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Abstract

Determining the number of components in a linear mixture model is a fundamental problem in
many scientific fields, including chemometrics and signal processing. In this paper we present
a new method to automatically determine the number of components from a limited number
of (possibly) high dimensional noisy samples. The proposed method, based on the eigenvalues
of the sample covariance matrix, combines a matrix perturbation approach for the interaction
of signal and noise eigenvalues, with recent results from random matrix theory regarding the
behavior of noise eigenvalues. We present the theoretical derivation of the algorithm and an
analysis of its consistency and limit of detection. Results on simulated data show that under a
wide range of conditions our method compares favorably with other common algorithms.

Keywords and phrases: Pseudorank estimation, Principal component analysis,
Random matrix theory, Tracy-Widom distribution, Number of components in a
mixture.

1 Introduction

Linear mixture models are one of the most common modelling approaches to multivariate data
in many scientific fields. In spectroscopy, following Beer’s law the (logarithm) of measured spec-
tra is modelled as a linear mixture of the different chemical components, each multiplied by its
characteristic spectral response [28]. Following basic laws of physics, and specifically acoustic or
electromagnetic wave propagation, a similar modelling approach is also common in signal process-
ing. Here, in a typical setting the vector of observations measured by an array of antennas or a
collection of microphones is modelled as a superposition of a finite number of signals embedded in
additive white noise [34].

One of the most fundamental tasks in the analysis of multivariate data from a linear mixture
model is the determination of the number of components or sources present in it. In chemometrics,
determination of the chemical rank is typically the first step in self modelling curve resolution, where
correct estimation of the number of chemical components is crucial for correct curve resolution
[9]. Similarly, in calibration of multi-component systems with non-vanishing correlations between
different components and with interfering spectral responses, the theoretically optimal number of
factors in common algorithms such as partial least squares or principal component regression, is
typically equal to the number of components in the mixture [26]. While many calibration methods
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estimate the number of components by cross-validation, an a-priori independent estimate of the
number of factors is valuable information. While the emphasis in this paper is on chemometrics, we
remark that the problem of rank determination is important also in signal processing [34, 6, 15, 30]
and in other fields such as genomics, ecology and psychology, to name only a few. In signal
processing, for example, determining the number of sources is typically the first step in blind
source separation, detection of arrival and source localization tasks.

In the absence of noise, the number of components in a set of measured high dimensional
signals is simply the rank of the data matrix, or equivalently the number of non-zero eigenvalues
of the corresponding sample covariance matrix, also denoted as its pseudorank. In the presence
of small additive noise, we expect the sample covariance matrix to have a few large eigenvalues,
corresponding to the chemical signals, and a large number of small eigenvalues, corresponding to
the noise. As such, the majority of algorithms for pseudorank determination are based on analysis
of the eigenvalues of the sample covariance matrix.

Methods for determining the number of components date back at least to the works of Bartlett
and Lawley, who developed likelihood ratio tests to check for sphericity, e.g. for equality of the
smallest eigenvalues [13, 17]. Their methods are based on asymptotic expansions for large sample
sizes, and may not perform well in the common setting in chemometrics where the number of
samples, n, is of the same order and often significantly smaller than the number of variables
(wavelengths) p. Consequently, in the past four decades more than twenty different methods for
rank determination have been suggested in the chemometrics community [3, 4, 5, 7, 18, 19, 20,
21, 23]. Independently, methods to detect the number of sources have also been developed both
in the statistics and signal processing communities, with emphasis on model selection criteria and
information theoretic approaches, such as minimum description length (MDL), Bayesian model
selection, Bayesian information criteria (BIC) and more [34, 36, 24].

The common thread to all algorithms for rank determination is the attempt to distinguish
between small yet significant eigenvalues due to a signal, and large yet insignificant eigenvalues due
to noise. In this paper, based on recent results in random matrix theory for the behavior of noise
eigenvalues, and on a matrix perturbation approach for the interactions between noise and signal
eigenvalues, we develop a novel algorithm for rank determination. Our proposed algorithm performs
a sequence of hypothesis tests on the number of components, at each step testing the significance
of the k-th largest eigenvalue as arising from a signal rather than from noise. Our algorithm is
thus intimately related to Roy’s largest root test [31, 16], with one additional key component - an
accurate estimation of noise level. In our method we assume Gaussian homoscedastic noise (that
is, equal noise variance in all directions). An interesting future research direction is to generalize
our approach to the case of heteroscedastic noise.

As described in detail in section 2 our method is based on firm statistical foundations and
it is suitable for a wide range of values of p and n. Recent results in matrix random theory
allow the analysis of its consistency and of its limit of detection. These issues are particularly
important given that one of the main challenges in pseudorank estimation is the detection of minor
components present in a mixture. The theoretical analysis of this limit of detection highlights the
importance of incorporating prior knowledge for improved rank determination, and motivates the
use of regularization methods for rank determination, for example using smooth PCA [35].

In section 3 we present simulations comparing the performance of our algorithm to other com-
mon rank estimation methods, including Malinowski’s F -test [21], its modification by Faber and
Kowalski [4], and a recent algorithm suggested by Rao and Edelman [30]. For the last two algo-
rithms we also present a theoretical analysis in the appendix. The simulation results show that
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under a wide range of conditions our algorithm is as good as, and often better, than these other
methods.

We conclude the paper with a short discussion in section 4. Proofs of consistency and other
technical details appear in the appendices.

2 Problem Formulation and Main Results

Notation. We denote random variables by lowercase letters, as in u, whereas specific realizations
have an additional subscript, as in uν . Vectors and matrices are denoted by lowercase and uppercase
boldface letters, e.g. w and C, respectively. The identity matrix of order p is denoted Ip, and a
p× p matrix of all zeros is denoted 0p.

Problem Formulation. Consider a dataset of n i.i.d. noisy samples {xν}n
ν=1 from the following

p-dimensional linear mixture model with K components,

x =
K∑

j=1

ujvj + σξ. (1)

The random variables uj are the K different components with corresponding response vectors
vj ∈ Rp, and σ is the level of noise. In this work we consider uncorrelated homoscedastic noise,
i.e., we assume ξ ∈ Rp is a multivariate N (0, Ip) Gaussian random noise vector with unit variance
in all directions. Further, we assume that the K ×K covariance matrix of the random variables
uj is of full rank, and that the response vectors vj are linearly independent in Rp. Under these
assumptions the population covariance matrix Σ of the observations x can be diagonalized to have
the form

W′ΣW =




λ1

. . .
λK

0(p−K)


 + σ2Ip. (2)

The p × p matrix W is unitary and its columns wj are the eigenvectors of Σ with eigenvalues
λj + σ2.

The problem considered in this paper is as follows: given a random sample of size n, {xν}n
ν=1

from Eq. (1), infer the value of K, i.e., the number of components in the model. The value K is
also known as the pseudorank of the matrix, formally defined as the rank of the data matrix in the
absence of noise. For future reference, we denote by Sn the (non-centered) p× p sample covariance
matrix,

Sn =
1
n

n∑

ν=1

xνx′ν .

In this work we do not impose any further knowledge or prior assumptions on the shape of the
response vectors vj or on the (possibly non-Gaussian) distribution of the random variables uj . The
importance and benefits of incorporating prior knowledge are described in section 2.1 below. Thus,
we infer K only from the sample covariance matrix Sn, and not from the n individual observations.
Note that as we do not make any assumptions on the geometry of the response vectors, the space of
vectors is isotropic, with all eigenvector directions having equal a-priori probability. In this setting,
the eigenvalues of Sn are sufficient statistics that capture all useful information for our inference
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task [8]. Thus, following common practice of many other algorithms, we present a method to
infer the number of components only from the eigenvalues of Sn, denoted {`j}p

j=1, and sorted in
decreasing order `1 > `2 > · · · > `p.

As the number of samples n →∞, inferring the number of components K from the eigenvalues
of the sample covariance matrix is relatively easy. All noise eigenvalues converge with probability
one to the same constant σ2, whereas the signal eigenvalues converge with probability one to λj+σ2.
Therefore, σ2 can be estimated and the number of components K is equal to the number of sample
eigenvalues (significantly) larger than σ2.

This approach, however, fails in the common setting of a noisy high dimensional dataset with a
limited number of samples. The reason is that in this case the noise eigenvalues have a significant
spread so they are far from being all equal to the same constant. We illustrate this phenomenon
by the following example, borrowed from [12]. Consider, for example, n = 10 samples in a p = 10
dimensional space from a Gaussian distribution with variance σ2 = 1. The population covariance
matrix in this example is I10, yet a typical realization shows the extreme spread of the eigenvalues
of the sample covariance matrix:

`T = (3.33, 2.45, 1.78, 1.02, .564, .277, .237, .15, .04, .008).

Although as n → ∞ all these eigenvalues converge to unity, at these specific values of p and n,
λmax/λmin = O(1000). We remark that this spread phenomenon is not due to the low number
of samples n but rather depends primarily on the ratio p/n. This issue and its implications for
pseudorank estimation are discussed in detail below. Moreover, when p > n, in addition to the
significant spread of the non-zero eigenvalues, p−n eigenvalues are strictly equal to zero. Thus, for
finite values of p and n and particularly for large ratios p/n > 1, the spectral gap between signal
eigenvalues and noise eigenvalues may not be easily detected anymore.

As in other methods, in order to distinguish signal from noise we rely on the notion that large
eigenvalues correspond to signal whereas small eigenvalues correspond to noise. The key novel
ingredient here is a more precise statistical quantification of what is meant by “large” vs “small”.
This requires consideration of three theoretical issues. The first is the spread of eigenvalues of pure
noise samples for any value of σ, p and n. The second issue is the interaction between noise and
signal eigenvalues, and the third issue is an estimate of the a-priori unknown noise level σ. The first
issue has been studied extensively in the random matrix theory literature. We present the relevant
theoretical results in section 2.1. For the second and third issues, we develop a novel approach
based on matrix perturbation theory, presented in section 2.2. The resulting algorithm is described
in section 2.3. Some of its theoretical properties are analyzed in section 2.4.

2.1 Noise Eigenvalues, Detection Limit and Random Matrix Theory

Since our goal is to distinguish between noise and signal eigenvalues, we first describe some known
results regarding the spread of pure noise eigenvalues. Consider thus a random sample {xν}n

ν=1

of pure noise observations where each xν is multivariate Gaussian with zero mean and diagonal
covariance matrix σ2Ip. Let Sn = 1

n

∑
ν xνx′ν , then nSn

σ2 follows a Wishart distribution with pa-
rameters n, p. The distribution of its eigenvalues has been a subject of intensive research for many
decades [1].

For our purposes, the key quantity of interest is the distribution of the largest noise eigenvalue
as a function of p and n. While a closed form analytical expression is not available, substantial
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progress has been made in recent years. It was proven in [10] (for complex-valued observations)
and in [11] (real-valued) that in the limit p, n → ∞, with p/n = c fixed, the distribution of the
largest eigenvalue converges to a Tracy-Widom distribution,

Pr{`1 < σ2 (µn,p + sσn,p)} → Fβ(s) (3)

where Fβ denotes the Tracy-Widom distribution of order β, and β = 1, 2 corresponds to real or
complex-valued observations, respectively. As described in [12], for real-valued observations the
following expressions

µn,p = 1
n

(√
n− 1/2 +

√
p− 1/2

)2
,

σn,p = 1
n

(√
n− 1/2 +

√
p− 1/2

)(
1√

n−1/2
+ 1√

p−1/2

)1/3

,
(4)

give an OP

(
p−2/3

)
rate of convergence in (3). For complex-valued observations the definitions of

µn,p and σn,p giving the same convergence rate are more involved and appear in [14].

The Tracy-Widom distribution Fβ can be explicitly computed from the solution of a second
order Painlevé ordinary differential equation [11, 12]. While Eq. (3) holds in the limit p, n →∞, it
has been numerically and theoretically shown to be a very good approximation for finite but large
p and n.

Therefore, if the noise level σ is explicitly known, a statistical procedure to distinguish a signal
eigenvalue ` from noise at an asymptotic significance level α is to check whether

` > σ2(µn,p + s(α)σn,p) (5)

where the value of s(α) depends on the required significance level, and can be found by inverting
the Tracy-Widom distribution1.

We remark that for known σ, the test (5) is essentially Roy’s largest root test to check for
sphericity of a covariance matrix, and follows from the union-intersection principle [31, 16]. Eq.
(3) provides the asymptotic thresholds for a given confidence level α. One key result of the present
paper is an accurate estimation of the unknown value of σ, needed to perform this test.

Limit of Detection and Identifiability of Small Variance Components: Eq. (3) shows
that unless n À p, the largest eigenvalue due to noise can be considerably larger than σ2. This
raises the question of identifiability of small variance components from the eigenvalues of the sample
covariance matrix. This issue has also received considerable attention in recent years [2, 29, 25]. The
key result is the presence of a phase transition phenomenon. For example, consider the model (1)
with a single component and one large population eigenvalue λ. Then, in the joint limit p, n →∞,
p/n = c, the largest eigenvalue of the sample covariance matrix converges with probability one to

λmax(Sn) = ‖Sn‖ →
{

σ2 (1 +
√

c)2 if λ < σ2√c

(λ + σ2)
(
1 + cσ2

λ

)
if λ > σ2√c

(6)

Therefore, for a single component to be identified, its population eigenvalue must be larger than
the critical value

λcrit = σ2

√
p

n
. (7)

1Code for computing the Tracy-Widom distributions is freely available online, for example at
http://math.arizona.edu/∼momar/research.htm
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For the case of K components, in the limit p, n → ∞, each component behaves “independently”
and to be detectable its eigenvalue must be larger than the critical value of Eq. (7).

This result also shows the importance of incorporating possible prior knowledge, such as smooth-
ness of the response vectors vj or their approximate sparse representation in some basis of Rp.
Consider for example an orthonormal projection (dimensionality reduction / compression transfor-
mation) T : Rp → Rk of the general form

Tx = (x · a1, . . . ,x · ak) ,

where {aj}k
j=1 are orthonormal vectors in Rp. Then, if the original signals xν are i.i.d. samples

from Eq. (1), the compressed signals Txν also follow a linear mixture model with additive Gaussian
noise. Let u denote a low variance principal component with variance Var(u) and direction v. In
the original space Rp, the identifiability condition is Var(u)‖v‖2 > σ2

√
p/n. However, in the lower

dimensional space Rk, the asymptotic condition for its identifiability is now

Var(u)‖Tv‖2 > σ2

√
k

n
.

Therefore, if the dimensionality reduction scheme is able to represent the signals with a few signif-
icant features, ‖Tv‖ ≈ ‖v‖ and k ¿ p, then a small variance component may be identified in the
reduced space but not in the original high dimensional space. This analysis provides a theoretical
justification for compression of the signals or use of regularization methods prior to rank determi-
nation, for example, using smooth PCA [35]. We remark that a similar analysis, highlighting the
importance of feature selection, also applies to the performance of multivariate calibration methods
such as partial least squares, see [33, 27].

Unless otherwise noted, in what follows we thus assume that all signal eigenvalues λ1, . . . , λK

are significantly above the critical value, and so we should be able to correctly identify the true
number of components. Based on Eq. (5), our approach is to perform a sequence of hypothesis
tests, at each step testing the significance of the k-the largest eigenvalue as arising from signal or
from noise. To employ this approach, and estimate of noise level is required and this is described
in the next section. The resulting pseudorank estimation algorithm is described in section 2.3.

2.2 Estimation of Noise Variance σ2

Consider a model of rank K with covariance matrix (2). In the unknown basis W which diagonalizes
the population covariance matrix Σ, the sample covariance matrix takes the form

W′SnW =




z1

. . .

zK

zK+1

. . .

zp




+




off
diagonal
elements


 (8)

where for j = 1, . . . , p

zj =
1
n

n∑

ν=1

(xν ·wj)2
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are random variables that capture the sample variances in the directions wj . Assuming a model
of rank K, all projections wj for j > K contain only noise contributions, and hence, averaging
over all noise realizations, E{zj} = σ2. Therefore, an unbiased estimator of σ2 is the average of
zK+1, . . . , zp,

σ2
unbiased =

1
p−K

p∑

j=K+1

zj =
1

p−K


Tr (Sn)−

K∑

j=1

zj




=
1

p−K




p∑

j=K+1

`j +
K∑

j=1

(`j − zj)


 .

Unfortunately, the diagonalizing basis W is unknown, and to estimate σ2 we need an estimate for∑K
j=1(`j − zj). This gives

σ2
est =

1
p−K




p∑

j=K+1

`j +





K∑

j=1

(`j − zj)





est


 . (9)

Assuming K is known, a simple solution is to replace zj by `j for j = 1, . . . , K. This gives the
well known real error function (REF) as the estimate for the noise variance [20],

σ2
REF =

1
p−K

p∑

K+1

`j . (10)

In the PCA decomposition of the sample covariance matrix Sn, for any integer q, the subspace
with the largest variance is the one spanned by the first q principle components [13]. This means
that

∑q
j=1 `j >

∑q
j=1 zj , or

∑p
j=q+1 `j 6

∑p
j=q+1 zj . Therefore, Eq. (10) yields a downward biased

estimator for σ2. For high dimensional noisy data with relatively few samples this bias can become
significant and lead to overestimation of the number of components.

Quantifying the bias of the real error function: We analyze the effect of estimating zj by
`j in Eq. (9). For simplicity, we consider a model with a single factor and eigenvalue λ, where we
estimate z1 by `1. We view the off diagonal elements in Eq. (8) as a small perturbation and expand
the largest eigenvalue in terms of this perturbation (see [25]). This gives

`1 = z1 +
p∑

j=2

(W′SW)1j

z1 − zj
+ oP

(
1
n

)
.

Taking averages gives

E{`1} =
(
λ + σ2

)(
1 +

p− 1
n

σ2

λ

)
+ o

(
1
n

)
. (11)

Notice that this coincides with the asymptotic result in the joint limit p, n →∞, Eq. (6). Plugging
this expected value in Eq.(10) with K = 1 gives

E{σ2
REF} ≈ σ2

(
1− 1

n

λ + σ2

λ

)
6 σ2

(
1− 1

n

)
. (12)

This shows that even for significantly large signals with high SNR (λ À σ2), the real error function
estimate of Eq. (10) gives a relative downward bias of OP (n−1). This bias is significant when we
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have a limited number of samples n. As shown in the simulations in section 3, using this noise
estimator for rank determination may give higher rank estimates than the true rank.

An improved self-consistent method to estimate noise variance: To derive a less biased
noise estimation we consider the term

∑K
j=1(`j − zj) in Eq. (9), neglected in the REF estimator.

Denote by W̃ the basis which diagonalizes the upper left submatrix of W′SnW. In this basis the
sample covariance matrix takes the form

W̃′SnW̃ =




ρ1 0
. . . B′

0 ρK

zK+1 ∗
B

. . .

∗ zp




(13)

where ∗ denotes unknown non-zero random variables.

By construction, the upper left submatrix of W̃′SnW̃ captures the signal subspace, with
w̃1, . . . , w̃K spanning the same subspace of Rp as w1, . . . ,wK . Hence,

K∑

j=1

zj =
K∑

j=1

ρj

and
K∑

j=1

(`j − zj) =
K∑

j=1

(`j − ρj).

The matrix B captures the signal-noise interactions, whereas the lower right submatrix is pure noise.
The diagonal elements of W̃′SnW̃ are all OP (1), while the off-diagonal elements are OP

(
n−0.5

)
.

Thus, we can decompose the matrix W̃′SnW̃ as a primary matrix with entries OP (1) and a per-
turbation matrix with entries OP (n−1/2),

W̃′SnW̃ =




ρ1

. . . 0′

ρK

zK+1

0
. . .

zp




+




0 B′

0 ∗
B

. . .

∗ 0




(14)

For n sufficiently large, the first K eigenvalues `1, . . . , `K of W̃′SnW̃ can be viewed as perturbations
of ρ1 . . . , ρK , and we can expand `j − ρj as a series in the elements of the perturbation matrix.
This gives

`j = ρj +
p∑

i=K+1

b2
ij

ρj − zi
+ OP

(
1

n1.5

)
, 1 6 j 6 K. (15)

A key property of the representation (14) and Eq. (15) is the approximate de-coupling between
the different signal eigenvalues, namely that to leading order in n−0.5, `j − ρj is affected only by
the signal-noise interaction in the j-th row.

Recall that our goal is to approximate
∑K

j=1(`j − ρj). With this goal in mind, Eq. (15) is
still not directly useful as it contains the unknown random variables b2

ij , zi and ρj . Therefore,
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we first perform a ”moment-method” whereby we approximate the random variables b2
ij and zi by

their expected means. The random variable bij is the sample covariance over n samples of the two
independent random variables xν · w̃i and xν · w̃j . Since for i > K, w̃i = wi is fixed, the first
random variable is Gaussian with variance σ2. The second random variable has sample variance
ρj . Therefore, applying the moment-method we replace b2

ij by E(b2
ij) = 1

nρjσ
2 where both ρj and

σ2 are still unknown. Neglecting terms which are oP

(
n−1

)
, gives

`j − ρj ≈ σ2

n

p∑

i=K+1

ρj

ρj − σ2
=

σ2

n
(p−K)

ρj

ρj − σ2
. (16)

According to Eq. (9) an estimate for the noise level depends on the bias in the eigenvalues
`j − ρj . Eq. (16) shows, in turn, that this bias depends on the (unknown) noise level itself. Thus,
combining these two equations gives an approximately self-consistent method of noise estimation.
In practical terms, this amounts to solving the following non-linear system of K + 1 equations
involving the K + 1 unknowns ρ̂1 . . . , ρ̂K and σ2

KN:

σ2
KN −

1
p−K




p∑

j=K+1

`j +
K∑

j=1

(`j − ρ̂j)


 = 0, (17)

ρ̂2
j − ρ̂j

(
`j + σ2

KN − σ2
KN

p−K

n

)
+ `jσ

2
KN = 0. (18)

This system of equations can be solved iteratively. Starting with an initial guess σ̂2
0 for σ2

KN, solving
Eq. (18) gives an estimate of ρ̂1, . . . , ρ̂k, which then leads to an improved approximation of σ2

KN via
Eq. (17). We repeat this process iteratively until the absolute relative difference is below a small
threshold.

To start from a relatively accurate initial guess, we use Eq. (6) to conclude that in the case of
K signals,

E{σ2
REF} ≈ σ2


1−

K∑

j=1

1
n

λj + σ2

λj


 6 σ2

(
1− K

n

)
.

Therefore, a good initial guess is the following modification of the real error function:

σ̂2
0 =

σ2
REF

1− K
n

. (19)

We remark that Eq. (19) was considered in [5] as an accurate estimate of noise variance (better
than the REF estimate). Numerical simulations show that when starting from this initial guess,
the iterative process typically converges in less than 10 iterations.

Quantifying the bias of the improved estimator σ2
KN: For simplicity, we consider a model

with a single factor and eigenvalue λ. In this case,

σ2
KN = σ2

REF +
1

p− 1
(
`1 − ρ̂1(σ2

KN, `1)
)
.

Since the bias in σ2
REF is OP (n−1), we write σ2

KN = σ2 · (1 + x
n

)
, where x is an OP (1) random

variable. Plugging this expression into Eq. (18), and expanding in powers of O(1/n) gives that
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`1 − ρ̂1 = 1
n

σ2`1(p−1)
`1−σ2 (1 + OP (1/n)), which to leading order does not depend on x. Combining this

with Eq. (12) yields,

σ2 − E[σ2
KN]

σ2
=

1
n

λ + σ2

λ
− 1

p− 1
E

(
`1 − ρ̂(σ2

KN, `1)
)

+ O(1/n2)

=
1
n

λ + σ2

λ
− 1

n
E

[
`1

`1 − σ2

]
+ O(1/n2)

=
1
n

σ2

λ
E

[
1− 1

(`1 − σ2)/λ

]
+ O(1/n2)

Using Eq. (11) for the expectation of `1 gives

σ2 − E(σ2
KN)

σ2
=

p− 1
n2

σ4

λ2

1 + σ2

λ

1 + p−1
n

σ2

λ

(
1 + σ2

λ

)(1 + o(1)). (20)

Note that this expression is monotonically decreasing towards zero as the SNR λ/σ2 increases.
Thus, the bias of the estimator σ2

KN is negative, but smaller than that of the REF estimator, and
significantly so for λ À σ2.

2.3 Pseudorank Estimation Algorithm

We are now ready to present our algorithm2. It is based on a sequence of nested hypothesis tests,
for k = 1, 2, . . . ,min(p, n)− 1,

H0 : at least k components vs. H1 : at most k − 1 components.

For each value of k we estimate the noise level σ assuming `k+1, . . . , `p correspond to noise, and
test the likelihood of the k-th eigenvalue `k as arising from a signal or from noise, as follows

`k > σ2
KN(k) (µn,p−k + s(α)σn,p−k) (21)

where α is a user-chosen confidence level, and s(α) is the corresponding value computed by inversion
of the Tracy-Widom distribution. If Eq. (21) is satisfied we accept H0 and increase k by one.
Otherwise, we output K̂ = k − 1. In other words,

K̂ = arg min
k

{
`k 6 σ2

KN(k) (µn,p−k + s(α) σn,p−k)
}− 1.

Note that to test the k-th component, we compare in (21) its eigenvalue to that of a random
matrix of n samples with p− k dimensions. This is consistent with the decomposition (13) where
the noise matrix has dimension p− k.

2.4 Consistency of Pseudorank Estimation Algorithm

In this section we discuss some limiting properties of our noise and pseudorank estimators. A
detailed theoretical performance analysis for finite p, n is beyond the scope of this paper. Since our
main interest is in high dimensional settings with p À 1 and with sample sizes n comparable to
the dimension p, we focus on the asymptotic limit p, n → ∞ with p/n → c. Since the bias of the
simpler REF noise estimator is O(1/n) which also converges to zero as p, n → ∞, the theorems
below hold also for the simpler REF noise estimation. The proofs appear in appendix A.

2A matlab implementation of our algorithm can be downloaded from http://www.wisdom.weizmann.ac.il/∼nadler
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Consistency of Noise Estimation

The following lemma shows that regardless of the assumed number of signals k and the true number
K, in the asymptotic limit the noise estimator converges to the correct unknown value σ2.

Lemma 1: In the joint limit p, n →∞, p/n → c > 0, for any finite k, the noise estimator σ2
KN(k)

given by Eqs. (17) and (18), is consistent,

lim
p,n→∞σ2

KN(k) = σ2.

Consistency of Rank Estimation

The following theorem shows that in the asymptotic limit p, n →∞, provided all signal eigenvalues
are above the phase transition threshold, our rank estimator reports at least the correct number of
components.

Theorem 1: Consider n i.i.d. samples from the model (1) with K components, whose population
eigenvalues λj > λcrit = σ2

√
p/n for j = 1, . . . , K. Then, in the asymptotic limit p, n → ∞,

p/n → c > 0,
lim

p,n→∞Pr{K̂ > K} = 1.

We now consider the misidentification probability. For simplicity we consider the case of a single
signal above the phase transition (K = 1), and in the following Theorem show that in the joint limit
our rank estimator reports the exact number of signals with probability 1 − α and overestimates
the number of signals with probability α.

Theorem 2: Consider n i.i.d. samples from the model (1) with a single component, with signal
eigenvalue λ > λcrit = σ2

√
p/n. Then, in the asymptotic limit p, n → ∞, p/n → c > 0, the

misidentification probability converges to the significance level α,

lim
p,n→∞Pr{K̂ > K} = α.

To prove theorem 2 we will first prove the following lemma, which claims that in the presence of
a single signal, in the joint limit, the second largest eigenvalue `2 has a Tracy-Widom distribution.

Lemma 2: Consider a setting with a single signal λ > λcrit = σ2
√

p/n. Then, in the asymptotic
limit p, n → ∞, p/n → c > 0, the second largest eigenvalue (which corresponds to noise) has
asymptotically the same Tracy-Widom distribution as that of a pure noise Wishart matrix.

We conjecture that Theorem 2 and Lemma 2 hold also in the case of multiple signals. We
remark that in [5] the assumption that the secondary eigenvalues of a test data matrix can be
approximated by the eigenvalues of a random matrix with the same size were explored. Our
Lemma 2 above provides a theoretical justification for this approximation.
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3 Simulation Results

To illustrate the performance of our algorithm, we present simulation results under a wide range of
conditions. We compare our algorithm to the following other common methods: i) a simplified ver-
sion of our algorithm which uses the real-error-function to estimate the noise level, ii) an algorithm
recently suggested by Rao and Edelman [30], specifically designed for the large p small n setting,
iii) Malinowski’s F -test (at 5% significance level), and iv) a modified Faber-Kowalski F -test (at
1% significance level). For comparison purposes we denote our algorithm as KN-algorithm, for
which we use a value of αKN = 0.5% as the significance level. The simulation results show that our
algorithm has a consistent high performance under a wide range of conditions and is typically as
good as or better than the above other algorithms.

For the paper to be relatively self contained, we first describe the algorithms we compare to.
Later we present two sets of simulations. In the first set we use synthetic data generated with a
few parameters, chosen to represent a variety of conditions and to emphasize interesting behavior.
For the second set of simulations, we consider the simulated dataset recently analyzed by Levina
et. al. [18], consisting of a chemical mixture model with four or six components.

3.1 Other Algorithms

Real error function algorithm (REF)

As described in section 2, in the KN algorithm we use an improved estimator of the noise variance
σ2. Instead of using this estimator we can use the simpler real error function described in Eq.
(10). We refer to this algorithm, which is a simplified version of the KN algorithm, as the REF
algorithm. It is of course interesting to compare the two in order to examine the benefit of our
noise estimator. We run the REF algorithm with a significance level of αREF = 0.5%.

Rao and Edelman’s estimator (RE)

This estimator [30] is based on an information theoretic approach. It chooses a model which
minimizes (an approximation of) the Akaike Information Criterion (AIC), essentially optimizing a
trade-off between the complexity of the estimated model and how well the model fits the data. The
RE estimator is defined as follows:

tk = p

[
(p− k)

Pp
i=k+1 `2i

(
Pp

i=k+1 `i)2
− (

1 + p
n

)]−
(

2
β − 1

)
p
n

K̂RE = arg min
k

{
β

4

(
n

p

)2

t2k + 2(k + 1)

}
0 6 k < min(p, n)

(22)

The parameter β = 1 for real-valued Gaussian noise and β = 2 for complex Gaussian noise. As is
typical for information theory based estimators, the RE estimator is parameter-free, and thus has
no means of adjusting its significance level. An analysis of its asymptotic significance level and its
interesting non-trivial behavior as a function of p/n appears in the appendix.
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Malinowski’s F -test (F -test)

Malinowski’s F -test is also based on a sequence of nested hypothesis tests. Letting q = min{n, p},
and advancing from k = q − 1 to k = 1, in each step it is tested whether the k’th population
eigenvalue λk equals λk+1, . . . , λq using the following F -ratio

Fk(1, q − k) =
`k∑q

j=k+1 `j

∑p
j=k+1(n− j + 1)(p− j + 1)

(n− k + 1)(p− k + 1)
.

If the significance level of the test statistic is greater than α, then the null hypothesis is accepted
and k is decreased by one. Otherwise, K̂ = k. In other words,

K̂ = arg max
k
{Fk(1, q − k) > f1,q−k(1− α/100)} .

According to [21], a significance level of α = 5% tends to underestimate the rank, whereas the 10%
level tends to overestimate it. Here we shall use αF -test = 5%.

Faber and Kowalski’s modified F -test (FK)

In [4], Faber and Kowalski suggested a modification to Malinowski’s F -test, by changing the degrees
of freedom, based on Mandel’s degrees of freedom analysis. They propose the following F -ratio

Fk(ν1, ν2) =
`k∑p

j=k+1 `j

ν2

ν1

where
ν1 = n · E{`1(k)}, ν2 = (n− k + 1)(p− k + 1)− ν1

and E{`1(k)} is the expectation of the largest eigenvalue of a (p − k) × (p − k) pure noise sample
covariance matrix with n− k samples and σ2 = 1. While Faber and Kowalski used simulations to
approximate ν1, for our simulations we simply approximate E{`1(k)} by the explicit asymptotic
formula (6). The FK algorithm starts from k = 1 and thus the estimated pseudorank K̂ is defined
as

K̂ = arg min
k
{Fk(ν1, ν2) < fν1,ν2(1− α/100)} − 1.

For the FK algorithm we use a significance level of αFK = 1% as suggested by the authors.

In our simulations, the FK algorithm showed very good performance, except at low SNR’s. In
the appendix we present a theoretical analysis of this algorithm and its connection to our approach.

3.2 Synthetic Simulations

We run simulations on both real and complex-valued data (where β = 1 stands for real and β = 2
stands for complex), with different values for the number of components K, their corresponding vari-
ances λj , and different ratios c = p/n between the dimension and the number of samples. For each
choice of K, c and λj , we consider a range of values for the dimension, p = [64, 128, 256, 512, 1024].
In all settings we use a noise variance of σ2 = 1. We present results for three different choices
of the signal variances, and for each such choice we use two different values for c, hence we have
six different settings. For each setting we run 1000 MATLAB simulations. Table 1 reviews the
parameters used in each of the six settings.
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Figures 1-4 compare the performance of the different algorithms for each of the six settings.
Each plot shows the probability to correctly estimate K for different values of p and for the various
algorithms. Tables 2-4 give more detailed results for each specific algorithm and setting, and show
the probabilities to obtain various values of K̂. We present these tables only for the more insightful
cases. Tables 6 and 7 summarize the results of the synthetic simulations.

High signal variances: A1 and A2

In this case we have K = 2 signals, with variances (200, 50). Since σ2 = 1, the population covariance
matrix is

Σ =




200
50

0p−2


 + Ip =




201
51

Ip−2


 .

We present results for c = 4 (setting A1) and c = 1 (A2).

According to Eq. (6), with the smallest noise free eigenvalue equal λ = 50, asymptotically as
p, n → ∞, the phase transition occurs at p/n > cphase = 502 = 2500. Thus, in both settings A1
and A2, distinguishing between signal and noise eigenvalues is supposed to be quite an easy task,
as c ∈ {1, 4} ¿ cphase. Indeed, as shown in figure 1, most algorithms accurately estimate the
rank for both settings A1 and A2 when p and hence n are sufficiently large. However, the REF
algorithm shows rather poor results. This is due to the biased estimation of σ2, as can be seen
in figure 2, which compares our estimation of σ2 with the real error function. The figure shows
that our estimator is less biased than the real error function. The significant downward bias in the
real error function leads to the wrong identification of some noise eigenvalues as signal, and hence
leads to an overestimation of K, as seen in table 2. As discussed in section 2.2, our estimation of
σ2 is also downward biased, yet much less significantly. For this reason our method also slightly
overestimates K, as seen in table 3.

As we explain in the appendix, the FK algorithm implicitly estimates the noise variance σ2.
Hence, figure 2 shows the implicit FK noise estimator σ2

FK as well. From the figure it is evident
that the FK estimator is much less biased than the real error function yet more biased than the
KN estimator.

From a theoretical perspective, decreasing c from 4 to 1 makes the inference task easier. As
seen in figure 1, both the KN, REF and FK algorithms indeed achieve better results for c = 1. The
RE and F -test algorithms, however, give worse results in this case. For the RE algorithm, this is
in accordance with the theoretical analysis in the appendix.

Wide range of signal variances, B1 and B2

In this case we have K = 4 signals, with variances (200, 50, 10, 5). We present results for c = 4
(B1) and c = 1 (B2). Here the phase transition occurs at cphase = 52 = 25, still sufficiently high to
allow correct rank determination with high probability, even when c = 4.

Figure 3 shows that the KN algorithm performs very well, with the exception of the case c = 4
and small p (hence also much smaller n = p/c), where all algorithms perform poorly. The F -test
fails completely to estimate the true number of signals, as it wrongly identifies the small signal
eigenvalues as noise, and hence estimates K̂ = 2 or K̂ = 3 instead of the true value K = 4, see
table 4. The FK algorithm has better results than the F -test, yet not as good as the results of
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Figure 1: Empirical probability of correct rank estimation for various p and various algorithms, for
settings A1(left) and A2(right): real data, K = 2, λ = (200, 50), c = 4 (left) or c = 1 (right).
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Figure 2: Empirical mean of σ2
est of the KN estimator, of the real error function, and of the FK

algorithm, for setting A1: real data, K = 2, λ = (200, 50), c = 4.
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Figure 3: Empirical probability of correct rank estimation for various p and various algorithms, for
settings B1(left) and B2(right): real data, K = 4, λ = (200, 50, 10, 5), c = 4 (left) or c = 1 (right).
In setting B2, the performance of the F -test is at P = 0 and is not shown.

the KN, REF and RE algorithms. Only at p = 1024 does the FK algorithm achieve a high success
probability of 0.99. The RE algorithm behaves slightly worse than the KN algorithm for c = 4,
yet, for the case c = 1, which is easier from a statistical point of view, its correct identification
probability is always below 0.95, even for large p. Again, this is in accord with our theoretical
analysis. In appendix B we present a simulation with the same four signals, but over a wide range
of c = p/n values, which show the complex dependence the RE algorithm has on the parameter c.

Complex data, small signal variances

Here we use the same parameters considered in [30]. Motivated by their focus on signal processing
applications, Rao and Edelman tested their algorithm on data contaminated by complex-valued
additive Gaussian noise. Hence we use β = 2 and generate complex samples with K = 2 signals
and noise-free variances (λ1, λ2) = (9, 2). We present results for c = 2 (C1) and c = 1 (C2). Here,
the phase transition occurs at cphase = 22 = 4. While the two values of c are below this threshold,
the first value, c = 2, is rather close to it. This makes the task of pseudorank estimation much
more difficult, and indeed, figure 4 shows that for c = 2 and for small values of p (and n), all
five algorithms achieve poor results. Since c is smaller than the critical value, we do expect the
algorithms to achieve a success probability close to one as p, n →∞. To examine this convergence
we ran 100 simulations with p = 3000. The results appear in table 5, and show that the KN
and REF algorithms indeed obtained very high success probabilities. The RE algorithm, however,
achieved a success probability only slightly higher than 0.5.

In the setting C1 the REF algorithm seems to perform better than all other algorithms and
deserves an explanation. At low SNR’s it is likely to misclassify a signal eigenvalue as noise, and
hence underestimate K. The REF estimate of σ2 is downward biased, which, as we explained in
setting A1, leads to an upward bias in K̂. Therefore, only at this specific setting, these two biases,
one upward and one downward, roughly compensate each other and generate a better estimation
of K.

When c is decreased to c = 1, both the KN and the REF algorithm show excellent results. The
F -test is still unable to detect the small signal eigenvalue. The FK algorithm performs better than
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Figure 4: Empirical probability of correct rank estimation for various p and various algorithms, for
settings C1(left) and C2(right): complex data, K = 2, λ = (9, 2), c = 2 (left) or c = 1 (right).

before, and shows good results when p is large enough. The RE algorithm achieves a relatively low
success probability of only 0.78.

Summary of synthetic simulations

Tables 6 and 7 summarize the results of the synthetic simulations. Table 6 examines the case of low
dimension, p = 64, and shows the probability of correct rank estimation for each of the algorithms
and for each of the six simulation settings, averaged over 1000 simulations. Table 7 examines the
case of high dimension, p = 1024, in a similar way.

Summarizing the results of the synthetic simulations, we examined the performance of the
algorithms on various types of data: real data with two signals bearing high variance, real data
with four signals, two of them with high variance and two with hard to detect low variance, and
complex data with two very low signals. In all situations the signal eigenvalues are above the
phase transition threshold. The KN algorithm shows good results in all situations but the most
extreme (B1 and C1 with small p), and its success probability is close to one in all six settings.
The REF algorithm shows good results when c is small enough, yet for the high values of c (4 and
2) its estimation of σ2 is significantly downward biased and hence the estimation for K is upward
biased. Even though the number of samples is increased, the RE algorithm typically exhibits worst
performance when c is decreased from four to one. In all three cases its success probability does not
converge to one as p, n →∞ when c = 1. Malinowski’s F -test is unable to detect low signals, even
when c = 1. The improved Faber-Kowalski F -test algorithm shows excellent performance when
the signals are strong. However, in comparison to our proposed algorithm, it has a lower success
probability at settings with low variance signals, especially when c is large and p is small.

3.3 Chemical Mixtures

We now consider pseudorank estimation on the dataset recently considered by Levina et. al. [18].
This simulated data of chemical mixtures is based on two sets of six pure component spectra. The
first set consists of five plastics and one bovine bone spectra, which are quite dissimilar from each
other and are easy to discriminate. The second set contains five spectra of a fractured mouse tibia
bone and one plastic. The differences between the five bone spectra are very subtle and hence are
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hard to detect. The case of dissimilar spectra is relatively easy and here we focus on the set of
similar spectra.

Following Beer’s law, or equivalently Eq. (1), each of the n mixture samples is generated in
the following way: six weights are randomly drawn, each from a uniform distribution in an interval
[αj , βj ], and the weights are later normalized to sum up to

∑
wj = 1. Each of the six component

spectra vj is multiplied by the corresponding weight wj and the weighted spectra are summed
up to give a noise-free mixture spectra. Finally, a Gaussian random noise vector ξ with diagonal
covariance matrix σ2Ip is added to the mixture,

x =
6∑

j=1

wjvj + σξ.

As in [18], we use three different sets for the six intervals and hence three different distributions for
the weights, which are later referred to as simulation types 1-3. For simulation type 1, the first four
intervals are equal, and the last two are zero, meaning that for this setting the sample weights mix
only four spectra and hence K = 4. For the other two simulation settings the first four intervals are
again equal, and the last two intervals are much smaller than them, creating a distinction between
four major components and two minor ones.

All in all we have three different distributions for the weights, resulting in three different settings
for the noise-free population covariance matrix, whose eigenvalues are given in table 8. Each of
these settings is examined with three different noise levels,

σ1 = 5 · 10−4, σ2 = 1 · 10−3 and σ3 = 3 · 10−3.

The dimension of the spectra is p = 815 and the number of samples is n = 3600, hence c = 815
3600 =

0.226. For each setting we run 1000 MATLAB simulations, and compare the performance of the KN,
FK and RE algorithms. We do not consider here the REF and F -test algorithms, which generally
had worse performance in the simulations of the previous section. Also, we do not compare to
the maximum likelihood estimator of intrinsic dimension suggested in [18] for use on spectroscopic
data, since from the results in [18] it appears to give worse results on this dataset. However, it
should be noted that the MLE of intrinsic dimension algorithm is a very general algorithm which
can be successfully used to infer intrinsic dimension of non-linear manifolds. More details regarding
the pure spectra and the simulations can be found in [18].

According to Eq. (6), the eigenvalue detection limit for the three noise levels is

λcrit = σ2c0.5 = (1.19 · 10−7, 4.76 · 10−7, 4.28 · 10−6).

A signal eigenvalue λi is identifiable if it is above this threshold. Table 8 shows that some of
the population eigenvalues are below the thresholds, which means that at these noise levels we
cannot detect some of the signals using the sample covariance eigenvalues. The threshold defines
an effective number of identifiable signals, denoted Keff . Table 9 shows the value of Keff for the
various settings, for the set of similar spectra. We can see that in three settings, Keff < K.

As shown in table 10, for simulation type 1 even with the strongest noise level σ3 = 3 · 10−3

all algorithms achieve excellent results. As shown in tables 11 and 12, for simulation types 2 and
3 the situation is more complicated. In each of these tables, and for the three possible noise levels,
we emphasize the column with the effective number of signals, Keff . These tables show that in
most cases Pr{K̂KN = Keff} is close to one. Yet, for simulation type 3, for the two borderline
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cases (σ = σ1 or σ = σ2), our algorithm does not detect the smallest signal which is still above the
detection threshold. The reason is that although the ratio p/n is small enough, p and n themselves
are not sufficiently large.

4 Summary and Discussion

In this paper we derived a novel algorithm for pseudorank determination. It is based on a combina-
tion of results from random matrix theory and matrix perturbation. As we showed in simulations
it achieves similar if not better results, compared to state of the art competing algorithms.

This work considered only the case of homoscedastic noise. However, the basic methodology
can be extended to the case of heteroscedastic noise. We remark that modifications to the basic
pseudorank estimation algorithm are crucial in this case. For example, if noise has different vari-
ance in different variables (such as different noise strengths in different wavelengths), the standard
approach will fail. However, our algorithm can be easily modified to handle this case as well. If
a specific model for the noise is assumed, then µn,p and σn,p can be computed explicitly (at least
numerically). Otherwise, at least the first few moments of the noise variance distribution can be
estimated and from these approximate values for µn,p and σn,p can be derived.

In the development of our algorithm we replaced various random variables by their expected
values. Another possible improvement is to consider a Bayesian approach, where different real-
izations of these random variables yield possibly different rank estimates, and these are averaged
according to various priors.

Finally, we remark that the approach presented in this paper can also be applied to other
inference problems, such as derivation of confidence intervals for population eigenvalues, given a
sample covariance matrix.
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A Consistency of the KN Algorithm

In this section we prove the theoretical statements of section 2.4.

Proof of Lemma 1 (Consistency of Noise Estimation): Consider Eq. (17). For any finite k,
when p, n →∞, it is solved by σ2

KN = σ2
REF. Therefore,

lim
p,n→∞σ2

KN(k) = lim
p,n→∞σ2

REF(k) = σ2.

¤
Proof of Theorem 1: Consider a dataset sampled from (1) with K components whose eigenvalues
are all above the phase transition threshold. As explained in section 2.3, we estimate the pseudorank
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by a series of nested hypothesis tests. In the first K hypothesis tests we check, for j = 1, . . . , K,
whether

`j > σ2
KN(j) (µn,p−j + s σn,p−j) (23)

where σ2
KN(j) denotes the estimate of noise variance assuming j components.

Under the assumption that λj > σ2
√

p/n, it follows from Eq. (6) that

lim
p,n→∞ `j = (λj + σ2)

(
1 + c

σ2

λj

)
.

Further, according to lemma 1 in the asymptotic limit σ2
KN(j) → σ2. Finally, by definition Eq. (4),

lim
p,n→∞σn,p = 0, lim

p,n→∞µn,p =
(

1 +
√

p

n

)2

.

Therefore, in the asymptotic limit the inequality in Eq. (23) holds with probability one and K̂ > K.
¤

Proof of Lemma 2: For simplicity, we consider the case p = n (c = 1) and w.l.g. σ2 = 1. The
proof can be easily generalized to arbitrary values of c. Let U = [w1,w′

2, . . . ,w
′
p], be an (unknown)

basis of Rp which diagonalizes the (p− 1)× (p− 1) lower right sub-matrix of Sn, where w1 is the
same as in Eq. (2). In this basis we have

U′SnU =




z1 b2 · · · bp

b2 µ2
...

. . .
bp µp




where the lower right (p− 1)× (p− 1) sub-matrix is a pure noise Wishart matrix, and µ2 > µ3 >
· · · > µp are its eigenvalues. The random variables bj capture the signal-noise interactions. Each
bj has mean zero, variance z1µj/n and finite fourth moment. The matrix U′

nSnUn is in the form
of an arrowhead matrix and so its eigenvalues `j satisfy the following secular equation,

λ− z1 =
∑

j>1

b2
j

λ− µj
. (24)

We now show that µ2 − `2 = OP ( 1
n). Since the fluctuations of µ2 around its asymptotic value

(1 +
√

(p− 1)/n)2 are OP (p−2/3) and p−2/3 À n−1/2, the lemma follows.

To prove the lemma it is instructive to see figure 5, where the two functions λ − z1 and∑
j>1 b2

j/(λ − µj) are plotted. Due to interlacing, µ3 < `2 < µ2. Thus we introduce the following
notation:

s1 =
∑

j>3

b2
j

`2 − µj
, s2 = `2 − z1, b2

2 =
1
n

µ2ξ
2
2 , b2

3 =
1
n

µ3ξ
2
3

where ξ2, ξ3 ∼ N (0, 1) and independent. Then at λ = `2, we can rewrite (24) as

z1µ2
ξ2
2

n(µ2 − `2)
= s1 − s2 + z1µ3

ξ2
3

n(`2 − µ3)
. (25)
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Figure 5: This figure illustrates Eq.(24). The x axis corresponds to λ. The blue line plots the
function on the LHS of the equation, while the red line plots the function on the RHS (which
diverges whenever λ = µi). Equality holds in Eq.(24) whenever the two curves meet. `2 corresponds
to the second intersection from the right, between µ3 and µ2.

We now consider the various quantities in Eq. (25) in the asymptotic limit p, n →∞. First of all,
z1 = (λ + 1)(1 + oP (1)) and `2 = 4 + oP (1). Furthermore, the empirical distribution of the pure
noise eigenvalues converges to the Marchenko-Pastur distribution, whose density is given by [22]

fMP (x) =
1

2πx

√
x(4− x) x ∈ (0, 4).

We have that

t1 = lim
p,n→∞ s1 =

∫
(λ + 1)µ

(1 +
√

c)2 − µ
fMP (µ)dµ = λ + 1

t2 = lim
p,n→∞ s2 = (1 +

√
c)2 − (λ + 1) = 3− λ

We define d = t1 − t2 = 2(λ − 1). Note that for λ > λcrit = 1, we have that d > 0. Thus, in the
asymptotic limit,

(µ2 − `2) =
1
n

z1µ2ξ
2
2

s1 − s2 + z1µ3
ξ2
3

n(`2−µ3)

=
1
n

4(λ + 1)ξ2
2

d + oP (1)
× (1 + oP (1)) = OP

(
1
n

)
.

¤

Proof of Theorem 2: We consider a model with a single factor and eigenvalue λ. By lemma 2,
`2 − µ2 = OP (n−1). By Eq. (20), σ2

KN(2) − σ2 = OP (n−1). According to Eq.(17), µn,p−2 = O(1)
and σn,p−2 = O

(
n−2/3

)
. Therefore,

1
σ2

n,p−2

[−(`2 − µ2) + (σ2
KN(2)− σ2)(µn,p−2 + s(α)σn,p−2)

]
= OP (n−1/3).
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Thus,

Pr{K̂ > K} = Pr
{
`2 > σ2

KN(2)(µn,p−2 + s(α)σn,p−2)
}

= Pr
{
µ2 + (`2 − µ2) >

(
σ2 + (σ2

KN(2)− σ2)
)
(µn,p−2 + s(α)σn,p−2)

}

= Pr
{

µ2 − σ2µn,p−2

σn,p−2
> s(α) + OP (n−1/3)

}

Therefore, by the Tracy-Widom law (3) applied on µ2, and by the definition of s(α), we get

lim
p,n→∞Pr{K̂ > K} = lim

p,n→∞Pr
{

µ2 − σ2µn,p−2

σn,p−2
> s(α) +

c3(ω)
n1/3

}
= α.

¤

B Theoretical Analysis of the RE and FK Algorithms

RE algorithm

We here investigate the behavior of the RE algorithm in the limit p, n → ∞ with c = p/n. Since
in this limit signal eigenvalues above the critical threshold are identified with probability one, and
since these have a negligible effect on individual noise eigenvalues, we study the probability of mis-
classifying the largest noise eigenvalue as a signal. For simplicity, we consider the signal-free setting
(K = 0), with population covariance matrix Σ = Ip. We consider here the real valued case, β = 1,
though a similar analysis can be carried for β = 2. The following lemma gives an asymptotic lower
bound for the probability of misidentifying a noise eigenvalue as a signal in this setting.

Lemma 2: For a real-valued signal-free system (K=0), in the asymptotic limit p, n →∞, p/n = c,

lim
p,n→∞Pr{K̂ 6= 0} > Pr{η > A(c)}

where the random variable η follows a standard N (0, 1) distribution and A(c) = c2−6c+17
4|c−3| .

In figure 6 the expression Pr{η > A(c)} is shown as a function of c.

Proof: From Eq. (22) with β = 1, a sufficient condition for the RE algorithm to report at
least one signal is t20 − t21 > 8c2. Below we estimate the probability of this event in the joint limit
p, n →∞. We introduce the following quantities,

T =
p∑

i=1

`i, R =
p∑

i=1

`2
i , f = p

R

T 2
, h = 1 + c +

c

p

and
q = (1 +

√
c)2[(1 +

√
c)2 − 2(1 + c)] + (1 + c) = c(3− c).
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Using these notations, we have that

t0 = p2 R

T 2
− ph = pf − ph

t1 = p(p− 1)
R− `2

1

(T − `1)2
− ph = f(p− 1)

1− `21
R(

1− `1
T

)2 − ph

In [30, 32] it is proved that in the asymptotic limit

pf − ph → 2cη

where the random variable η follows a standard N (0, 1) distribution. Further, from random matrix
theory, the following random variables converge to deterministic quantities in the joint limit p, n →
∞,

f → 1 + c, `1 → (1 +
√

c)2,
p

T
→ 1

Replacing these expressions by their limiting values and taking into account that `1/T = OP (p−1),
we get

t0 → 2cη

t1 = f(p− 1)
(

1− `2
1

R

)[
1 +

2`1

T
+ OP

(
1
p2

)]
− ph

= t0 −
[

`1

S/p

(
`1

S/p
− 2f

)
+ f

]
+ OP

(
1
p

)

→ 2cη − q

and hence

t20 − t21 → q(4cη − q).

Letting

A(c) =
c2 − 6c + 17

4|c− 3|
we obtain that

Pr{K̂ 6= 0} > Pr{t20 − t21 > 8c2} → Pr{η > A(c)}
¤

In [30] (conjecture 6.3) the authors conjectured that the RE algorithm produces a consistent
estimator of the effective number of components Keff in the limit p, n → ∞ with p/n = c. Note
that lemma 2 disproves this conjecture, as it shows that when K = 0 the probability that K̂ 6= 0
does not converge to zero, but rather to a positive value which depends on c.

Figure 6 (left) shows the results of a simulation which compares empirical values for Pr{t20−t21 >
8c2} with Pr{η > A(c)} for various values of c. For each value of c we performed 2000 MATLAB
simulations. We took p = 1000 in all simulations and n = p/c. The figure shows a very good
agreement between the theoretical approximation and the simulated results. It is interesting to
note that the two curves are not monotonically increasing with c. This means that when using the
RE algorithm with sufficiently large p, ignoring some of the samples and thus decreasing n and
increasing c might lead to a better estimate of K.
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Figure 6: (Left) Empirical and theoretical probabilities of inferring an incorrect number of signals,
for signal-free real-valued samples of dimension p = 1000, for various values of the number of
samples n, as a function of c = p/n. (Right) Empirical probabilities of inferring an incorrect
number of signals, for real-valued samples carrying four signals with variances λ = (200, 100, 10, 5),
as a function of c = p/n, where p = 1000.

Figure 6 (right) shows empirical values for Pr{reporting incorrect number of signals} using both
the RE and KN algorithms, when K = 4 and λ = (200, 100, 10, 5). These are the same eigenvalues
considered in settings B1 and B2 in section 3, only here we examine the two algorithms over a wide
range of c values, keeping p constant. The KN algorithm achieves very low error probabilities, close
to the chosen significance level α. The misidentification error naturally increases when sample size
n becomes very small and hence c very large. In contrast, the error probability of the RE algorithm
is not monotone in c, with a high peak of about 30% error at c ≈ 2.

FK algorithm

In this section we discuss some limiting properties of the FK algorithm and its connection to our
rank estimator. For simplicity, we consider the case K = 1, although the analysis for general K
is similar. The following lemma shows that in the asymptotic limit p, n →∞, provided the signal
eigenvalue λ is above the phase transition threshold, the FK pseudorank estimator reports at least
the correct number of signals.

Lemma 3: For a single component system (K = 1), with eigenvalue above the threshold λ >
σ2

√
p/n, in the asymptotic limit p, n →∞, p/n = c,

lim
p,n→∞Pr{K̂FK > 1} = 1.

Proof: Recall that in the FK algorithm, the following statistic is computed

Fk(ν1, ν2) =
n`k/ν1

(n
∑p

j=k+1 `j)/ν2

where

ν1 = n · E{`k} = n

(
1 +

√
p−k
n−k

)2

, ν2 = (n− k + 1)(p− k + 1)− ν1
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The pseudorank estimation of the FK algorithm is

K̂FK = arg min
k
{Fk(ν1, ν2) < fν1,ν2(1− α/100)} − 1.

The algorithm will report at least one signal if F1(ν1, ν2) > fν1,ν2(1 − α/100). This condition
can be written as

`1 >

∑p
j=2 `j

p−
(
1 +

√
p−1
n−1

)2 ·
(

1 +

√
p− 1
n− 1

)2

· fν1,ν2(1− α/100). (26)

We examine the limiting properties of both sides of this equation. We start with the LHS. In the
presence of a single signal above the phase transition threshold

lim
p,n→∞ `1 = (λ + σ2)

(
1 +

p− 1
n

σ2

λ

)
.

On the RHS we have a product of three terms. For the first one,

lim
p,n→∞

∑p
j=2 `j

p−
(
1 +

√
p−1
n−1

)2 = σ2.

For the second term,

lim
p,n→∞

(
1 +

√
p− 1
n− 1

)2

=
(
1 +

√
c
)2

.

As for fν1,ν2(1−α/100), we first consider the distribution of an F (ν1, ν2) random variable in the joint
limit p, n → ∞ (which implies ν1, ν2 →∞). From the closed form expressions for the expectation
and variance of the F -distribution it follows that its mean tends to one and its variance to zero.
Thus, an F -distributed random variable is increasingly highly concentrated near one approaching
a delta function in the limit, and hence regardless of the value of α > 0,

lim
p,n→∞ fν1,ν2(1− α/100) = 1.

We conclude that the limiting value of the RHS is equal to σ2 (1 +
√

c)2, which is strictly smaller
than the limiting value of the LHS, meaning that the algorithm will consistently recognize at least
one signal. ¤

The proof of the lemma, and specifically the representation of the FK algorithm given in Eq.
(26) reveals an interesting analogy to our KN algorithm. Recall that the KN algorithm identifies
an eigenvalue as a signal if

`k+1 > σ2
KN(k) (µn,p−k + s(α) σn,p−k) . (27)

Comparing Eqs. (27) and (26) shows that the two algorithms have a lot in common: Both estimate
the noise variance, and detect an eigenvalue as a signal only if it is larger than some quantity which
depends on α and on the noise estimate. The two main differences are that the FK algorithm does

26



not account for the known true limiting Tracy-Widom distribution of the largest noise eigenvalue,
and its noise estimator

σ2
FK =

∑p
j=2 `j

n−1
n (p− 1)−

(
1 +

√
p−1
n−1

)2 ,

does not take into account the interaction between noise and signal eigenvalues. As shown in
simulations (see figure 2), this typically leads to a larger downward bias in comparison to the KN
noise estimator σ2

KN.
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Table 1: Settings for Synthetic Simulations
Description β K λ Setting c = p/n

High signal variances 1 2 (200,50)
A1 4
A2 1

Range of signal variances 1 4 (200,50,10,5)
B1 4
B2 1

Low signal variances 2 2 (9,2)
C1 2
C2 1

Table 2: Empirical probabilities for various values of K̂ for the REF algorithm for setting A1: real
data, K = 2, λ = (200, 50), c = 4. The probability of detecting the true rank, P (K̂ = K), appears
in boldface letters.

p n P (K̂ = 1) P(K̂ = 2) P (K̂ = 3) P (K̂ = 4)
64 16 0 0.607 0.191 0.068
128 32 0 0.818 0.143 0.031
256 64 0 0.909 0.089 0.001
512 128 0 0.945 0.054 0.001
1024 256 0 0.957 0.043 0

Table 3: Empirical probabilities for various values of K̂ for the KN algorithm for setting A1: real
data, K = 2, λ = (200, 50), c = 4. The probability of detecting the true rank, P (K̂ = K), appears
in boldface letters.

p n P (K̂ = 1) P(K̂ = 2) P (K̂ = 3) P (K̂ = 4)
64 16 0 0.992 0.008 0.001
128 32 0 0.997 0.003 0
256 64 0 0.997 0.003 0
512 128 0 0.996 0.004 0
1024 256 0 0.994 0.006 0

Table 4: Empirical probabilities for various values of K̂ for the F -test algorithm for setting B2: real
data, K = 4, λ = (200, 50, 10, 5), c = 1. The probability of detecting the true rank, P (K̂ = K),
appears in boldface letters.

p n P (K̂ = 1) P (K̂ = 2) P (K̂ = 3) P(K̂ = 4)
64 16 0 0.605 0.319 0
128 32 0 0.477 0.457 0
256 64 0 0.359 0.554 0
512 128 0 0.251 0.668 0
1024 256 0 0.139 0.779 0
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Table 5: Empirical probabilities for the various algorithms for p = 3000 for setting C1: complex
data, K = 2, λ = (9, 2), c = 2. The probability of detecting the true rank, P (K̂ = K), appears in
boldface letters.

Algorithm P (K̂ = 0) P (K̂ = 1) P(K̂ = 2) P (K̂ = 3) P (K̂ = 4)
KN 0 0 0.997 0.003 0
REF 0 0 0.989 0.011 0
RE 0 0.253 0.533 0.142 0.06

F -test 1 0 0 0 0
FK 0 0.795 0.205 0 0

Table 6: Summary for p = 64, showing the empirical probability of correct rank estimation P (K̂ =
K) of each algorithm in each setting.

Setting KN REF RE F -test FK
A1 0.994 0.607 0.983 0.749 0.999
A2 0.993 0.966 0.936 0.926 1
B1 0.238 0.179 0.336 0 0
B2 0.995 0.959 0.932 0 0.976
C1 0.308 0.575 0.444 0 0
C2 0.848 0.880 0.683 0 0.035

Table 7: Summary for p = 1024, showing the empirical probability of correct rank estimation
P (K̂ = K) of each algorithm in each setting.

Setting KN REF RE F -test FK
A1 0.994 0.957 1 1 1
A2 0.993 0.988 0.931 0.918 1
B1 0.999 0.924 0.992 0 0.948
B2 0.994 0.990 0.936 0 1
C1 0.916 0.945 0.563 0 0.013
C2 0.994 0.987 0.764 0 1

Table 8: Eigenvalues of the Population Covariance Matrix for the various chemical mixtures
Type λ1 λ2 λ3 λ4 λ5 λ6

1 79.2 8.14 · 10−3 1.33 · 10−4 1.94 · 10−5 0 0
2 83.2 3.71 · 10−3 1.41 · 10−4 1.71 · 10−5 2.42 · 10−6 1.26 · 10−6

3 79.7 2.81 · 10−3 5.37 · 10−5 8.94 · 10−6 9.44 · 10−7 1.28 · 10−7
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Table 9: Keff for various settings
σ1 σ2 σ3

Sim. Type 1 (real K = 4) 4 4 4
Sim. Type 2 (real K = 6) 6 6 4
Sim. Type 3 (real K = 6) 6 5 4

Table 10: Empirical probabilities for simulation type 1 with noise variance σ2 = 3 · 10−3. The
probability of detecting the effective rank, P (K̂ = Keff ), appears in boldface letters.

Algorithm P (K̂ = 3) P(K̂ = 4) P (K̂ = 5)
KN 0 0.995 0.005
RE 0 0.998 0.002
FK 0 1 0

Table 11: Empirical probabilities for simulation type 2 for different noise variances. For each setting
the probability of detecting the effective rank, P (K̂ = Keff ), appears in boldface letters.

σ2 Keff Algorithm P (K̂ = 3) P (K̂ = 4) P (K̂ = 5) P (K̂ = 6) P (K̂ = 7)

5 · 10−4 6
KN 0 0 0 0.995 0.005
RE 0 0 0 1 0
FK 0 0 0 1 0

1 · 10−3 6
KN 0 0 0 0.998 0.002
RE 0 0 0.717 0.283 0
FK 0 0 0 1 0

3 · 10−3 4
KN 0 0.992 0.008 0 0
RE 0.002 0.994 0.004 0 0
FK 0 1 0 0 0

Table 12: Empirical probabilities for simulation type 3 for different noise variances. For each setting
the probability of detecting the effective rank, P (K̂ = Keff ), appears in boldface letters.

σ2 Keff Algorithm P (K̂ = 3) P (K̂ = 4) P (K̂ = 5) P (K̂ = 6)

5 · 10−4 6
KN 0 0 0.861 0.139
RE 0 0 0.997 0.003
FK 0 0 1 0

1 · 10−3 5
KN 0 0 0.997 0.003
RE 0 0.848 0.152 0
FK 0 0 1 0

3 · 10−3 4
KN 0 0.994 0.006 0
RE 0.707 0.291 0.002 0
FK 0 1 0 0
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