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Abstract

Spectral clustering methods are common graph-based ajy@®#o clustering of
data. Spectral clustering algorithms typically start fi@eal information encoded
in a weighted graph on the data and cluster according tgltial eigenvectors of
the corresponding (normalized) similarity matrix. One tritnution of this paper
is to present fundamental limitations of this general Idoallobal approach. We
show that based only on local information, the normalizedfwnctional is not a
suitable measure for the quality of clustering. Furthegrewith a suitable simi-
larity measure, we show that the first few eigenvectors dfisujacency matrices
cannot successfully cluster datasets that contain stestt different scales of
size and density. Based on these findings, a second coraribeftthis paper is
a novel diffusion based measure to evaluate the cohereriodividual clusters.
Our measure can be used in conjunction with any bottom-uphgbased cluster-
ing method, it is scale-free and can determine coherentechiat all scales. We
present both synthetic examples and real image segmenpaiiblems where var-
ious spectral clustering algorithms fail. In contrastngstihis coherence measure
finds the expected clusters at all scales.
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1 Introduction

Spectral clustering methods are common graph-based ap@®do (unsupervised) clustering of
data. Given a dataset af points{x;}?_; C RP, these methods first construct a weighted graph
G = (V, W), where then points are the set of nodésand the weighted edgé¥; ; are computed

by some local symmetric and non-negative similarity measuk common choice is a Gaussian
kernel with widtho, where|| - || denotes the standard Euclidean metriiih
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In this framework, clustering is translated into a graphtipaning problem. Two main spectral
approaches for graph partitioning have been suggestedfirEhés to construct a normalized cut
(conductance) functional to measure the quality of a pantidf the graph nodek into k clusters[1,
2]. Specifically, for a 2-cluster partitiol = S U (V \ .S) minimizing the following functional is
suggested in [1]
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wherea(S) = 37, jev Wi ;. While extensions of this functional to more than two clustere
possible, both works suggest a recursive top-down appnelehe additional clusters are found by
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minimizing the same clustering functional on each of the subgraphs. In [3] the authors also
propose to augment this top-down approach by a bottom-ugeggtion of the sub-clusters.

As shown in [1] minimization of (2) is equivalent taaxy (y” Wy)/(y” Dy), whereD is a diag-
onaln x n matrix with D; ; = Ej W, ;, andy is a vector of length that satisfies the constraints

y!I'D1 = 0 andy; € {1,—b} with b some constant if0, 1). Since this maximization problem is
NP-hard, both works relax it by allowing the vectgrto take on real values. This approximation
leads to clustering according to the eigenvector with sédargest eigenvalue of the normalized
graph LaplacianiWy = ADy. We note that there are also graph partitioning algorithesed on a
non-normalized functional leading to clustering accogdinthe second eigenvector of the standard
graph Laplacian matriX0 — W, also known as the Fiedler vector [4].

A second class of spectral clustering algorithms does muirsé/ely employ a single eigenvector,
but rather proposes to map the original data into the£iesenvectors of the normalized adjacency
matrix (or a matrix similar to it) and then apply a standandstéring algorithm such @smeans
on these new coordinates, see for example [5]-[11] anderéers therein. In recent years, much
theoretical work was done to justify this approach. Belkia &liyogi [8] showed that for data uni-
formly sampled from a manifold, these eigenvectors appnaxe the eigenfunctions of the Laplace
Beltrami operator, which give an optimal low dimensionalbemiding under a certain criterion.
Optimality of these eigenvectors, including rotationsswarived in [9] for multiclass spectral clus-
tering. Probabilistic interpretations, based on the faat these eigenvectors correspond to a random
walk on the graph were also given by several authors [11]-[LBnitations of spectral clustering
in the presence of background noise and multiscale datawatee in [10, 16], with suggestions to
replace the uniforna? in eq. (1) with a location dependent scaler;)o(x;).

The aim of this paper is to presefindamental limitations of spectral clustering methods, and
propose a novaliffusion based coherence measure to evaluate the internal consistency of individ-
ual clusters. First, in Section 2 we show that based on theojsic local similarity measure (1),
the NP-hard normalized cut criterion may not be a suitabbdal functional for data clustering.
We construct a simple example with only two clusters, wheeepnove that the minimum of this
functional does not correspond to the natural expectedtipaihg of the data into its two clusters.
Further, in Section 3 we show that spectral clustering ssifiom additional limitations, even with

a suitable similarity measure. Our theoretical analysisaised on the probabilistic interpretation
of spectral clustering as a random walk on the graph and omtimeate connection between the
corresponding eigenvalues and eigenvectors and the ¢baséic relaxation times and processes of
this random walk. We show that similar to Fourier analygigcsral clustering methods are global
in nature. Therefore, even with a location dependdnt) as in [10], these methods typically fail to
simultaneously identify clusters at different scales. ddbsn this analysis, we present in Section 4
simple examples where spectral clustering fails. We calecluith Section 5, where we propose a
novel diffusion based coherence measure. This quantitgunesthe coherence of a set of points as
all belonging to a single cluster, by comparing the relatatimes on the set and on its suggested
partition. Its main use is as a decision tool whether to d\ddet of points into two subsets or leave
it intact as a single coherent cluster. As such, it can be irsednjunction with either top-down or
bottom-up clustering approaches and may overcome someiofithitations. We show how use of
this measure correctly clusters the examples of Sectiohdrevspectral clustering fails.

2 Unsuitability of normalized cut functional with local infor mation

As reported in the literature, clustering by approximataimization of the functional (2) performs
well in many cases. However, a theoretical question stiiaims: Under what circumstances is
this functional indeed a good measure for the quality ofteliisg ? Recall that the basic goal of
clustering is to group together highly similar points whsletting apart dissimilar ones. Yet this
similarity measure is typically based only tmtal information as in (1). Therefore, the question can
be rephrased - is local information sufficient for globalstéring ?

While thislocal to global concept is indeed appealing, we show that it does not workiireal. We
construct a simple example where local information is ifisight for correct clustering according
to the functional (2). Consider data sampled from a mixtditevo densities in two dimensions
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Figure 1: A dataset with two clusters and result of normallizat algorithm [2]. Other spectral
clustering algorithms give similar results.

wherep;, . denotes uniform density in a rectangular region= {(z;,22)|0 < 21 < L,—¢ <
xo < 0} of length L and widthe, andps denotes a Gaussian density centereduat 1i2) with
diagonal covariance matrp@ . In fig. 1(a) a plot ofn = 1400 points from this density is shown
with L = 8, = 0.05 <« L, (u1,pu2) = (2,0.2) andp = 0.1. Clearly, the two clusters are the
Gaussian ball and the rectangular sfeip

However, as shown in fig. 1(b), clustering based on the seemmhvector of the normalized graph
Laplacian with weightd¥; ; given by (1) partitions the points somewhere along the ldrig #-
stead of between the strip and the Gaussian ball. We now dmatthis result is not due to the
approximation of the NP-hard problem but rather a featutb@briginal functional (2). Intuitively,
the failure of the normalized cut criterion is clear. Sinke bverlap between the Gaussian ball and
the rectangular strip is larger than the width of the striguiethat separates them has a higher penalty
than a cut somewhere along the thin strip.

To show this mathematically, we consider the penalty of titedcie to the numerator in (2) in the
limit of a large number of pointa — oo. In this population setting, as — oo each point has an
infinite number of neighbors, so we can consider the limit- 0. Upon normalizing the similarity

measure (1) by /27ro?, the numerator is given by

) —llx—yI?/20*
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whereQ;, Q> C R? are the regions of the two clusters. Fok< L, a vertical cut of the strip at
locationx = x; far away from the ball|ec; — aco\ > p) gives
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A similar calculation shows that for a horizontal cutjat 0,

1 e—H5/20"
Cut(y > 0) ~ 7 ﬁ&rp (6)

Finally, note that for a vertical cut far from the rectangleubdaryof?, the denominators of the
two cuts in eq. (2) have the same order of magnitude. Thexefof > p andus/p = O(1) the
horizontal cut between the ball and the strip fager normalized penalty than a vertical cut of the
strip. This analysis explains the numerical results in fign) 1Other spectral clustering algorithms
that use two eigenvectors, including those that take a kalke into account, also fail to separate
the ball from the strip and yield similar results to fig.1(8) possible solution to this problem is to
introduce multiscale anisotropic features that captueegtbometry and dimensionality of the data
in the similarity metric. In the context of image and textsegmentation, the need for multiscale
features is well known [17, 18, 19]. Our example highligitgsmportance in general data clustering.

3 Additional Limitations of Spectral Clustering M ethods

An additional problem with recursive bi-partitioning istheed of a saliency criterion when required
to returnk > 2 clusters. Consider, for example a dataset which contaias 3 clusters. After



the first cut, the recursive algorithm should decide whichgsaph to further partition and which

to leave intact. A common approach that avoids this decipimblem is to directly find three
clusters by using the first three eigenvectordioh = ADwv. Specifically, denote by\;, v} the

set of eigenvectors ofv = ADwv with eigenvalues sorted in decreasing order, and denote by
v,;(x;) thei-th entry (corresponding to the poiat) in the j-th eigenvectow;. Many algorithms
propose to map each poimt € R? into ¥(x;) = (vy(x;),...,vi(z;)) € R, and apply simple
clustering algorithms to the poin®(x;) [8, 9, 12]. Some works [6, 10] use the eigenvectoyof
D~1/2W D~1/2 instead, related to the ones above#ja= D'/?v;.

We now show that spectral clustering that uses the firsigenvectors for finding: clusters also
suffers from fundamental limitations. Our starting poisitiie observation that; are also eigen-
vectors of the Markov matrid/ = D~1WW [13, 12]. Assuming the graph is connected, the largest
eigenvalue is\; = 1 with |\;| < 1for j > 1. Therefore, regardless of the initial condition the
random walk converges to the unique equilibrium distriwti,, given byr,(:) = D, ;/ Zj D ;.
Moreover, as shown in [13], the Euclidean distance betweamngpmapped to these eigenvectors is
equal to a so called 'diffusion distance’ between pointstengraph,

S (v,(2) = v;(y))* = Ip(=t @) = p(z.t | 9) s rmy @)
J

wherep(z,t|x) is the probability distribution of a random walk at timegiven that it started at
x, 7, is the equilibrium distribution, and - ||z, (., is the weightedL, norm with weightw(z).
Therefore, the eigenvalues and eigenvecfarsv; } for j > 1, capture the characteristielaxation
times and processes of the random walk on the graph towards eguitibSince most methods use
the first few eigenvector coordinates for clustering, itnstiuctive to study the properties of these
relaxation times and of the corresponding eigenvectors.

We perform this analysis under the following statisticaldeb we assume that the poirs; } are
random samples from a smooth dengity) in a smooth domaif C RP. We write the density in
Boltzmann formp(z) = ¢~Y(*)/2 and denotd/(x) as the potential. As described in [13], in the
limit n — oo, 0 — 0, the random walk with transition matrix/ on the graph of points sampled
from this density converges to a stochastic differentiaiadigpn (SDE)

&(t) = —VU(x) + V2w(t) (8)

wherew(t) is standard white noise (Brownian motion), and the righesigctors of the matri/
converge to the eigenfunctions of the following Fokkerrelaoperator

Lij(x) = Ap = Vi - VU = —pgp(x) 9)

defined forz € 2 with reflecting boundary conditions @f2. This operator is non-positive and its
eigenvalues arg; = 0 < p2 < 3 < .... The eigenvalues-y; of £ and the eigenvalues; of M

are related by;; = lim,,_.o »—0(1 — A;)/o. Therefore the top eigenvaluesif correspond to the
smallest ofL. Eq. (7) shows that these eigenfunctions and eigenvalysaresthe leading charac-
teristic relaxation processes and time scales of the SDE (®&se have been studied extensively in
the literature [20], and can give insight into the succesklamitations of spectral clustering [13].
For example, if2 = RP and the density(x) consists oft highly separated Gaussian clusters of
roughly equal size/( clusters), then there are exacHyeigenvalues very close or equal to zero, and
their corresponding eigenfunctions are approximatelggmgse constant in each of these clusters.
Therefore, in this setting spectral clustering witkigenvectors works very well.

To understand the limitations of spectral clustering, we eaplicitly analyze situations with clus-
ters at different scales of size and density. For examplesider a density with three isotropic
Gaussian clusters: one large cloud (cluster #1) and twaenwébuds (clusters 2 and 3). These cor-
respond to one wide well and two narrow wells in the poteiifiat). A representative 2-D dataset
drawn from such a density is shown in fig. 2 (top left).

The SDE (8) with this potential has a few characteristic tdoales which determine the structure of
its leading eigenfunctions. The slowest one is the mearagagime between cluster 1 and clusters
2 or 3, approximately given by [20]
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wherex,,,;,, is the bottom of the deepest wetl,,, .. is the saddle point o¥/ (x), andU’. U .

are the second derivatives at these points. Eq. (10), alsarkias Arrhenius or Kramers formula
of chemical reaction theory, shows that the mean first pastag is exponential in the barrier
height [20]. The corresponding eigenfunctign is approximately piecewise constant inside the
large well and inside the two smaller wells with a sharp titears near the saddle poinat,, ... This

eigenfunction easily separates cluster 1 from clustersiZgsee top center panel in fig. 2).

A second characteristic time s 3, the mean first passage time between clusters 2 and 3, atso giv
by a formula similar to (10). If the potential barrier betwabese two wells is much smaller than
between wells 1 and 2, then 5 < 71 2. A third characteristic time is the equilibration time idsi
cluster 1. To compute it we consider a diffusion process omide cluster 1, e.g. with an isotropic
parabolic potential of the forii (z) = U(x1)+U/ ||z —x1|*/2, wherez; is the bottom of the well.

In 1-D the eigenvalues and eigenfunctions are givepby= (k — 1)U, with ¢ (x) a polynomial

of degreek — 1. The corresponding intra-well relaxation times are given = 1/u;11 (k > 1).

The key point in our analysis is that if the equilibration ¢irmside the wide well islower than
the mean first passage time between the two smaller weflls; 7, 3, then the third eigenfunction
of £ captures the relaxation process inside the large well angpsoximately constant inside the
two smaller wells. This eigenfunction cannot separate betwclusters 2 and 3. Moreover, if
f = 7 /2is still larger thanr, 5 then even the next leading eigenfunction captures theibratibn
process inside the wide well, see a plotyaf, ¢, in fig. 2 (rows 1,2). Therefore, even this next
eigenfunction is not useful for separating the two smalstdes. In the example of fig. 2, onlys
separates these two clusters.

This analysis shows that when confronted with clusters fféi@int scales, corresponding to a mul-
tiscale landscape potential, standard spectral clugteritich uses the first eigenvectors to find
clusters will fail. We present explicit examples in Sectibhelow. The fact that spectral clustering
with a single scaler may fail to correctly cluster multiscale data was alreadtedan [10, 16]. To
overcome this failure, [10] proposed replacing the uniferfin eq. (1) witho(z;)o(z;) where
o(x) is proportional to the local density @t Our analysis can also provide a probabilistic interpre-
tation to their method. In a nutshell, the effect of this Baals to speed up the diffusion process at
regions of low density, thus changing some of its charastieriimes. If the larger cluster has low
density, as in the examples in their paper, this approaadlcisessful as it decreaseg. However, if
the large cluster has a high density (comparable to the yesfdhe small clusters), this approach is
not able to overcome the limitations of spectral clusterseg fig. 3. Moreover, this approach may
also fail in the case of uniform density clusters definedlgdig geometry (see fig. 4).

4 Examples

We illustrate the theoretical analysis of Section 3 witlethexamples, all in 2-D. In the first two ex-
amples, thex points{z;} C R? are random samples from the following mixture of three Gianss

ayN(x1,031) + agN(z2,051) + azN(x3, 031) (11)
with centersz; isotropic standard deviations; and weightsa; (3, o; = 1). Specifically, we
consider one large cluster withy = 2 centered att; = (—6,0), and two smaller clusters with

o9 = 03 = 0.5 centered atc; = (0,0) andxzs = (2,0). We present the results of both the NJW
algorithm [6] and the ZP algorithm [10] for two different vgit vectors.

Example |: Weights (a1, as,a3) = (1/3,1/3,1/3). In the top left panel of fig. 2p = 1000
random points from this density clearly show the differeimcsecales between the large cluster and
the smaller ones. The first few eigenvectorsiéfwith a uniformo = 1 are shown in the first
two rows of the figure. The second eigenveateris indeed approximately piecewise constant and
easily separates the larger cluster from the smaller oneselker,1)3 and, are constant on the
smaller clusters, capturing the relaxation process inahgel cluster«s captures relaxation along
they-direction, hence it is not a function of thecoordinate). In this example, onli can separate
the two small clusters. Therefore, as predicted theolbtithe NJW algorithm [6] fails to produce
reasonable clusterings for all valuesoofin this example, the density of the large clustdois, and
therefore as expected and shown in the last row of fig. 2, thal@stithm clusters correctly.

Example I1: Weights(ay, as, a3) = (0.8,0.1,0.1). In this case the density of the large cluster is
high, and comparable to that of the small clusters. Indeeskan in fig. 3 and predicted theoretically
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Figure 2: A three cluster dataset corresponding to examfiteplleft), clustering results of NJW
and ZP algorithms [6, 10] (center and bottom left, respebt)y and various eigenvectors 8f vs.
thex coordinate (blue dots in 2nd and 3rd columns). The red dditieds the potential/ (x, 0).
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Figure 3: Dataset corresponding to example Il and resulfoalgorithm.

the ZP algorithm fails to correctly cluster this data foredlues of the parametdry in their
algorithm. Needless to say, the NJW algorithm also failsoiwectly cluster this example.

Example I11: Consider datgx;} uniformly sampled from a domaift c R?, which consists of
three clusters, one a large rectangular container and tvaetlesnalisks, all connected by long and
narrow tubes (see fig. 4 (left)). In this example the contamso large that the relaxation time inside
it is slower than the characteristic time to diffuse betwiéersmall disks, hence NJW algorithm fails
to cluster correctly. Since density is uniform, the ZP aidpon fails as well, fig. 4 (right).

Note that spectral clustering with the eigenvectors of taadard graph Laplacian has similar limi-
tations, since the Euclidean distance between these &igems is equal to the mean commute time
on the graph [11]. Therefore, these methods may also faihwbefronted with multiscale data.

5 Clustering with a Relaxation Time Coherence Measure

The analysis and examples of Sections 3 and 4 may suggessehef inore thark eigenvectors

in spectral clustering. However, clustering withmeans using 5 eigenvectors on the examples
of Section 4 produced unsatisfactory results (not shownjredver, since the eigenvectors of the
matrix M are orthonormal under a specific weight function, they bexamreasingly oscillatory.
Therefore, it is quite difficult to use them to detect a smélster, much in analogy to Fourier
analysis, where it is difficult to detect a localized bump fiuaction from its Fourier coefficients.
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Figure 5: Normalized cut and coherence measure segmentatia synthetic image.

Based on our analysis, we propose a different approach pivgrased clustering. Given the impor-
tance of relaxation times on the graph as indication of ehsstwe propose a novel and principled
measure for the coherence of a set of points as belongingitke £luster. Our coherence mea-
sure can be used in conjunction with any clustering algorittSpecifically, letG = (V, W) be

a weighted graph of points and [8t = S U (V' \ S) be a possible partition (computed by some
clustering algorithm). Our aim is to construct a meaningfiglasure to decide whether to accept
or reject this partition. To this end, let; denote the second largest eigenvalue of the Markov
matrix M corresponding to the full grapfi. We definery, = 1/(1 — \;) as the characteristic
relaxation time of this graph. Similarly; andr, denote the characteristic relaxation times of the
two subgraphs corresponding to the partitishandV \ S. If V is a single coherent cluster, then
we expectry = O(m + 72). If, however,V consists of two weakly connected clusters defined
by S andV \ S, thent; andr, measure the characteristic relaxation times inside theselus-
ters whiler, measures the overall relaxation time. If the two sub-chgséee of comparable size,
thenry > (m1 + 72). If however, one of them is much smaller than the other, thenexpect
max(71,72)/ min(71, 72) > 1. Thus, we define a sé&f as coherent if eithery < ¢;(71 + 72) orif
max(7y,72)/ min(7, 72) < c2. In this case} is not partitioned further. Otherwise, the subgraphs
S andV \ S need to be further partitioned and similarly checked foirtbeherence. While a the-
oretical analysis is beyond the scope of this paper, re@®mambers that worked in practice are
c1 = 1.8 andes = 10. We note that other works have also considered relaxatioestior clustering
with different approaches [21, 22].

We now present use of this coherence measure with normaligezlustering on the third example
of Section 4. The first partition of normalized cut on thisadattho = 1 separates between the large
container and the two smaller disks. The relaxation timetheffull graph and the two subgraphs
are(ry, 1, T2) = (1350, 294, 360). These numbers indicate that the full datasebixoherent, and
indeed should be partitioned. Next, we try to partition #mgé container. Normalized cuts partitions
the container roughly into two parts withy, 71, 72) = (294, 130, 135), which according to our
coherence measure means that the big container is a singtausé that should not be split. Finally,
normalized cut on the two small disks correctly separatesitbiving(7v, 71, 72) = (360, 18, 28),
which indicates that indeed the two disks should be splittien analysis of each of the single disks
by our measure shows that each is a coherent cluster. Thubjmration of our coherence measure
with normalized cut not only clusters correctly, but alseoanatically finds the correct number of
clusters, regardless of cluster scale. Similar resultlata@ined for the other examples in this paper.

Finally, our analysis also applies to image segmentatiarfigl 5(a) a synthetic image is shown.
The segmentation results of normalized cuts [24] and of tifeeence measure combined with
[23] appear in panels (b) and (c). Results on a real imagetemersin fig. 6. Each segments is
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Figure 6: Normalized cut and coherence measure segmentatia real image.

represented by a different color. With a small number oftelissnormalized cut cannot find the
small coherent segments in the image, whereas with a langdewof clusters, large objects are
segmented. Implementing our coherence measure with [28] fialient clusters at different scales.
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