
10

Diffusion Maps - a Probabilistic Interpretation
for Spectral Embedding
and Clustering Algorithms

Boaz Nadler1, Stephane Lafon2,3, and Ronald Coifman3,
and Ioannis G. Kevrekidis4

1 Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Rehovot, 76100, Israel,
boaz.nadler@weizmann.ac.il

2 Google, Inc.
3 Department of Mathematics, Yale University, New Haven, CT, 06520-8283, USA,
coifman@math.yale.edu

4 Department of Chemical Engineering and Program in Applied and
Computational Mathematics, Princeton University, Princeton, NJ 08544, USA,
yannis@princeton.edu

Summary. Spectral embedding and spectral clustering are common methods for
non-linear dimensionality reduction and clustering of complex high dimensional
datasets. In this paper we provide a diffusion based probabilistic analysis of
algorithms that use the normalized graph Laplacian. Given the pairwise adjacency
matrix of all points in a dataset, we define a random walk on the graph of points and
a diffusion distance between any two points. We show that the diffusion distance
is equal to the Euclidean distance in the embedded space with all eigenvectors of
the normalized graph Laplacian. This identity shows that characteristic relaxation
times and processes of the random walk on the graph are the key concept that gov-
erns the properties of these spectral clustering and spectral embedding algorithms.
Specifically, for spectral clustering to succeed, a necessary condition is that the mean
exit times from each cluster need to be significantly larger than the largest (slowest)
of all relaxation times inside all of the individual clusters. For complex, multiscale
data, this condition may not hold and multiscale methods need to be developed to
handle such situations.

10.1 Introduction

Clustering and low dimensional representation of high dimensional data sets
are important problems in many diverse fields. In recent years various spec-
tral methods to perform these tasks, based on the eigenvectors of adjacency
matrices of graphs on the data have been developed, see for example [1–12]
and references therein. In the simplest version, known as the normalized graph
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Laplacian, given n data points {xi}n
i=1 where each xi ∈ R

p (or some other
normed vector space), we define a pairwise similarity matrix between points,
for example using a Gaussian kernel with width σ2,

Wij = k(xi,xj) = exp
(

−‖xi − xj‖2

σ2

)

, (10.1)

and a diagonal normalization matrix Dii =
∑

j Wij . Many works propose to
use the first few eigenvectors of the normalized eigenvalue problem Wφ =
λDφ, or equivalently of the matrix

M = D−1W , (10.2)

either as a basis for the low dimensional representation of data or as good
coordinates for clustering purposes. Although eq. (1) is based on a Gaussian
kernel, other kernels are possible, and for actual datasets the choice of a kernel
k(xi,xj) can be crucial to the method’s success.

The use of the first few eigenvectors of M as good coordinates is typically
justified with heuristic arguments or as a relaxation of a discrete clustering
problem [3]. In [6, 7] Belkin and Niyogi showed that, when data is uniformly
sampled from a low dimensional manifold of R

p, the first few eigenvectors of M
are discrete approximations of the eigenfunctions of the Laplace-Beltrami op-
erator on the manifold, thus providing a mathematical justification for their
use in this case. We remark that a compact embedding of a manifold into
a Hilbert space via the eigenfunctions of the Laplace-Beltrami operator was
suggested in differential geometry, and used to define distances between mani-
folds [13]. A different theoretical analysis of the eigenvectors of the matrix M ,
based on the fact that M is a stochastic matrix representing a random walk
on the graph was described by Meilǎ and Shi [14], who considered the case
of piecewise constant eigenvectors for specific lumpable matrix structures.
Additional notable works that considered the random walk aspects of spec-
tral clustering are [10, 15], where the authors suggest clustering based on the
average commute time between points, [16,17] which considered the relaxation
process of this random walk, and [18,19] which suggested random walk based
agglomerative clustering algorithms.

In this paper we present a unified probabilistic framework for the analy-
sis of spectral clustering and spectral embedding algorithms based on the
normalized graph Laplacian. First, in Sect. 10.2 we define a distance function
between any two points based on the random walk on the graph, which we nat-
urally denote the diffusion distance. The diffusion distance depends on a time
parameter t, whereby different structures of the graph are revealed at different
times. We then show that the non-linear embedding of the nodes of the graph
onto the eigenvector coordinates of the normalized graph Laplacian, which
we denote as the diffusion map, converts the diffusion distance between the
nodes into Euclidean distance in the embedded space. This identity provides a
probabilistic interpretation for such non-linear embedding algorithms. It also
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provides the key concept that governs the properties of these methods, the
characteristic relaxation times and processes of the random walk on a graph.
Properties of spectral embedding and spectral clustering algorithms in light
of these characteristic relaxation times are discussed in Sect. 10.3 and 10.4.
We conclude with summary and discussion in Sect. 10.5. The main results of
this paper were first presented in [20] and [24].

10.2 Diffusion Distances and Diffusion Maps

The starting point of our analysis, as also noted in other works, is the obser-
vation that the matrix M is adjoint to a symmetric matrix

Ms = D1/2MD−1/2 . (10.3)

Thus, the two matrices M and Ms share the same eigenvalues. Moreover,
since Ms is symmetric it is diagonalizable and has a set of n real eigenvalues
{λj}n−1

j=0 whose corresponding eigenvectors {vj} form an orthonormal basis
of R

n. We sort the eigenvalues in decreasing order in absolute value, |λ0| ≥
|λ1| ≥ . . . ≥ |λn−1|. The left and right eigenvectors of M , denoted φj and ψj

are related to those of Ms according to

φj = vjD
1/2, ψj = vjD

−1/2 . (10.4)

Since the eigenvectors vj are orthonormal under the standard dot product in
R

n, it follows that the vectors φi and ψj are bi-orthonormal

〈φi, ψj〉 = δij , (10.5)

where 〈u,v〉 is the standard dot product between two vectors in R
n. We now

utilize the fact that by construction M is a stochastic matrix with all row
sums equal to one, and can thus be interpreted as defining a random walk on
the graph. Under this view, Mij denotes the transition probability from the
point xi to the point xj in one time step,

Pr{x(t + 1) = xj |x(t) = xi} = Mij . (10.6)

We denote by p(t,y|x) the probability distribution of a random walk landing
at location y at time t, given a starting location x at time t = 0. In terms of the
matrix M , this transition probability is given by p(t,y|xi) = eiM

t, where ei

is a row vector of zeros with a single entry equal to one at the i-th coordinate.
For ε large enough all points in the graph are connected, so that M is an

irreducible and aperiodic Markov chain. It has a unique eigenvalue equal to 1,
with the other eigenvalues strictly smaller than one in absolute value. Then,
regardless of the initial starting point x,

lim
t→∞

p(t,y|x) = φ0(y) , (10.7)
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where φ0 is the left eigenvector of M with eigenvalue λ0 = 1, explicitly given by

φ0(xi) =
Dii∑

j

Djj
. (10.8)

This eigenvector has a dual interpretation. The first is that φ0 is the stationary
probability distribution on the graph, while the second is that φ0(x) is a
density estimate at the point x. Note that for a general shift invariant kernel
K(x − y) and for the Gaussian kernel in particular, φ0 is simply the well
known Parzen window density estimator [21].

For any finite time t, we decompose the probability distribution in the
eigenbasis {φj}

p(t,y|x) = φ0(y) +
∑

j≥1

aj(x)λt
jφj(y) , (10.9)

where the coefficients aj depend on the initial location x. The bi-orthonor-
mality condition (10.5) gives aj(x) = ψj(x), with a0(x) = ψ0(x) = 1 already
implicit in (10.9).

Given the definition of the random walk on the graph, it is only natural
to quantify the similarity between any two points according to the evolu-
tion of probability distributions initialized as delta functions on these points.
Specifically, we consider the following distance measure at time t,

D2
t (x0,x1) = ‖p(t,y|x0)− p(t,y|x1)‖2

w (10.10)

=
∑

y

(p(t,y|x0) − p(t,y|x1))2w(y)

with the specific choice w(y) = 1/φ0(y) for the weight function, which takes
into account the (empirical) local density of the points, and puts more weight
on low density points.

Since this distance depends on the random walk on the graph, we quite
naturally denote it as the diffusion distance at time t. We also denote the
mapping between the original space and the first k eigenvectors as the diffusion
map at time t

Ψt(x) =
(
λt

1ψ1(x), λt
2ψ2(x), . . . , λt

kψk(x)
)

. (10.11)

The following theorem relates the diffusion distance and the diffusion map.

Theorem: The diffusion distance (10.10) is equal to Euclidean distance in
the diffusion map space with all (n− 1) eigenvectors.

D2
t (x0,x1) =

∑

j≥1

λ2t
j (ψj(x0) − ψj(x1))

2 = ‖Ψt(x0)− Ψt(x1)‖2 . (10.12)
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Proof: Combining (10.9) and (10.10) gives

D2
t (x0,x1) =

∑

y

(∑

j

λt
j(ψj(x0) − ψj(x1))φj(y)

)2

/φ0(y) . (10.13)

Expanding the brackets and changing the order of summation gives

D2
t (x0,x1)

=
∑

j,k

λt
j (ψj(x0) − ψj(x1))λt

k (ψk(x0)− ψk(x1))
∑

y

φj(y)φk(y)
φ0(y)

.

From relation (10.4) it follows that φk/φ0 = ψk. Moreover, according to (10.5)
the vectors φj and ψk are bi-orthonormal. Therefore, the inner summation
over y gives δjk, and overall the required formula (10.12). Note that in (10.12)
summation starts from j ≥ 1 since ψ0(x) = 1. �

This theorem provides a probabilistic interpretation to the non-linear em-
bedding of points xi from the original space (say R

p) to the diffusion map
space R

n−1. Therefore, geometry in diffusion space is meaningful, and can
be interpreted in terms of the Markov chain. The advantage of this distance
measure over the standard distance between points in the original space is
clear. While the original distance between any pair of points is independent of
the location of all other points in the dataset, the diffusion distance between a
pair of points depends on all possible paths connecting them, including those
that pass through other points in the dataset. The diffusion distance thus
measures the dynamical proximity between points on the graph, according to
their connectivity.

Both the diffusion distance and the diffusion map depend on the time
parameter t. For very short times, all points in the diffusion map space are
far apart, whereas as time increases to infinity, all pairwise distances converge
to zero, since p(t,y|x) converges to the stationary distribution. It is in the
intermediate regime, where at different times different structures of the graph
are revealed [11].

The identity (10.12) shows that the eigenvalues and eigenvectors
{λj , ψj}j≥1 capture the characteristic relaxation times and processes of the
random walk on the graph. On a connected graph with n points, there are
n−1 possible time scales. However, most of them capture fine detail structure
and only the first few largest eigenvalues capture the coarse global structures
of the graph. In cases where the matrix M has a spectral gap with only a
few eigenvalues close to one and all remaining eigenvalues much smaller than
one, the diffusion distance at a large enough time t can be well approximated
by only the first few k eigenvectors ψ1(x), . . . , ψk(x), with a negligible error.
Furthermore, as shown in [22], quantizing this diffusion space is equivalent to
lumping the random walk, retaining only its slowest relaxation processes. The
following lemma bounds the error of a k-term approximation of the diffusion
distance.
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Lemma: For all times t ≥ 0, the error in a k-term approximation of the
diffusion distance is bounded by

|D2
t (x0,x1)−

k∑

j=1

λ2t
j (ψj(x0)− ψj(x1))2| ≤ λ2t

k+1

(
1

φ0(x0)
+

1
φ0(x1)

)

.

(10.14)

Proof: From the spectral decomposition (10.12)

|D2
t (x0,x1) −

k∑

j=1

λ2t
j (ψj(x0) − ψj(x1))2| =

n−1∑

j=k+1

λ2t
j (ψj(x0)− ψj(x1))2

≤ λ2t
k+1

n−1∑

j=0

(ψj(x0)− ψj(x1))2 . (10.15)

In addition, at time t = 0, we get that

D2
0(x0,x1) =

n−1∑

j=0

(ψj(x0)− ψj(x1))2.

However, from the definition of the diffusion distance (10.10), we have that
at time t = 0

D2
0(x0,x1) = ‖p(0,y|x0)− p(0,y|x1)‖2

w =
(

1
φ0(x0)

+
1

φ0(x1)

)

.

Combining the last three equations proves the lemma. �.

Remark: This lemma shows that the error in computing an approximate dif-
fusion distance with only k eigenvectors decays exponentially fast as a function
of time. As the number of points n → ∞, Eq. (10.14) is not informative since
the steady state probabilities of individual points decay to zero at least as
fast as 1/n. However, for a very large number of points it makes more sense
to consider the diffusion distance between regions of space instead of between
individual points. Let Ω1, Ω2 be two such subsets of points. We then define

D2
t (Ω1, Ω2) =

∑

x

(p(x, t|Ω1)− p(x, t|Ω2))2

φ0(x)
, (10.16)

where p(x, t|Ω1) is the transition probability at time t, starting from the region
Ω1. As initial conditions inside Ωi, we choose the steady state distribution,
conditional on the random walk starting inside this region,

p(x, 0|Ωi) = pi(x) =

⎧
⎨

⎩

φ0(x)
φ0(Ωi)

, if x ∈ Ωi ;

0 , if x /∈ Ωi ,
(10.17)
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where
φ0(Ωi) =

∑

y∈ Ωi

φ0(y) . (10.18)

Eq. (10.16) can then be written as

D2
t (Ω1, Ω2) =

∑

j

λ2t
j (ψj(Ω1) − ψj(Ω2))

2
, (10.19)

where ψj(Ωi) =
∑

x∈Ωi
ψj(x)pi(x). Similar to the proof of the lemma, it

follows that

|D2
t (Ω1, Ω2)−

k∑

j=0

λ2t
j (ψj(Ω1)− ψj(Ω2))2| ≤ λ2t

k+1

[
1

φ0(Ω1)
+

1
φ0(Ω2)

]

.

(10.20)
Therefore, if we take regions Ωi with non negligible steady state prob-

abilities that are bounded from below by some constant, φ0(Ωi) > α, for
times t � | log(λk+1)/ log(α)|, the approximation error of the k-term expan-
sion is negligible. This observation provides a probabilistic interpretation as
to what information is lost and retained in dimensional reduction with these
eigenvectors.

In addition, the following theorem shows that this k-dimensional approx-
imation is optimal under a certain mean squared error criterion.

Theorem: Out of all k-dimensional approximations of the form

p̂k(t,y|x) = φ0(y) +
k∑

j=1

aj(t,x)wj(y)

for the probability distribution at time t, the one that minimizes the mean
squared error

Ex{‖p(t,y|x) − p̂k(t,y|x)‖2
w} ,

where averaging over initial points x is with respect to the stationary density
φ0(x), is given by wj(y) = φj(y) and aj(t,x) = λt

jψj(x). Therefore, the
optimal k-dimensional approximation is given by the truncated sum

p̂k(y, t|x) = φ0(y) +
k∑

j=1

λt
jψj(x)φj(y) . (10.21)

Proof: The proof is a consequence of weighted principal component analysis
applied to the matrix M , taking into account the bi-orthogonality of the left
and right eigenvectors.

We note that the first few eigenvectors are also optimal under other crite-
ria, for example for data sampled from a manifold as in [6], or for multiclass
spectral clustering [23].
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10.2.1 Asymptotics of the Diffusion Map

Further insight into the properties of spectral clustering can be gained by
considering the limit as the number of samples converges to infinity, and as
the width of the kernel approaches zero. This has been the subject of intensive
research over the past few years by various authors [6, 11, 24–29]. Here we
present the main results without detailed mathematical proofs and refer the
reader to the above works.

The starting point for the analysis of this limit is the introduction of a
statistical model in which the data points {xi} are i.i.d. random samples from
a smooth probability density p(x) confined to a compact connected subset
Ω ⊂ R

p with smooth boundary ∂Ω. Following the statistical physics notation,
we write the density in Boltzmann form, p(x) = e−U(x), where U(x) is the
(dimensionless) potential or energy of the configuration x.

For each eigenvector vj of the discrete matrix M with corresponding eigen-
value λj �= 0, we extend its definition to any x ∈ Ω as follows

ψ
(n)
j (x) =

1
λj

∑

i

k(x,xi)
D(x)

vj(xi) (10.22)

with D(x) =
∑

i k(x,xi). Note that this definition retains the values at the
sampled points, e.g., ψ

(n)
j (xi) = vj(xi) for all i = 1, . . . , n.

As shown in [24], in the limit n → ∞ the random walk on the discrete
graph converges to a random walk on the continuous space Ω. Then, it is
possible to define an integral operator T as follows,

T [ψ](x) =
∫

Ω

M(y|x)ψ(y)p(y) dy ,

where M(x|y) = exp(−‖x − y‖2/σ2)/Dσ(y) is the transition probability
from y to x in time ε, and Dσ(y) =

∫
Ω

exp(−‖x − y‖2/σ2)p(x) dx. In the
limit n → ∞, the eigenvalues λj and the extensions ψ

(n)
j of the discrete

eigenvectors vj converge to the eigenvalues and eigenfunctions of the integral
operator T .

Further, in the limit σ → 0, the random walk on the space Ω, upon scaling
of time, converges to a diffusion process in a potential 2U(x),

ẋ(t) = −∇(2U) +
√

2ẇ(t) , (10.23)

where U(x) = −log(p(x)) and w(t) is standard Brownian motion in p di-
mensions. In this limit, the eigenfunctions of the integral operator T converge
to those of the infinitesimal generator of this diffusion process, given by the
following Fokker-Planck (FP) operator,

Hψ = ∆ψ − 2∇ψ · ∇U . (10.24)
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Table 10.1. Random Walks and Diffusion Processes

Case Operator Stochastic Process

σ > 0 finite n× n R.W. discrete in space
n < ∞ matrix M discrete in time
σ > 0 integral R.W. in continuous space
n → ∞ operator T discrete in time
σ → 0 infinitesimal diffusion process
n → ∞ generator H continuous in time & space

The Langevin equation (10.23) is the standard model to describe stochastic
dynamical systems in physics, chemistry and biology [30, 31]. As such, its
characteristics as well as those of the corresponding FP equation have been
extensively studied, see [30–32] and references therein. The term ∇ψ · ∇U
in (10.24) is interpreted as a drift term towards low energy (high-density)
regions, and plays a crucial part in the definition of clusters.

Note that when data is uniformly sampled from Ω, ∇U = 0 so the drift
term vanishes and we recover the Laplace-Beltrami operator on Ω.

Finally, when the density p has compact support on a domain Ω, the
operator H is defined only inside Ω. Its eigenvalues and eigenfunctions thus
depend on the boundary conditions at ∂Ω. As shown in [11], in the limit
σ → 0 the random walk satisfies reflecting boundary conditions on ∂Ω, which
translate into

∂ψ(x)
∂n

∣
∣
∣
∣
∣
∂Ω

= 0 , (10.25)

where n is a unit normal vector at the point x ∈ ∂Ω.
To conclude, the right eigenvectors of the finite matrix M can be viewed

as discrete approximations to those of the operator T , which in turn can
be viewed as approximations to those of H. Therefore, if there are enough
data points for accurate statistical sampling, the structure and characteristics
of the eigenvalues and eigenfunctions of H are similar to the corresponding
eigenvalues and discrete eigenvectors of M . In the next sections we show how
this relation can be used to explain the characteristics of spectral clustering
and dimensional reduction algorithms. The three different stochastic processes
are summarized in Table 10.1.

10.3 Spectral Embedding of Low Dimensional Manifolds

Let {xi} denote points sampled (uniformly for simplicity) from a low dimen-
sional manifold embedded in a high dimensional space. Eq. (10.14) shows
that by retaining only the first k coordinates of the diffusion map, the re-
construction error of the long time random walk transition probabilities is
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negligible. However, this is not necessarily the correct criterion for an embed-
ding algorithm. Broadly speaking, assuming that data is indeed sampled from
a manifold, a low dimensional embedding should preserve (e.g. uncover) the
information about the global (coarse) structure of this manifold, while throw-
ing out information about its fine details. A crucial question is then under
what conditions does spectral embedding indeed satisfy these requirements,
and perhaps more generally, what are its characteristics.

The manifold learning problem of a low dimensional embedding can be
formulated as follows: Let Y = {yi}n

i=1 ⊂ R
q denote a set of points ran-

domly sampled from some smooth probability density defined in a compact
domain of R

q (the coordinate space). However, we are given the set of points
X = f(Y) where f : R

q → R
p is a smooth mapping with p > q. Therefore,

assuming that the points Y are not themselves on a lower dimensional mani-
fold than R

q, then the points X lie on a manifold of dimension q in R
p. Given

X = {x1, . . . ,xn}, the problem is to estimate the dimensionality q and the
coordinate points {y1, . . . ,yn}. Obviously, this problem is ill-posed and var-
ious degrees of freedom, such as translation, rotation, reflection and scaling
cannot be determined.

While a general theory of manifold learning is not yet fully developed, in
this section we would like to provide a glimpse into the properties of spectral
embeddings, based on the probabilistic interpretation of Sect. 10.2. We prove
that in certain cases spectral embedding works, in the sense that it finds a
reasonable embedding of the data, while in other cases modifications to the
basic scheme are needed.

We start from the simplest example of a one dimensional curve embedded
in a higher dimensional space. In this case, a successful low dimensional
embedding should uncover the one-dimensionality of the data and give
a representation of the arclength of the curve. We prove that spectral
embedding succeeds in this task:

Theorem: Consider data sampled uniformly from a non-intersecting smooth
1-D curve embedded in a high dimensional space. Then, in the limit of a large
number of samples and small kernel width the first diffusion map coordinate
gives a one-to-one parametrization of the curve. Further, in the case of a
closed curve, the first two diffusion map coordinates map the curve into the
circle.

Proof: Let Γ : [0, 1] → R
p denote a constant speed parametrization s of the

curve (‖dΓ (s)/ds‖ = const). As n → ∞, ε → 0, the diffusion map coordi-
nates (eigenvectors of M) converge to the eigenfunctions of the corresponding
FP operator. In the case of a non-intersecting 1-D curve, the Fokker-Planck
operator is

Hψ =
d2ψ

ds2
, (10.26)
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where s is an arc-length along Γ , with Neumann boundary conditions at the
edges s = 0, 1. The first two non-trivial eigenfunctions are ψ1 = cos(πs) and
ψ2 = cos(2πs). The first eigenfunction thus gives a one-to-one parametrization
of the curve, and can thus be used to embed it into R

1. The second eigenfunc-
tion ψ2 = 2ψ2

1 − 1 is a quadratic function of the first. This relation (together
with estimates on the local density of the points) can be used to verify that for
a given dataset, at a coarse scale its data points indeed lie on a 1-D manifold.

Consider now a closed curve in R
p. In this case there are no boundary

conditions for the operator and we seek periodic eigenfunctions. The first two
non-constant eigenfunctions are sin(πs + θ) and cos(πs + θ) where θ is an
arbitrary rotation angle. These two eigenfunctions map data points on the
curve to the circle in R

2, see [11]. �

Example 1: Consider a set of 400 points in three-dimensions, sampled
uniformly from a spiral curve. In Fig. 10.1 the points and the first two
eigenvectors are plotted. As expected, the first eigenvector provides a
parametrization of the curve, whereas the second one is a quadratic function
of the first.

Example 2: The analysis above can also be applied to images. Consider a
dataset of images of a single object taken from different horizontal rotation
angles. These images, although residing in a high dimensional space, are all on
a 1-d manifold defined by the rotation angle. The diffusion map can uncover
this underlying one dimensional manifold on which the images reside and
organize the images according to it. An example is shown in Fig. 10.2, where
the first two diffusion map coordinates computed on a dataset of 37 images
of a truck taken at uniform angles of 0, 5, . . . , 175, 180 degrees are plotted
one against the other. All computations were done using a Gaussian kernel
with standard Euclidean distance between all images. The data is courtesy of
Ronen Basri [33].

0
5

10
1

0

−1

−1

0

1

−0.1 −0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

ψ
1

ψ
2

Fig. 10.1. 400 points uniformly sampled from a spiral in 3-D (left). First two non-
trivial eigenfunctions. The first eigenfunction ψ1 provides a parametrization of the
curve. The second one is a quadratic function of the first
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ψ
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ψ
2

Fig. 10.2. Figures of a truck taken at five different horizontal angles (top). The
mapping of the 37 images into the first two eigenvectors, based on a Gaussian ker-
nel with standard Euclidean distance between the images as the underlying metric
(bottom). The blue circles correspond to the five specific images shown above

We remark that if data is sampled from a 1-D curve or more gener-
ally from a low dimensional manifold, but not in a uniform manner, the
standard normalized graph Laplacian converges to the FP operator (10.24)
which contains a drift term. Therefore its eigenfunctions depend both on
the geometry of the manifold and on the probability density on it. How-
ever, replacing the isotropic kernel exp(−‖x − y‖2/4ε) by the anisotropic one
exp(−‖x − y‖/4ε)/D(x)D(y) asymptotically removes the effects of density
and retains only those of geometry. With this kernel, the normalized graph
Laplacian converges to the Laplace-Beltrami operator on the manifold [11].

We now consider the characteristics of spectral embedding on the “swiss
roll” dataset, which has been used as a synthetic benchmark in many papers,
see [7,34] and refs. therein. The swiss roll is a 2-D manifold embedded in R

3.
A set of n points xi ∈ R

3 are generated according to x = (t cos(t), h, t sin(t)),
where t ∼ U [3π/2, 9π/2], and h ∼ U [0,H]. By unfolding the roll, we obtain a
rectangle of length L and width H, where in our example,

L =
∫ 9π/2

3π/2

√(
d
dt

t sin t

)2

+
(

d
dt

tcos(t)
)2

dt ≈ 90 .
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For points uniformly distributed on this manifold, in the limit n → ∞,
ε → 0, the FP operator is

Hψ =
d2ψ

dt2
+

d2ψ

dh2

with Neumann boundary conditions at the boundaries of the rectangle. Its
eigenvalues and eigenfunctions are

µj,k = π2

(
j2

L2
+

k2

H2

)

, j, k ≥ 0 ;

ψ(t, h) = cos
(

jπt

L

)

cos
(

kπh

H

)

. (10.27)

First we consider a reasonably wide swiss roll, with H = 50. In this case,
the length and width of the roll are similar and so upon ordering the eigen-
values µj,k in increasing order, the first two eigenfunctions after the constant
one are cos(πt/L) and cos(πh/H). In this case spectral embedding via the
first two diffusion map coordinates gives a reasonably nice parametrization of
the manifold, uncovering its 2-d nature, see Fig. 10.3.

However, consider now the same swiss roll but with a slightly smaller
width H = 30. Now the roll is roughly three times as long as it is wide. In
this case, the first eigenfunction cos(πt/L) gives a one-to-one parametrization
of the parameter t. However, the next two eigenfunctions, cos(2πt/L) and
cos(3πt/L), are functions of ψ1, and thus provide no further useful information
for the low dimensional representation of the manifold. It is only the 4th
eigenfunction that reveals its two dimensional nature, see Fig. 10.4. We remark
that in both figures we do not obtain perfect rectangles in the embedded space.
This is due to the non-uniform density of points on the manifold, with points
more densely sampled in the inward spiral than in the outward one.

This example shows a fundamental difference between (linear) low
dimensional embedding by principal component analysis, vs. nonlinear spec-
tral methods. In PCA once the variance in a specific direction has been

Fig. 10.3. 5000 points sampled from a wide swiss roll and embedding into the first
two diffusion map coordinates
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Fig. 10.4. 5000 points sampled from a narrow swiss roll and embedding into various
diffusion map coordinates

captured, all further projections are orthogonal to it. In non-linear spectral
methods, the situation is fundamentally different. For example, even for points
on a one dimensional (linear) line segment, there are N different eigenvectors
that capture the various relaxation processes on it, all with non-zero eigen-
values. Therefore, several eigenvectors may encode for the same geometrical
or spatial “direction” of a manifold. To obtain a sensible low dimensional rep-
resentation, an analysis of the relations between the different eigenvectors is
required to remove this redundancy.

10.4 Spectral Clustering of a Mixture of Gaussians

A second common application of spectral embedding methods is for the pur-
pose of clustering. Given a set of n points {xi}n

i=1 and a corresponding simi-
larity matrix Wij , many works suggest to use the first few coordinates of the
normalized graph Laplacian as an embedding into a new space, where stan-
dard clustering algorithms such as k-means can be employed. Most methods
suggest to use the first k−1 non-trivial eigenvectors after the constant one to
find k clusters in a dataset. The various methods differ by the exact normal-
ization of the matrix for which the eigenvectors are computed and the specific
clustering algorithm applied after the embedding into the new space. Note
that if the original space had dimensionality p < k, then the embedding actu-



252 B. Nadler et al.

ally increases the dimension of the data for clustering purposes. An interesting
question is then under what conditions are these spectral embedding followed
by standard clustering methods expected to yield successful clustering results.

Two ingredients are needed to analyze this question. The first is a genera-
tive model for clustered data, and the second is an explicit definition of what
is considered a good clustering result.

A standard generative model for data in general and for clustered data in
particular is the mixture of Gaussians model. In this setting, data points {xi}
are i.i.d. samples from a density composed of a mixture of K Gaussians,

p(x) =
K∑

i=1

wiN(µi, Σi) (10.28)

with means µi, covariance matrices Σi and respective weights wi. We say
that data from such a model is clusterable into K clusters if all the different
Gaussian clouds are well separated from each other. This can be translated
into the condition that

‖µi − µj‖2 > 2min[λmax(Σi), λmax(Σj)] ∀i, j , (10.29)

where λmax(Σ) is the largest eigenvalue of a covariance matrix Σ.
Let {xi} denote a dataset from a mixture that satisfies these conditions,

and let S1∪S2∪ . . .∪SK denote the partition of space into K disjoint regions,
where each region Sj is defined to contain all points x ∈ R

p whose probability
to have been sampled from the j-th Gaussian is the largest. We consider the
output of a clustering algorithm to be successful if its K regions have a high
overlap to these optimal Bayes regions Sj .

We now analyze the performance of spectral clustering in this setting.
We assume that we have a very large number of points and do not con-
sider the important issue of finite sample size effects. Furthermore, we do not
consider a specific spectral clustering algorithm, but rather give general state-
ments regarding their possible success given the structure of the embedding
coordinates.

In our analysis, we employ the intimate connection between the diffusion
distance and the characteristic time scales and relaxation processes of the ran-
dom walk on the graph of points, combined with matrix perturbation theory.
A similar analysis can be made using the properties of the eigenvalues and
eigenfunctions of the limiting FP operator.

Consider then n data points {xi}n
i=1 sampled from a mixture of K reason-

ably separated Gaussians, and let S1 ∪S2 ∪ . . . SK denote a partition of space
into K disjoint cluster regions as defined above. Then, by definition, each
cluster region Sj contains the majority of points of each respective Gaussian.
Consider the similarity matrix W computed on this discrete dataset, where
we sort the points according to which cluster region they belong to. Since the
Gaussians are partially overlapping, the similarity matrix W does not have
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a perfect block structure (with the blocks being the sets Sj), but rather has
small non zero weights between points of different cluster regions. To analyze
the possible behavior of the eigenvalues and eigenvectors of such matrices, we
introduce the following quantities. For each point xi ∈ Sj we define

ai =
∑

xk /∈Sj

Wik (10.30)

and
bi =

∑

xk∈Sj

Wik . (10.31)

The quantity ai measures the amount of connectivity of the point xi to points
outside its cluster, whereas bi measures the amount of connectivity to points
in the same cluster. Further, we introduce a family of similarity matrices
depending on a parameter ε, as follows:

W (ε) = (1 − ε)diag
(

ai

bi

)

W0 + εW1 , (10.32)

where

W0(i, j) =
{

Wij , if xi ,xj ∈ Sk , i �= j ;
0 , otherwise ,

(10.33)

and

W1(i, j) =
{

Wij , if xi ∈ Sα ,xj ∈ Sβ , α �= β ;
0 , otherwise .

(10.34)

The matrix W0 is therefore a block matrix with K blocks, which contains
all intra-cluster connections, while the matrix W1 contains all the inter-
cluster connections. Note that in the representation (10.32), for each point
xi, D(xi) =

∑
Wij(ε) is independent of ε. Therefore, for the symmetric ma-

trix Ms(ε) similar to the Markov matrix, we can write

Ms(ε) = D1/2W (ε)D1/2 = Ms(0) + εM1 . (10.35)

When ε = 0, W (ε) = W0 is a block matrix and so the matrix Ms(0) cor-
responds to a reducible Markov chain with K components. When ε = 1 we
obtain the original Markov matrix on the dataset, whose eigenvectors will be
used to cluster the data. The parameter ε can thus be viewed as controlling
the strength of the inter-cluster connections. Our aim is to relate the eigen-
values and eigenvectors of Ms(0) to those of Ms(1), while viewing the matrix
εM1 as a small perturbation.

Since Ms(0) corresponds to a Markov chain with K disconnected com-
ponents, the eigenvalue λ = 1 has multiplicity K. Further, we denote by
λR

1 , . . . , λR
K the next largest eigenvalue in each of the K blocks. These eigen-

values correspond to the characteristic relaxation times in each of the K clus-
ters (denoted as spurious eigenvalues in [14]). As ε is increased from zero, the
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eigenvalue λ = 1 with multiplicity K splits into K different branches. Since
Ms(ε) is a Markov matrix for all 0 ≤ ε ≤ 1 and becomes connected for ε > 0,
exactly one of the K eigenvalues stays fixed at λ = 1, whereas the remaining
K−1 decrease below one. These slightly smaller than one eigenvalues capture
the mean exit times from the now weakly connected clusters.

According to Kato [35], [Theorem 6.1, page 120], the eigenvalues and eigen-
vectors of M(ε) are analytic functions of ε on the real line. The point ε = 0,
where λ = 1 has multiplicity K > 1 is called an exceptional point. Further,
(see Kato [35], page 124) if we sort the eigenvalues in decreasing order, then
the graph of each eigenvalue as a function of ε is a continuous function, which
may cross other eigenvalues at various exceptional points εj , At each one
of these values of ε, the graph of the eigenvalue as a function of ε jumps
from one smooth curve to another. The corresponding eigenvectors, however,
change abruptly at these crossing points as they move from one eigenvector
to a different one.

We now relate these results to spectral clustering. A set of points is consid-
ered clusterable by these spectral methods if the corresponding perturbation
matrix M1 is small, that is, if there are no exceptional points or eigenvalue
crossings for all values ε ∈ (0, 1). This means that the fastest exit time from
either one of the clusters is significantly slower than the slowest relaxation time
in each one of the clusters. In this case, the first K − 1 eigenvectors of the
Markov matrix M are approximately piecewise constant inside each of the K
clusters. The next eigenvectors capture relaxation processes inside individual
clusters and so each of them is approximately zero in all clusters but one. Due
to their weighted bi-orthogonality of all eigenvectors (see Sect. 10.2), cluster-
ing the points according to the sign structure of the first K − 1 eigenvectors
approximately recovers the K clusters. This is the setting in which we expect
spectral clustering algorithms to succeed.

However, now consider the case where relaxation times of some clusters
are larger than the mean exit times from other clusters. Then there exists
at least one exceptional point ε < 1, where a crossing of eigenvalues occurs.
In this case, crucial information required for successful clustering is lost in
the first K − 1 eigenvectors, since at least one of them now captures the
relaxation process inside a large cluster. In this case, regardless of the specific
clustering algorithm employed on these spectral embedding coordinates, it is
not possible to distinguish one of the small clusters from others.

Example: We illustrate the results of this analysis on a simple example.
Consider n = 1000 points generated from a mixture of three Gaussians in two
dimensions. The centers of the Gaussians are

µ1 = (−6, 0), µ2 = (0, 0), µ3 = (xR, 0) ,

where xR is a parameter. The two rightmost Gaussians are spherical with
standard deviation σ2 = σ3 = 0.5. The leftmost cluster has a diagonal covari-
ance matrix
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Fig. 10.5. Top left - 1000 points from three Gaussians. The three other panels show
the first three non-trivial eigenvectors as a function of the x-coordinate

Σ1 =
(

2.0 0
0 2.4

)

.

The weights of the three clusters are (w1, w2, w3) = (0.7, 0.15, 0.15). In
Fig. 10.5 we present the dataset of 1000 points sampled from this mixture
with xR = 4, and the resulting first three non-trivial eigenvectors, ψ1, ψ2, ψ3

as a function of the x-axis. All computations were done with a Gaussian kernel
with width σ = 1.0. As seen in the figure, the three clusters are well separated
and thus the first two non-trivial eigenvectors are piecewise constant in each
cluster, while the third eigenvector captures the relaxation along the y-axis
in the leftmost Gaussian and is thus not a function of the x-coordinate. We
expect spectral clustering that uses only ψ1 and ψ2 to succeed in this case.

Now consider a very similar dataset, only that the center xR of the right-
most cluster is slowly decreased from xR = 4 towards x = 0. The dependence
of the top six eigenvalues on xR is shown in Fig. 10.6. As seen from the top
panel, the first eigenvalue crossing occurs at the exceptional point xR = 2.65,
and then additional crossings occur at xR = 2.4, 2.3 and at 2.15.

Therefore, as long as xR > 2.65 the mean exit time from the rightmost
cluster is slower than the relaxation time in the large cluster, and spectral
clustering using ψ1, ψ2 should be successful. However, for xR < 2.65 the
information distinguishing the two small clusters is not present any more
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Fig. 10.6. Dependence of six largest eigenvalues on location of right cluster center
(Top). The second largest non-trivial eigenvector as a function of the x-coordinate
when xR = 2.8 (Bottom left) and when xR = 2.5 (Bottom right)

in ψ1, ψ2 and thus spectral clustering will not be able to distinguish between
these two clusters. An example of this sharp transition in the shape of the
second eigenvector ψ2 is shown in fig. 10.6 at the bottom left and right pan-
els. For xR = 2.8 > 2.65 the second eigenvector is approximately piecewise
constant with two different constants in the two small clusters, whereas for
xR = 2.5 < 2.65 the second eigenvector captures the relaxation process in the
large cluster and is approximately zero on both of the small ones. In this case
ψ3 captures the difference between these two smaller clusters.

As xR is decreased further, additional eigenvalue crossings occur. In
Fig. 10.7 we show the first five non-trivial eigenvectors as a function of the
x-coordinate for xR = 2.25. Here, due to multiple eigenvalue crossings only
ψ5 is able to distinguish between the two rightmost Gaussians.

Our analysis shows that while spectral clustering may not work on multi-
scale data, the comparison of relaxation times inside one set of points vs. the
mean first passage time between two sets of points plays a natural role in the
definition of clusters. This leads to a multi-scale approach to clustering, based
on a relaxation time coherence measure for the determination of the coher-
ence of a group of points as all belonging to a single cluster, see [36]. Such an
approach is able to successfully cluster this example even when xR = 2.25,
and has also been applied to image segmentation problems.
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Finally, we would like to mention a simple analogy between spectral clus-
tering where the goal is the uncovering of clusters, and the uncovering of
signals in (linear) principal component analysis. Consider a setting where we
are given n observations of the type “signals + noise”. A standard method to
detect the signals is to compute the covariance matrix C of the observations
and project the observations onto the first few leading eigenvectors of C. In
this setting, if the signals lie in a low dimensional hyperspace of dimension k,
and the noise has variance smaller than the smallest variance of the signals in
this subspace, then PCA is successful at recovery of the signals. If, however,
noise has variance larger than the smallest variance in this subspace, then at
least one of the first k eigenvectors points in a direction orthogonal from this
subspace, dictated by the direction with largest noise variance, and it is not
possible to uncover all signals by PCA. Furthermore there is a sharp transi-
tion in the direction of this eigenvector, as noise strength is increased between
being smaller than signal strength to larger than it [37]. As described above,
in our case a similar sharp phase transition phenomenon occurs, only that the
signal and the noise are replaced by other quantities: The “signals” are the
mean exit times from the individual clusters, while the “noises” are the mean
relaxation times inside them.
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10.5 Summary and Discussion

In this paper we presented a probabilistic interpretation of spectral clustering
and dimensionality reduction algorithms. We showed that the mapping of
points from the feature space to the diffusion map space of eigenvectors of
the normalized graph Laplacian has a well defined probabilistic meaning in
terms of the diffusion distance. This distance, in turn, depends on both the
geometry and density of the dataset. The key concepts in the analysis of
these methods, that incorporates the density and geometry of a dataset, are
the characteristic relaxation times and processes of the random walk on the
graph. This provides novel insight into spectral clustering algorithms, and
the starting point for the development of multiscale algorithms [36]. A similar
analysis can also be applied to semi-supervised learning based on spectral
methods [38]. Finally, these eigenvectors may be used to design better search
and data collection protocols [39].
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