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1. INTRODUCTION

I commend Johnstone and Lu for publishing this important
article, which has motivated quite a lot of recent work on
sparsity and statistical inference in high-dimensional settings.
In their article, Johnstone and Lu present two main results.
First, in the presence of considerable noise in the x variables,
with a number of samples n not significantly larger than the
number of variables p, the sample eigenvectors computed by
standard principal component analysis (PCA) may be poor
approximations to their population analogs. Second, if the
sample observations are known to be sparse in some a priori
known basis, then it is possible, via a thresholding procedure,
to obtain both improved eigenvector estimates (provably con-
sistent in an appropriate limit) as well as substantial compu-
tational savings.

Because PCA is an unsupervised method, one question that a
reader may ask is whether this curse of dimensionality, leading
to large reconstruction errors in high dimensions, is the result
of the lack of supervision. In other words, should we worry
about similar problems in supervised settings, such as classi-
fication or regression, where for each sample x a response
variable y is also given?

Regretfully, the short answer to this question is yes. This
curse of dimensionality also affects the supervised scenario. A
few years ago, independent of the work of Johnstone and Lu,
Ronald Coifman and myself (Nadler and Coifman 2005) con-
sidered a regression problem in a setting similar to the one
considered in the article by Johnstone and Lu. Because the
errors are in the x variables, this is an error-in-variables
regression problem. Rather than analyzing the joint limit as
both p, n ! ‘, in Nadler and Coifman (2005) we kept the
number of variables p and the number of samples n as fixed, but
viewed the noise strength s as a small parameter, and expanded
the estimated regression vector and resulting mean squared
error as a function of s. We showed that, similar to the findings
of Johnstone and Lu, large prediction errors may occur in high-
dimensional settings. In particular, for various regression methods,
such as classic least squares and partial least squares, we derived the
following formula for the mean squared error of prediction:
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where s is the noise level, b is the true regression vector, and
c1, c2 are constants independent of n, p. Hence, in the p � n
setting with substantial noise, the (p/n)2 term inside the

brackets may be larger than unity and may dominate the pre-
diction error. Furthermore, in Nadler and Coifman (2005),
motivated by problems in chemometrics and spectroscopy, in
which the signals are known to be smooth and hence sparse in a
wavelet basis, we suggested thresholding the signals by rep-
resenting them with only a few wavelet coefficients, computed
by a joint best basis approach.

A similar phenomenon, of large errors when p� n was also
shown in a classification setting a decade earlier by Buckheit
and Donoho (1995), who also, not surprisingly, suggested
thresholding of the wavelet coefficients. Neither of these works
presented a consistency proof of the performance of a thresh-
olding procedure, as described by Johnstone and Lu.

2. SOME THEORETICAL CALCULATIONS

There are two main issues raised in the work of Johnstone
and Lu: the first is the accuracy in reconstruction of the under-
lying eigenvectors, and the second is the speed or computational
complexity of a suggested algorithm—both under the assump-
tion that the signals are sparse in an a priori known basis.

Let us first consider the issue of accuracy. In contrast to the
approach taken by Johnstone and Lu of analyzing consistency
in the joint limit p, n ! ‘, I shall keep p, n finite and fixed.
Consider, then, a one-component system, denote by v the (unit
norm) population eigenvector corresponding to the largest
eigenvalue and by v̂ the corresponding eigenvector of sample
PCA. From Nadler (2008, corollary 2), it follows that the error
in eigenvector reconstruction is given by

sin u ¼ s

l

ffiffiffiffiffiffiffiffiffiffiffi
p� 1

n

r
1þ OðsÞ þ Oð1=

ffiffiffi
n
p
Þ

� �
;

where u is the angle between the two vectors v; v̂; and l is the
largest eigenvalue in the absence of noise (in the notation of
Johnstone and Lu, l ¼ ||r||2). Hence,
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and so the accuracy of signal reconstruction is
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Note that the approximate expression in Equation (2) is inde-
pendent of the signal-to-noise ratio. For p ¼ 2,048, n ¼ 1,024,
and s ¼ 1, Equation (2) gives that (pn)–1/2 � 6.9 3 10�4 in
agreement with table 1 in Johnstone and Lu.

Now consider the effect of variable selection (after trans-
formation to an appropriate basis, in which the signals are
sparse). Let k denote the number of chosen variables, rk the
response vector r restricted to these variables, r?k ¼ r � rk its
orthogonal complement, and r̂k the eigenvector of sample PCA
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computed only on these k chosen variables. Then, following the
same reasoning as noted earlier, we have a reconstruction
error of
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This formula provides insight into the best achievable accuracy
for finite p, n. The optimal basis is, of course, one in which the
first basis function is simply the vector r. Then k ¼ 1, r?k ¼ 0,
and ASE1 ¼ 0. Of course, we do not know the vector r, but
rather assume it has a sparse representation in a given basis.
The quality of this basis can be assessed by its minimal ach-
ievable (theoretical) error—for example, the value of k for
which ASEk is minimal. Then, the performance of any algo-
rithm for sparse reconstruction can be checked against this
optimal error. Another interpretation of Equation (3) is to view
variable selection as a simple bias–variance tradeoff. The first
term in (3) is the bias resulting from choosing only k variables,
whereas the second term is the (smaller) variance of recon-
struction in the lower dimensional space.

A second insight from Equation (3) is with respect to the set
of features that yield the minimal error. At the optimal value of
k, we have that ASEkþ1 > ASEk, and ASEk < ASEk�1. These
conditions give
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where r(n) are the coefficients of the signal r sorted in
decreasing order of magnitude (in absolute value). In other
words, for optimal reconstruction we need to find all the fea-
tures of the signal with energy larger than s2/n. The more
observations we have, the more features of the signal we should
choose. Regretfully, however, a simple thresholding of the
empirical variances at a threshold of say s2(1 þ 1/n), in gen-
eral, will not yield an optimal set of features. The reason is that
noise variables themselves have an empirical variance with
mean s2, but fluctuation on the order of s2=

ffiffiffi
n
p
� s2=n.

Moreover, in high dimensions (p � 1) where, by the sparsity
assumption, most variables are pure noise, even larger signal
variables may be difficult to detect, because some of the noise
variables will have an empirical variance as large as
s2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
Þ.

Figure 1 presents the theoretical optimal curve for ASEk as a
function of k, assuming an oracle that, for each value of k gives

us the best (large magnitude) k features of the unknown vector
r. For the three-peak function represented in the symmlet
wavelet basis, with n ¼ 1,024 observations, the minimal error
1.1 3 10�4 is obtained with roughly 50 features, whereas for
the step function with the Haar basis, the optimal error is 2.35
3 10�4 with roughly 240 features. Comparison of these
numbers with Table 1 shows that although the thresholding
procedure suggested by Johnstone and Lu leads to considerably
smaller reconstruction errors in comparison with those of PCA
on all variables, there may still be room for improved methods
either for variable selection or for covariance regularization.
Also note from Figure 1 the high sensitivity of reconstruction
errors to mistakes, either by exclusion of important signal
features or by incorrect inclusion of noise variables as signals.

3. SPARSITY AND REGULARIZATION

The theoretical analysis of the previous section showed that
there is some gap between the performance of the sparse PCA
method of Johnstone and Lu and the possibly optimal one. In
Table 1 of this discussion, the mean number of indices chosen
by the initial thresholding step of the sparse PCA algorithm is
shown. We note that, in accordance with the theoretical anal-
ysis of the previous section, the initial thresholding step
chooses many more variables than necessary for both the three-
peak and the step functions. Moreover, in both cases, some of
the optimal 50 or 240 features are not always part of this initial
set. In other words, quite a few noise variables find their way in
and some signal features are regretfully left out. These findings
explain the deterioration in performance of the sparse PCA
algorithm, the relative success of the post-thresholding step,
and suggest that either one of methods (a) or (b) in the article
by Johnstone and Lu for initial variable selection may not work
well, in particular, at low signal-to-noise ratios.

Can one do better by other methods? First, let us consider a
different approach for regularization recently suggested by
Bickel and Levina (2008). Their method assumes that the
covariance matrix is sparse and computes a ‘‘thresholded’’
covariance matrix T[Sn], where only entries larger than some

Table 1. Accuracy and timing comparison of different algorithms

PCA BL
Sparse

þ Threshold CORR

ASE (three-peak) 6.9e�4 1.8e�4 2.2e�4 1.5e�4
No. of features 2,048 NR 495 43
Time (sec) 2.5 3.1 1.7 1.7

ASE (step) 6.9e�4 2.4e�4 2.9e�4 2.5e�4
No. of features 2,048 NR 415 240
Time [sec] 2.5 2.8 1.5 1.6

NOTE: ASE, averaged root squared error; BL, Bickel and Levina (2008); CORR, corre-
lation matrix; NR, not relevant.

Figure 1. The theoretically optimal reconstruction error versus the
number of chosen features, Equation (3).
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constant s are retained. Then the eigenvalues and eigenvectors
of this thresholded matrix are computed. In Bickel and Levina
(2008), a specific cross-validation method was suggested for
computing this threshold. I have implemented their method and
found that for a signal strength of ||r|| ¼ 25, the threshold is
approximately s � 3:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log p=n

p
. To save computational time,

this fixed threshold was used for all subsequent experiments.
Table 1 also shows the reconstruction errors with this regulari-
zation method (denoted BL). As seen from Table 1, this method
performs remarkably well. In comparison with sparse PCA it
gives slightly lower errors in the three-peak case, but sig-
nificantly smaller errors for the step function. Yet, even with this
approach, there is still a gap from the optimal achievable errors.

At this point I would like to emphasize an important dif-
ference between the approaches of Johnstone and Lu and of
Bickel and Levina (2008). Although the sparse PCA approach
of Johnstone and Lu assumes that all the individual signals are
simultaneously sparse, and hence the resulting eigenvector
must be sparse as well, the covariance regularization approach
of Bickel and Levina (2008), only assumes that the covariance
matrix is sparse, but not necessarily its eigenvectors. Simple
examples of the latter are the identity matrix and the covariance
matrix of an autoregressive process of order one.

Our key observation is that the assumption of Johnstone and
Lu—that individual signals are simultaneously sparse in some
unknown basis—implies more than just having relatively few
features with large variance. It also implies that these features
should be highly correlated among themselves. As an example,
Figure 2 presents the empirical correlation matrix of data from
the three-step function (represented in the symmlet wavelet
basis). As clearly seen in Figure 2, not only do signal features
typically have a larger variance, but they are also highly cor-
related among themselves. Similar, although much more
complicated, structures are typically seen in correlation
matrices arising in various applications, including microarray
data and text documents.

Under the assumption of uncorrelated Gaussian noise, this
observation suggests an alternate, more refined approach to

feature selection. Rather than working only with the covariance
matrix, we also analyze the structure of the correlation matrix
and look for highly correlated variables. Our suggested pro-
cedure, denoted CORR, works as follows:

1. Given a data matrix Xn,p, compute the covariance and
correlation matrices Sn, Cn, respectively.

2. Estimate the noise variance as in the sparse PCA algorithm,

ŝ2 ¼ medianðSnði; iÞÞ:

3. Find the sure signal features:
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and a is the confidence level chosen by the user.
3. For each i ¼ 1, . . . , p, and i;Is, compute

Ei ¼
1

jIsj
X
j2Is

Cnði; jÞ2:

4. Denote by Ic the set of variables highly correlated to those
in Is:
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:

4. Compute the leading eigenvectors of the covariance
matrix Sn, restricted to the set I ¼ Is [ Ic.

Let us briefly explain the theoretical motivation for this
algorithm. First, the empirical variance of a noise variable is
distributed as a x2

n=n random variable, which for large n can
be approximated as 1þ

ffiffiffiffiffiffiffiffi
2=n

p
Nð0; 1Þ. Hence, in Step 2 we

choose variables that, with high probability, contain a sig-
nificant signal contribution. In Step 3, for the remaining vari-
ables, we use the well-known fact (see, for example, Anderson
(2003, section 4.2)), that under the null assumption that vari-
ables i and j are independent Gaussian variables, Cn(i, j) has
density

f ðrÞ ¼
Gðn�1

2 Þ
Gðn�2

2 Þ
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p
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or, equivalently, Cnði; jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Cnði; jÞ2

q
follows a t-distribution

with n � 2 degrees of freedom. In particular, E[Cn(i, j)] ¼ 1/
(n� 1), and var[Cn(i, j)]� 2/(n� 1)2. Step 3 detects additional
variables that, despite having relatively smaller variance, are
significantly correlated to the signal variables already found,
and hence are also signal variables with high probability.

In Table 1 we present the reconstruction errors and the
number of features chosen by our suggested method with a
confidence level a ¼ 0.02. Our procedure obtained smaller
errors than the sparse PCA method for both signals, although
for the step function, which is not so sparse, the covariance
thresholding method of Bickel and Levina (2008), performed
slightly better. A graphical comparison of the performance of
the different algorithms using boxplots is shown in Figure 3.

Figure 2. First 250 entries of the empirical correlation matrix of
data from the three-peak function in the symmlet wavelet basis.
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The specific model suggested by Johnstone and Lu, of a
factor model with a relatively small number of components
with signals that are all sparse, and our (relatively simple)
attempt to detect groups of correlated variables via the correla-
tion matrix structure raises some interesting theoretical ques-
tions: For example, what are information limits for detection of
sparse structures in a covariance matrix, and what are good
algorithms to achieve them? In the presence of multiple sig-
nals, this problem relates to our ability to cluster the nodes of
an adjacency graph. In this respect, we mention that in both
computer science and in statistical physics, a similar problem
has received a lot of attention—the so-called ‘‘planted partition
problem.’’ Perhaps some connections between these results and
statistical inference and sparsity should be further explored.

To conclude this section, we note that there are some pos-
sible advantages to analyzing the correlation matrix structure.
It does not require an estimate of the noise level, and the
procedure is more robust to heteroscedastic noise, which is
uncorrelated but may have a different strength in different
variables. The case of correlated noise requires further research
beyond the scope of this discussion. Finally, we remark that
in a different although related context, we recently used both
the correlation and the covariance matrices to construct a
multiscale representation of given data (see Lee, Nadler, and
Wasserman 2008).

4. COMPUTATIONAL COMPLEXITY AND NUMBER
OF SIGNALS

The second issue raised in the article by Johnstone and Lu is
the computational savings of the thresholding procedure. In
table 1 in Johnstone and Lu, they show that significant compu-
tational savings can be achieved by computing the eigenvalues
and eigenvectors of a smaller covariance matrix. A few words
regarding this issue are needed. According to the Matlab code
supplied by Johnstone and Lu, regardless of the fact that only
one eigenvector is of interest, all eigenvalues and eigenvectors
of the relevant covariance matrix are computed. This step has
computational complexity O(p3), where p is the size of the
relevant covariance matrix. However, under the assumption
that the data have an intrinsic low dimensionality—say, bounded
above by a small number k—then for dimensionality reduction
purposes, only the largest k eigenvalues and eigenvectors of the

covariance matrix need to be computed. Furthermore, when
these eigenvalues are isolated from the rest, these can be com-
puted (iteratively) much faster than O(p3). In Matlab, this can
be achieved via the functioneigs(A,k) instead of the function
eig(A).

Computation of only a few of the eigenvalues and eigen-
vectors raises a different theoretical question: How does one
determine what is the ‘‘dimensionality’’ of the data? That is,
how many of the largest eigenvalues indeed correspond to
signals and not to noise? In a recent article, Kritchman and
Nadler (2008) developed an algorithm to solve this problem (by
the way, using another notable result of Iain Johnstone, re-
garding the convergence of the largest noise eigenvalue to a
Tracy-Widom distribution). A careful inspection of that algo-
rithm shows that if one knows in advance that the dimension-
ality of the data is smaller than k, then only the k largest sample
eigenvalues and the trace of the covariance matrix are required
to estimate the true dimensionality of the data. Finally, the
computational complexity of this algorithm is negligible with
respect to the calculation of the eigenvalues themselves. After
implementing these changes, all the procedures described in
this article have similar running times. In Table 1, I report these
CPU running times averaged over 500 iterations, as used by
Matlab on an Intel Quad Core CPU Q6600 at 2.40 GHz
(without multithreading).
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Figure 3. Empirical averaged root squared error of various algorithms.
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