliable estimate of θ is significantly smaller than 1. However, with high probability, such

signals will not be detected, since they will not satisfy condition (12). The accuracy of the estimated

location of the MLE breakdown is shown in figure 6, see also section VI.

We note that although various papers discuss the MLE breakdown phenomena (see [1], [5], [13], [25]

for example), to the best of our knowledge, our analysis is the first one to provide a simple explicit
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Fig. 2. This figure illustrates the relation between the MLE breakdown, model selection and extreme value theory.

expression for its location, Eq. (13).

It is also interesting to compare the signal strength required for detection in the parametric setting

σ2
par, given by Eq. (13), and in the non-parametric setting, denoted σ2

non−par. According to [18] Eq.

(25), in the non-parametric setting a single signal can be detected with probability at least ε = 1
2 , if the

corresponding signal population eigenvalue satisfies

λ1 &
√

p− 1

n


1 +

√
s(α)(1−

√
(p− 1)/n)

(p− 1)1/3


 ,

where s(α) = F−1
2 (1−α) is the inverse of the Tracy-Widom distribution. For a ULA, we have λ1 = σ2

sp.

Therefore, for n À 1, σ2
non−par = O( 1√

np). Hence, when the array geometry is known, we gain a factor

of σ2
non−par

σ2
par

= O(
√
p) on the minimal signal strength required for reliable detection.

C. A Joint Detection-Estimation Scheme

In this section we extend our analysis to the detection of multiple sources and estimation of their

DOAs. Let L(k) be the maximum of the log-likelihood function under the assumption that k signals are

present and divided by n,

L(k) = − min
S(k),θ(k)

1

n

n∑

j=1

‖xj −
k∑

r=1

sr,ja(θr)‖2. (15)

Note that L(k) is a monotonic decreasing function with respect to k. Therefore, as is well known, we

cannot use the likelihood values themselves for model selection, and an external criteria is required to

avoid over-fitting. We propose to use a series of hypotheses decision problems of the form

Hk : at most k sources are present (K 6 k) vs.

Hk+1 : at least k + 1 sources are present (K > k + 1). (16)
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For each k, we use a generalized likelihood ratio test to distinguish between the two hypotheses. As

before, we need to choose an appropriate threshold for each test. We show below that the threshold

th(α) in Eq. (9), derived for the detection of a single source, can be also used in the multiple sources

scenario. We thus propose the following joint detection-estimation algorithm (denoted EV T for extreme

value theory):

Algorithm 1 Joint Detection-Estimation

1. Set k = 0 and compute L(0) = − 1
n

∑n
j=1 ‖xj‖2.

2. while k < p do

3. Compute L(k+1).

4. if L(k+1) − L(k) < th(α), for some user defined false alarm rate α then

5. return k̂EV T = k and stop.

6. else

7. set k = k + 1.

8. end if

9. end while

10. if all of the tests passed then

11. return k̂EV T = p.

12. end if

Note that in our algorithm, we need to compute L(k) for each value of k. This task requires a k

dimensional search over the parameter space, and hence it may be computationally intensive. Therefore,

various optimization methods were derived which approximate the ML ([20], [24] for example). In our

implementation the k-dimensional maxima is computed via an alternating projection technique [29].

First, we use the estimated signals from the previous step as an initial guess for the first k − 1 signals,

and estimate the k-th signal from the residual. We repeat this procedure, where at each iteration, the

parameters of k− 1 sources are kept fixed and reduced from the input while a single source is estimated

from the residual, via a one dimensional search, until a local maxima is found. Our method is thus

computationally fast, and may be used in practical applications.

Next we investigate the asymptotic properties of the proposed algorithm. We introduce the following

notation, let P = A(AHA)−1AH denote the projection matrix onto span{a(θ1), . . . ,a(θK)}, and let

P⊥ be its orthogonal complement, P ⊕ P⊥ = I . Finally, denote a⊥(θ) = P⊥a(θ) and η⊥ = P⊥η. The
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following proposition gives a bound on the probability to over-estimate the correct number of sources,

as n → ∞.

Proposition 3. Consider n samples from the model (1) with K < p− 1 sources from distinct directions

Θ = {θ1, . . . , θK}. Let T̃n,p(θ) =
1
n

∑n
j=1

∣∣∣〈ηj , P⊥a(θ)
‖P⊥a(θ)‖〉

∣∣∣
2
, and let r̃(θ1, θ2) be the covariance function

of Ũn,p(θ) =
√
n(T̃n,p(θ)− 1). Then

r̃1,1(θ, θ, P
⊥) =

∂2r̃

∂θ1∂θ2
(θ, θ) =

2
‖P⊥a(θ)′‖2‖P⊥a(θ)‖2 − |〈a(θ)′, P⊥a(θ)〉|2

‖P⊥a(θ)‖4 . (17)

If ∫ π

2

−π

2

√
r̃1,1(θ, θ, P⊥)dθ 6

∫ π

2

−π

2

√
r̃1,1(θ, θ, I)dθ, (18)

then, as n → ∞,

Pr
[
L(K+1) − L(K) > th(α)|HK

]
6 α+Φc(C(p, α)). (19)

In the proof of proposition 3, we show that as n → ∞, the logarithm of the likelihood ratio is distributed

as the maximum of the random process T̃n,p(θ). Notice that when no signal is present (K = 0), we have

P⊥ = I and T̃n,p(θ) = Tn,p(θ). Furthermore, this also means that r1,1(θ, θ, I) is the derivative of the

covariance function of Un,p(θ) =
√
n(Tn,p(θ)−1), which is derived in the proof of theorem 1. Therefore

assumption (18) can be used to bound the probability to over-estimate the correct number of sources K,

by the probability that Tn,p will exceed th(α), given explicitly by Eq. (11) in theorem 1.

We remark that although it is difficult to prove mathematically that Eq. (18) holds, it is possible to verify

it numerically. In figure 3, we show
√

r̃1,1(θ, θ, I), which according to Eq. (27) is just a constant, and
√

r̃1,1(θ, θ, P⊥), in the interval θ ∈ [−π
2 ,

π
2 ], where Θ = {−π

4 ,
π
4 }. Although there are several locations

for which the second function is slightly larger than the first, there is a large region near each θi for

which
√

r̃1,1(θ, θ, I) À
√

r̃1,1(θ, θ, P⊥), hence the integral of
√

r̃1,1(θ, θ, I) over the entire interval is

larger. One can check numerically that this phenomena occurs for any number of angles θi in the interval

[−π
2 ,

π
2 ].

Finally, we complete this section by showing the weak consistency of our new proposed algorithm.

Theorem 4. Consider n samples from the model (1) with K < p−1 sources. Then under the assumptions
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of proposition 3, the algorithm above has the following asymptotic properties:

Pr[k̂EV T < K] → 0 as n → ∞, (20)

Pr[k̂EV T > K] 6 α+Φc(C(p, α)) as n → ∞. (21)

V. DETAILED ANALYSIS

A. Proof of Theorem 1

To prove theorem 1 we estimate the probability that max
θ

Tn,p(θ) will exceed th(α) under H0 as

n → ∞. Note that as a function of θ ∈ [−π
2 ,

π
2 ], the beamformer statistic Tn,p(θ) is a continuous random

process. In general, computing the exact probability that a random process exceeds a given threshold is

a difficult mathematical problem, and exact solutions are known only for a handful of cases.

However, under quite general assumptions, there are accurate asymptotic approximations for the

probability of exceedance ([11], [4], [32] for example). For our purposes, we will use the following

well known result for the case of a stationary Gaussian process (proposition 4.1 in [32]).

Proposition 5. Let {X(t)}t>0 be a real-valued zero mean Gaussian process with unit variance and con-

tinuously differentiable sample paths. Let r(s, t) be its covariance function. Denote MT = supt∈[0,T ]X(t),

then for any value of u,

Pr[MT > u] 6 e
−u2

2

2π

∫ T

0

√
r1,1(t, t)dt+Φc(u), (22)

where r1,1(s, t) =
∂2r
∂s∂t(s, t).
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Next, we apply proposition 5 to the process Un,p(θ) =
√
n(Tn,p(θ)−1), which has zero mean and unit

variance. From its definition as a finite sum of smooth functions (Eq. (7)), Tn,p(θ) clearly is continuously

differentiable, and hence also Un,p(θ). Note that under the null hypothesis H0, for any fixed θ, Tn,p(θ)

is not Gaussian, rather it is distributed as a χ2
2n

2n random variable. However, for any fixed θ, as n → ∞,

Un,p(θ) converges in distribution to a N (0, 1) Gaussian variable. Finally, its covariance function is given

in the following claim.

Claim 6. The covariance function r(θ1, θ2) of the random process Un,p(θ) is given by

r(θ1, θ2) =

∣∣∣∣〈
a(θ1)

‖a(θ1)‖ ,
a(θ2)

‖a(θ2)‖〉
∣∣∣∣
2

. (23)

In particular, for the case of a ULA, if we consider the following change of variables

θ(τ) = arcsin(
2τ

p
− 1) for τ ∈ [0, p], (24)

then the process Un,p(θ(τ)) is stationary. Hence r(τ1, τ2) = ρ(τ1 − τ2) and as τ1 → τ2,

ρ(τ1 − τ2) = 1− π2

3
(1− 1

p2
)(τ1 − τ2)

2 +O(τ1 − τ2)
4. (25)

Proof: Since E[Un,p(θ)] = 0 for any θ ∈ [−π
2 ,

π
2 ],

Cov(Un,p(θ1), Un,p(θ2)) =

= n E
x1,...,xn

[(Tn,p(θ1)− 1)(Tn,p(θ2)− 1)]

= n E
x1,...,xn

[Tn,p(θ1)Tn,p(θ2)]− n.

Using the definition of Tn,p (Eq. (7)), we obtain

Tn,p(θ1)Tn,p(θ2) =
1

n2

n∑

j=1

n∑

l=1

|〈xj ,
a(θ1)

‖a(θ1)‖〉〈xl,
a(θ2)

‖a(θ2)‖〉|
2.

Under the null hypothesis H0, the n random variables |〈xj ,
a(θ)

‖a(θ)‖〉|2, for j = 1, . . . , n are all i.i.d with

mean 1. Hence the n(n− 1) terms in the double sum above with j 6= l, all have mean 1. This gives

Cov(Un,p(θ1), Un,p(θ2)) =

=
1

n

(
nE
x

[
|〈x, a(θ1)

‖a(θ1)‖〉〈x,
a(θ2)

‖a(θ2)‖〉|
2
]
+ n(n− 1)

)
− n

= E
x

[
|〈x, a(θ1)

‖a(θ1)‖〉〈x,
a(θ2)

‖a(θ2)‖〉|
2
]
− 1.
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Next, we write a(θ2)
‖a(θ2)‖ = γ a(θ1)

‖a(θ1)‖ + b⊥
1 , where γ = 〈 a(θ1)

‖a(θ1)‖ ,
a(θ2)

‖a(θ2)‖〉 and b⊥
1 is a vector perpendicular

to a(θ1). Therefore, the expression above becomes

= E
x

[
|〈x, a(θ1)

‖a(θ1)‖〉
2γ + 〈x, a(θ1)

‖a(θ1)‖〉〈x,b
⊥
1 〉|2

]
− 1

= |γ|2E
x

[
|〈x, a(θ1)

‖a(θ1)‖〉|
4
]
+ E

x

[
|〈x, a(θ1)

‖a(θ1)‖〉〈x,b
⊥
1 〉|2

]
+

2Re

(
γE
x

[
〈x, a(θ1)

‖a(θ1)‖〉
3〈x,b⊥

1 〉
])

− 1.

Since b⊥
1 is perpendicular to a(θ1), the random variables 〈x, a(θ1)

‖a(θ1)‖〉 ∼ CN (0, 1) and 〈x,b⊥
1 〉 ∼

CN (0, ‖b⊥
1 ‖) are independent. Hence, the third term in the sum above equals zero, and we get

Cov(Un,p(θ1), Un,p(θ2)) = 2|γ|2 + ‖b⊥
1 ‖2 − 1.

Finally, one can easily check that ‖b⊥
1 ‖2 = ‖ a(θ2)

‖a(θ2)‖ −γ a(θ1)
‖a(θ1)‖‖2 = 1−|γ|2, and hence Eq. (23) follows.

Notice that Eq. (23), is a very simple expression for the covariance of the stochastic process Un,p(θ),

that holds for any array geometry. For the case of a ULA, the process turns out to be stationary after the

change of variables in Eq. (24), as we show below. We insert the definition of a(θ) (Eq. (2)) into Eq.

(23). Since ‖a(θ)‖2 = p for any θ, we get

Cov(Un,p(θ(τ1)), Un,p(θ(τ2))) =

=
1

p2

p−1∑

j=0

e−i 2π
p
j(τ1−τ2)

p−1∑

k=0

ei
2π

p
k(τ1−τ2)

=
1− e−i2π(τ1−τ2)

1− e−i 2π
p
(τ1−τ2)

1− ei2π(τ1−τ2)

1− ei
2π

p
(τ1−τ2)

=
1

p2
1−cos(2π(τ1−τ2))
1−cos( 2π

p
(τ1−τ2))

= ρ(τ1 − τ2). (26)

Eq. (26) shows that the process Un,p(τ) is indeed stationary as its covariance depends only on the

difference τ1 − τ2. Eq. (25) follows from a Taylor expansion of (26), when τ1 → τ2.

Eq. (25) allows us to compute r1,1(τ, τ) in the ULA case,

r1,1(τ, τ) =
∂2r

∂s∂t
(τ, τ) =

2π2

3

p2 − 1

p2
. (27)

Finally, combining Eq. (27) with proposition 5 we bound the probability of exceedance as follows

Pr[ max
−π

26θ6π
2

√
n(Tn,p(θ)− 1) > u|H0] 6

e
−u2

2

√
1
6(p

2 − 1) + Φc(u). (28)

Eq. (11) now follows with u = C(p, α) given in Eq. (10).
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B. Proof of Theorem 2

Let {xj}nj=1 be n i.i.d. observations from the model (1) with a single source from an unknown direction

θ, that is

xj = sja(θ) + ηj . (29)

Since the source is detected only if Eq. (12) is satisfied, we analyze the probability of signal detection,

defined as

Pd(p, n) = Pr[ max
−π

2
6θ6π

2

Tn,p(θ) > th(α) |H1]. (30)

In particular, we are interested in deriving a sufficient condition on the signal strength, such that Pd > 1−ε,

for some ε ¿ 1. For this purpose, we consider the probability that Tn,p exceeds the threshold at some

fixed θ̃,

Pd(p, n, θ̃) = Pr[Tn,p(θ̃) > th(α) |H1]. (31)

We use this probability as a lower bound on (30). Hence we look for a condition on the signal strength

such that

Pd(p, n) > Pd(p, n, θ̃) > 1− ε. (32)

Let γ = 〈a(θ̃),a(θ)〉. Then, inserting (29) into Eq. (7) gives

Tn,p(θ̃) =
1

np

n∑

j=1

∣∣∣〈a(θ̃),xj〉
∣∣∣
2
=

1

np

n∑

j=1

∣∣∣γsj + 〈a(θ̃), ηj〉
∣∣∣
2
.

Since ηj ∼ CN (0, Ip) and ‖a(θ)‖2 = p, we get 〈a(θ̃), ηj〉 =
√

p
2(aj + ibj) where aj , bj ∼ N (0, 1).

Thus,

Tn,p(θ̃) =
1

np

n∑

j=1

∣∣∣γsj +
√

p
2(aj + ibj)

∣∣∣
2

=

1
2n

n∑

j=1

{
(aj +

√
2Re( γ√

psj))
2 + (bj +

√
2Im( γ√

psj))
2
}
,

and therefore

E[Tn,p(θ̃)|H1] = 1 +
|γ|2
p

σ2
s (33)

where σ2
s = E[|sj |2]. Recall our assumption that the signal s(t) is a narrow-band complex Gaussian

random process, hence sj , for j = 1, . . . , n are all i.i.d, CN (0, σs) random variables. Under H1 it readily

follows that 2nTn,p(θ̃) is distributed according to a non-central chi-square distribution with parameters

k = 2n, λ = 2n |γ|2
p σ2

s . Therefore

Var[Tn,p(θ̃)] =
2

4n2
(k + 2λ) =

1

n
(1 + 2

|γ|2
p

σ2
s). (34)
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Since for n À 1 it is possible to detect very weak signals, we may assume that the signal strength is

small, in particular, 2 |γ|2
p σ2

s ¿ 1. Hence, as n → ∞, the leading order term in Eq. (34) is 1
n . Finally,

since Tn,p is the average of n i.i.d. random variables, for n À 1, it can be approximated by a Gaussian

variable as follows

Tn,p(θ̃) = 1 +
|γ|2
p

σ2
s +

1√
n
η (35)

where η ∼ N (0, 1).

Next, consider the value of Tn,p at the true DOA θ. In this case |γ| = p, and hence

Tn,p(θ) ≈ 1 + pσ2
s +

1√
n
η. (36)

The approximation in Eq. (36) is useful as it allows us to rewrite Eq. (31), with θ̃ = θ, as follows,

Pd(p, n, θ) = Pr

[
1 + pσ2

s +
1√
n
η > 1 +

C(p, α)√
n

]

= Pr
[
η > −pσ2

s

√
n+ C(p, α)

]

= Φc
(−pσ2

s

√
n+ C(p, α)

)
.

Therefore Eq. (32) holds, if

−pσ2
s

√
n+ C(p, α) < Φ−1(ε) = −Φ−1(1− ε), (37)

and after simple manipulations we can obtain Eq. (13). Hence if Eq. (13) holds, then for n À 1, a signal

s(t) will be detected by the test (12) with probability at least 1 − ε. This proves the first part of the

theorem.

Next, we show that under condition (13), with high probability, θ̂ML is a reliable estimate of the

unknown DOA θ. That is, the probability that Tn,p(θ) attains its maximum at an angle outside the main

lobe region in the beamformer spectrum (the probability for an outlier) is small. To prove the second

part of the theorem, we shall use the following simple claim.

Claim 7. Let θ̃ be an angle corresponding to an outlier outside the main lobe of the true DOA θ. Then

|γ| = |〈a(θ̃),a(θ)〉| 6
∣∣∣ 2
1−ei2π/p

∣∣∣ . (38)

In particular, for p > 4, |γ| 6 p
π ≈ 0.32p.

Proof: Consider the following change of variables, τ = sin(θ) and τ̃ = sin(θ̃). Then, by definition,

γ = 〈a(θ̃),a(θ)〉 =
p−1∑

j=0

eiπj(τ−τ̃) =
1− eiπp(τ−τ̃)

1− eiπ(τ−τ̃)
. (39)
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Notice that for |τ − τ̃ | = 2
pm where m ∈ [1, . . . , p], we get γ = 0. Hence the condition that θ̃ is

outside the main lobe can be written as |τ − τ̃ | > 2
p . Inserting this into (39) yields Eq. (38). For p À 1,

e
i2π
p ≈ 1 + i2π

p , hence |γ| . p
π . We remark that in practice, this bound holds for any p > 4.

Next, we show that if θ̃ is outside the main lobe of θ, and condition (13) holds, then

Pr[Tn,p(θ̃) > Tn,p(θ)] ¿ 1.

Using the approximation of Eq. (35) and (36), the previous probability is

Pr[ |γ|
2

p σ2
s +

1√
n
η̃ > pσ2

s +
1√
n
η] = Pr[ 1√

n
(η̃ − η) > σ2

s(p− |γ|2
p )],

and using condition (13) and claim 7, we can bound this probability by

< Pr[η̃ − η > (1− 1

π2
)(C(p, α) + S1−ε)].

We bound this probability even further using a union bound

6 Pr[{η̃ >
1

2
(1− 1

π2
)(C(p, α) + S1−ε)}

⋃

{−η >
1

2
(1− 1

π2
)(C(p, α) + S1−ε)}]

6 Pr[η̃ >
1

2
(1− 1

π2
)(C(p, α) + S1−ε)] +

Pr[−η >
1

2
(1− 1

π2
)(C(p, α) + S1−ε)] = δ,

where δ is as in Eq. (14). Note that if α ¿ 1 and ε ¿ 1, then δ ¿ 1 as well. For example, for p = 5,

α = ε = 0.001, we get δ ≈ 0.001.

C. Proof of Proposition 3

Consider the model (1) with K sources impinging on the array from distinct angles θ1, . . . , θK . We

analyze the probability that our proposed algorithm described in section IV will over estimate the true

number of sources (K̂ > K).

Claim 8. Consider the setting of proposition 3. Then as n → ∞, the likelihood ratio L(K+1) −L(K) is

distributed as the maximum of the following stochastic process

max
θ

T̃n,p(θ) = max
θ

1

n

n∑

j=1

∣∣∣〈η⊥j , a⊥(θ)
‖a⊥(θ)‖〉

∣∣∣
2
. (40)

Proof: First, recall that if K is known, then Θ̂ML is a consistent estimate of θ1, . . . , θK [26].

Therefore, as n → ∞,

L(K) → −min
S̃(k)

1

n

∑
‖A(Θ)sj + ηj −A(Θ)s̃j‖2. (41)
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It is easy to see that the minimum value in Eq. (41) is achieved for ŝj = sj + A+ηj , where A+ =

(AHA)−1AH is the Moore-Penrose pseudo inverse matrix of A. Hence

L(K) → − 1

n

n∑

j=1

‖η⊥j ‖2. (42)

This implies that when we test for the correct number of sources K, the likelihood depends only on the

part of the noise vector, orthogonal to span{a(θ1), . . . ,a(θK)}.

Next, we claim that as n → ∞, the maximum of L(K+1) is achieved when θ̂l = θl for l = 1, . . . ,K,

and for ŝj,1:K = sj + A+ηj + A+a(θ̂K+1)ŝj,K+1, where ŝj,1:K are the first K coordinates of ŝj . This

fact is clear by the same proof in [26] for the consistency of Θ̂ML, when the number of sources K is

known. Thus, by inserting these values into Eq. (15), we get that as n → ∞,

L(K+1) → −min
θ̃,s̃

1

n

∑
‖η⊥j − a⊥(θ̃)s̃j‖2. (43)

Finally, we follow the same derivation of Tn,p that appears in [23], and obtain Eq. (40).

Observe that since P⊥ is an orthogonal projection matrix, then (P⊥)HP⊥ = P⊥, and hence T̃n,p(θ)

can be written as

T̃n,p(θ) =
1

n

∑

j

∣∣∣〈ηj , a⊥(θ)
‖a⊥(θ)‖〉

∣∣∣
2
. (44)

Note that for any fixed θ /∈ {θ1, . . . , θK}, T̃n,p(θ) is distributed as a χ2
2n

2n random variable. Hence,

by the same argument as in the proof of theorem 1, the random process Ũn,p(θ) =
√
n(T̃n,p(θ) − 1)

tends to a centered Gaussian process. Clearly Ũn,p(θ) has continuously differentiable sample paths for

θ /∈ {θ1, . . . , θK}. Hence by proposition 5,

Pr[ max
−π

26θ6π
2

√
n(T̃n,p(θ)− 1) > u] 6

e
−u2

2

2π

∫ π

2

−π

2

√
r1,1(θ, θ, P⊥)dθ +Φc(u). (45)

As in Eq. (23), the covariance function of the process Ũn,p is

r̃(θ1, θ2) =
∣∣∣〈 a⊥(θ1)

‖a⊥(θ1)‖ ,
a⊥(θ2)

‖a⊥(θ2)‖〉
∣∣∣
2
. (46)

Next, we show that the derivative of the covariance function r̃1,1, can be computed using Eq. (17).

For ease of notation we let g1 = a⊥(θ1) and g2 = a⊥(θ2). The covariance function is then r̃(θ1, θ2) =

|〈g1,g2〉|2
‖g1‖2‖g2‖2 and its derivative is

∂r̃

∂θ1
=

〈g′1, g2〉〈g2, g1〉+ 〈g1, g2〉〈g2, g′1〉
‖g1‖2‖g2‖2

−2
〈g1, g2〉〈g2, g1〉
‖g1‖4‖g2‖2 Re(〈g′1, g1〉),
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where g′i =
∂gi
∂θi

, for i = 1, 2. Next,

r̃1,1(θ1, θ2) =
∂2r̃

∂θ1∂θ2
=

2Re(〈g′1, g′2〉〈g2, g1〉+ 〈g′1, g2〉〈g′2, g1〉)
‖g1‖2‖g2‖2

−2
〈g′1, g2〉〈g2, g1〉+ 〈g1, g2〉〈g2, g′1〉

‖g1‖2‖g2‖4 Re(〈g′2, g2〉)

−2
〈g1, g′2〉〈g2, g1〉+ 〈g1, g2〉〈g′2, g1〉

‖g1‖4‖g2‖2 Re(〈g′1, g1〉)

+4
〈g1, g2〉〈g2, g1〉
‖g1‖4‖g2‖4 Re(〈g′1, g1〉)Re(〈g′2, g2〉). (47)

Finally, we evaluate the above at θ1 = θ2 = θ (denote g1 = g2 = g):

r̃1,1(θ, θ) =

= 2‖g′‖2

‖g‖2 + 2Re(〈g′,g〉2)
‖g‖4 − 4Re(〈g′,g〉)2

‖g‖4

= 2‖g′‖2

‖g‖2 + 〈g′,g〉2+〈g,g′〉2
‖g‖4 − (〈g′,g〉+〈g,g′〉)2

‖g‖4

= 2
(
‖g′‖2

‖g‖2 − |〈g′,g〉|2
‖g‖4

)
.

Notice that by the linearity of the derivative, a⊥(θ)′ = (P⊥a(θ))′ = P⊥a(θ)′, and therefore Eq. (17)

follows.

Finally, from Eq. (45) and our assumption in Eq. (18), it follows that

Pr[max
θ

T̃n,p(θ) > th(α)] 6

e−C(p,α)2/2

2π

∫ π

2

−π

2

√
r̃1,1(θ, θ, P⊥)dθ +Φc(C(p, α)) 6

e
−C(p,α)2

2

2π

∫ π

2

−π

2

√
r̃1,1(θ, θ, I)dθ +Φc(C(p, α)).

Observe that r̃1,1(θ, θ, I) corresponds to the case where no signals are present (K = 0), hence we can

use Eq. (27). Therefore the expression above can be written as

=
e

−C(p,α)2

2

2π

√
2
3(p

2 − 1)π2 +Φc(C(p, α))

= α+Φc(C(p, α)).
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D. Proof of Theorem 4

We investigate the probability to under-estimate the correct number of sources. Observe that as n → ∞
and for any k < K,

L(k) − L(k−1) > L(k+1) − L(k),

hence, it suffices to show that with high probability

L(K) − L(K−1) > th(α) as n → ∞. (48)

First, consider Eq. (42). Since P⊥ is a projection matrix onto a p−K dimensional space,

−L(K) → E[‖η⊥‖2] = E[‖P⊥η‖2] = p−K.

Similarly, let θ̂1, . . . , θ̂K−1 be the minimizer of L(K−1). It follows from the unambiguity property of

the vectors a(θ) (for a ULA) [20], that the dimension of the signal subspace is K. Therefore projecting

the signal subspace into a p− (K − 1) dimensional subspace, must necessarily leave a non-zero residual

r = A(Θ)s(t)−A(Θ̂)ŝ(t). Therefore, as n → ∞,

−L(K−1) → E[‖A(Θ)s(t) + η −A(Θ̂)ŝ(t)‖2]

= E[‖η⊥ + r‖2]

= E[‖η⊥‖2 + ‖r‖2 + 2Re(〈r, η⊥〉)].

Since r, η⊥ are independent, the expectation of their inner product is zero. Hence, we get

−L(K−1) → P − (K − 1) + E[‖r‖2].

Combining these observations, we get

L(K) − L(K−1) → P − (K − 1) + E[‖r‖2]− (P −K)

= 1 + E[‖r‖2] > 1.

Finally, notice that the threshold th(α) in Eq. (9) tends to 1 as n → ∞. Thus, the probability to under-

estimate the correct number of sources tends to zero as n → ∞.

VI. SIMULATIONS

In this section we present a series of simulations that illustrate the finite sample behavior of Theorems

1, 2, and 4, as well as the detection performance of our algorithm in comparison to some other common

detection methods.
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Fig. 4. The probability that the test (12) passed, when no signal is present, as a function of the number of samples.

Throughout this section, all simulations are conducted using a ULA with either p = 7 or p = 15

equally spaced sensors, and with a false alarm rate of α = 0.001. In addition, all sources are distributed

as Zeiφ where φ is uniformly distributed in [0, 2π] and Z is a real-valued Gaussian random variable with

mean σs and standard deviation 0.01. In all of our simulations, the signal strengths satisfy σs À 0.01 so

that E[|s|2] ≈ σ2
s .

In figure 4 we show the probability that the test in Eq. (12) passed, when no signal was present. The

results are in accordance to Eq. (11) in theorem 1. That is, the empirical false alarm probability converges

to α as n → ∞.

Figure 5 shows the probability that the test (12) failed e.g. that a signal was not detected despite its

presence. In addition we also show the limit of detection from Eq. (13) according to theorem 2. We can

see that if the signal strength is above the threshold in Eq. (13), then the probability that the signal was

not detected is close to ε = 0.01, and drops below ε as n increases. For n = 100, the probability is

≈ 2.5%, while for n = 500, the probability is ≈ 0.8%.

Figure 6 shows the mean square error of θ̂ML, when a single signal was present, as a function of the

signal strength σ2
s . We also included the limit of detection (Eq. (13)). As explained in section IV, this

expression can be used as an approximation for the location of the MLE performance breakdown. As

n increases, this approximation yields a better prediction for the breakdown location. In addition, we

show the log MSE computed only from the experiments where the test in Eq. (12) passed, excluding

the cases when a signal was not detected by our method. Notice that in this case there is no breakdown

phenomena, in accordance to theorem 2.

Finally, in fig 7 we compare the detection performance of our algorithm to the following methods: The
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Fig. 5. The probability that the test (12) failed, when a single source is present, as a function of the signal strength. Pd is the

probability of detection, and Ld is the right hand side of Eq. (13) (the limit of detection).
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Fig. 6. MSE of the MLE θ̂ML as a function of the SNR, for three different values of n. Ld is the right hand side of Eq. (13).

For n = 150 we show the MSE given that Eq. (12) holds, as well as the Cramer-Rao bound.

non-parametric detection algorithm by Kritchman and Nadler based on random matrix theory (RMT )

[18], the parametric GLRT based method of Otterstern, Viberg, Stoica and Nehorai [20], and the semi-

parametric method based on ESPRIT by Silverstein [22]. In the top panels, p = 7 and in the bottom

panels p = 15. In the left panels, three signals strengths and their DOAs were fixed, while the number

of samples increased from n = 15 to n = 500. In the right panels, the number of samples was fixed

(n = 90), while three signals from fixed directions were present. Two of those signals were kept fixed,

while the strength of the third varied between s = 0.1 and s = 0.5. As shown in the figure our method

has better detection performance at a comparable false alarm rate. Notice that for p = 7, n > 140 and for

p = 15, n > 50 the probability that k̂EV T 6= K is less than α = 0.1% in agreement with theorem 4. For

comparison, the number of samples required to get the same detection probability for the non-parametric
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Fig. 7. The probability to detect the wrong number of signals, when three signals are present with directions Θ = [−π
4
, 0, π

4
],

as the number of samples or the signal strength increases.

method RMT is n > 300 for p = 7, and n > 125 for p = 15.

VII. SUMMARY

In this paper we presented a statistical analysis of the problem of detecting the number of sources and

estimating their parameters, in a parametric setting. The main contribution of this paper is an explicit

connection between the model order selection problem, the MLE performance breakdown and extreme

value theory. In particular, we select the maximal model order for which the MLE is a reliable estimate.

For that reason, we derived a simple expression for the location of the MLE breakdown and used it in our

algorithm. We used computer simulations to show that the new proposed method has improved detection

performance compared to other common detection algorithms.
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