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Abstract

A central problem in data analysis is the low dimensional representation of high di-
mensional data, and the concise description of its underlying geometry and density. In
the analysis of large scale simulations of complex dynamical systems, where the notion
of time evolution comes into play, important problems are the identification of slow
variables and dynamically meaningful reaction coordinates that capture the long time
evolution of the system. In this paper we provide a unifying view of these apparently
different tasks, by considering a family of diffusion maps, defined as the embedding
of complex (high dimensional) data onto a low dimensional Euclidian space, via the
eigenvectors of suitably defined random walks defined on the given datasets. Assuming
that the data is randomly sampled from an underlying general probability distribution
p(x) = e−U(x), we show that as the number of samples goes to infinity, the eigenvec-
tors of each diffusion map converge to the eigenfunctions of a corresponding differential
operator defined on the support of the probability distribution. Different normaliza-
tions of the Markov chain on the graph lead to different limiting differential operators.
Specifically, the normalized graph Laplacian leads to a backward Fokker-Planck op-
erator with an underlying potential of 2U(x), best suited for spectral clustering. A
different anisotropic normalization of the random walk leads to the backward Fokker-
Planck operator with the potential U(x), best suited for the analysis of the long time
asymptotics of high dimensional stochastic systems governed by a stochastic differen-
tial equation with the same potential U(x). Finally, yet another normalization leads
to the eigenfunctions of the Laplace-Beltrami (heat) operator on the manifold in which
the data resides, best suited for the analysis of the geometry of the dataset regardless
of its possibly non-uniform density.
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1 Introduction

Analysis of complex high dimensional data is an exploding area of research, with applications
in diverse fields, such as machine learning, statistical data analysis, bio-informatics, mete-
orology, chemistry and physics, to mention only a few. In the first three application fields,
the underlying assumption is that the data is sampled from some unknown probability dis-
tribution, typically without any notion of time or correlation between consecutive samples.
Important tasks are dimensionality reduction, e.g., representation of the high dimensional
data with only a few coordinates, and the study of the geometry and statistics of the data,
its possible decomposition into clusters, etc [1]. In addition, there are many problems con-
cerning supervised and semi-supervised learning, in which additional information, such as a
discrete class g(x) ∈ {g1, ..., gk} or a continuous function value f(x) is known for some or all
of the data points. In this paper we consider only the unsupervised case, although some of
the methods and ideas presented can be applied to the supervised or semi-supervised cases
as well [2].

In the later three above-mentioned application fields the data is typically sampled from
a complex biological, chemical or physical dynamical system, in which there is an inherent
notion of time. These systems typically involve multiple time and length scales, but in many
interesting cases there is a separation of time scales, that is, there are only a few ”slow” time
scales at which the system performs structural changes from one meta-stable state to another,
with many additional fast time scales at which the system performs local fluctuations within
these meta-stable states. In the case of macromolecules the slow time scale is that of a
conformational change, while the fast time scales are governed by the chaotic rotations and
vibrations of the individual chemical bonds between the different atoms of the molecule, as
well as the random fluctuations due to the frequent collisions with the surrounding solvent
water molecules. In the more general case of interacting particle systems, the fast time scales
are those of density fluctuations around the mean density profiles while the slow time scales
correspond to the time evolution of these mean density profiles.

Although on the fine time and length scales the full description of such systems requires a
high dimensional space, e.g. the locations (and velocities) of all the different particles, these
systems typically have an intrinsic low dimensionality on coarser length and time scales.
Thus, the coarse time evolution of the high dimensional system can be described by only
a few dynamically relevant variables, typically called reaction coordinates. Important tasks
in such systems are the reduction of the dimensionality at these coarser scales (known as
homogenization), and the efficient representation of the complicated linear or non-linear
operators that govern their (coarse grained) time evolution. Additional goals are identifi-
cation of meta-stable states, characterization of the transitions between them and efficient
computation of mean exit times, potentials of mean force and effective diffusion coefficients
[3, 4, 5, 6].

In this paper, following [7], we consider a family of diffusion maps for the analysis of
these problems. Given a large dataset, we construct a family of random walk processes
on the data based on isotropic and anisotropic diffusion kernels and study their first few
eigenvalues and eigenvectors (principal components). The key point in our analysis is that
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these eigenvectors and eigenvalues capture important geometrical and statistical information
regarding the structure of the underlying datasets.

It is interesting to note that similar approaches have been suggested in many different
fields. Use of the second eigenvector of the graph Laplacian has a long history, dating back
at least to Fidler’s work in the 1970’s [8]. In recent years the first few eigenvectors of the
normalized graph Laplacian were suggested for spectral clustering, image segmentation and
dimensionality reduction [9, 10, 11, 12, 13], while similar constructions have been used for
clustering and identification of meta-stable states from simulations of dynamical systems
[4]. On the theoretical front, in [12, 14] Belkin and Niyogi showed that for data sampled
uniformly from an underlying manifold, the first few eigenvectors are discrete approximations
of the eigenfunctions of the Laplace-Beltrami operator on the manifold, thus providing a
justification for their use as a dimensional reduction tool. A different analysis, based on the
observation that the normalized graph Laplacian defines a random walk on the data was
performed by various authors [15, 16, 17].

In this paper, we provide a unified probabilistic framework for these methods and consider
in detail the connection of these eigenvalues and eigenvectors to the underlying geometry
and probability density distribution of the dataset. To this end, we assume that the data is
sampled from some (unknown) probability distribution, and view the eigenvectors computed
on the finite dataset as discrete approximations of corresponding eigenfunctions of suitably
defined continuum operators in an infinite population setting. As the number of samples goes
to infinity, the discrete random walk on the set converges to a diffusion process defined on the
n-dimensional space but with a non-uniform probability density. By explicitly studying the
asymptotic form of the Chapman-Kolmogorov equations in this setting (e.g., the infinitesimal
generators), we find that for data sampled from a general probability distribution, written
in Boltzmann form as p(x) = e−U(x), the eigenvectors and eigenvalues of the standard
normalized graph Laplacian construction correspond to a diffusion process with a potential
2U(x) (instead of a single U(x)). Therefore, a subset of the first few eigenfunctions are
indeed well suited for clustering of data that contains only a few well separated clusters,
corresponding to deep wells in the potential U(x).

Motivated by the well known connection between diffusion processes and Schrödinger
operators [18], we propose a different novel non-isotropic construction of a random walk
on the graph, that in the asymptotic limit of infinite data recovers the eigenvalues and
eigenfunctions of a diffusion process with the same potential U(x). This normalization,
therefore, is most suited for the study of the long time behavior of complex dynamical
systems that evolve in time according to a stochastic differential equation. For example, in
the case of a dynamical system driven by a bistable potential with two wells, (e.g. with one
slow time scale for the transition between the wells and many fast time scales) the second
eigenfunction can serve as a parametrization of the reaction coordinate between the two
states, much in analogy to its use as an approximation to the optimal normalized cut for
graph segmentation. For the analysis of dynamical systems, we also propose to use a subset
of the first few eigenfunctions as reaction coordinates for the design of fast simulations. The
main idea is that once a parametrization of dynamically meaningful reaction coordinates
is known, and lifting and projection operators between the original space and the diffusion
map are available, detailed simulations can be initialized at different locations on the reaction
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path and run only for short times, to estimate the transition probabilities to different nearby
locations in the reaction coordinate space, thus efficiently constructing a potential of mean
field and an effective diffusion coefficient on the reaction path [19].

Finally, we describe yet another random walk construction that in the limit of infinite
data recovers the Laplace-Beltrami (heat) operator on the manifold on which the data re-
sides, regardless of the possibly non-uniform sampling of points on it. This normalization is
therefore best suited for learning the geometry of the dataset, as it separates the geometry
of the manifold from the statistics on it.

Our analysis thus reveals the intimate connection between the eigenvalues and eigenvec-
tors of different random walks on the finite graph to the underlying geometry and prob-
ability distribution from which the dataset was sampled. These findings lead to a better
understanding of the characteristics, advantages and limitations of diffusion maps as a tool
to solve different tasks in the analysis of high dimensional data.

2 Problem Setup

Consider a finite dataset {xi}N
i=1 ∈ Rn with two possible different scenarios for its origin. In

the first scenario, the data is not necessarily derived from a dynamical system but rather it
is randomly sampled from some arbitrary probability distribution p(x) in a compact domain
Ω ⊂ Rn. In this case we define an associated potential

U(x) = − log p(x) (1)

so that p = e−U .

In the second scenario, we assume that the data is sampled from a dynamical system in
equilibrium. We further assume that the dynamical system, defined by its state x(t) ∈ Ω at
time t, satisfies the following non-dimensional stochastic differential equation (SDE)

ẋ = −∇U(x) +
√

2ẇ (2)

with reflecting boundary conditions on ∂Ω, where a dot on a variable means differentiation
with respect to time, U is the free energy at x (which, with some abuse of nomenclature,
we will also call the potential at x), and w(t) is n-dimensional Brownian motion. In this
case there is an explicit notion of time, and the transition probability density p(x, t|y, s)
of finding the system at location x at time t, given an initial location y at time s (t > s),
satisfies the forward Fokker-Planck equation (FPE) [20, 21]

∂p

∂t
= ∇ · (∇p + p∇U(x)) (3)

with initial condition
lim
t→s+

p(x, t|y, s) = δ(x− y) (4)
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Similarly, the backward Fokker-Planck equation for the density p(x, t|y, s), in the backward
variables y, s (s < t) is

−∂p

∂s
= ∆p−∇p · ∇U(y) (5)

where differentiations in (5) are with respect to the variable y, and the Laplacian ∆ is a
negative operator, defined as ∆u = ∇ · (∇u).

As time t → ∞ the steady state solution of (3) is given by the equilibrium Boltzmann
probability density,

µ(x)dx = Pr{x}dx =
exp(−U(x))

Z
dx (6)

where Z is a normalization constant (known as the partition function in statistical physics),
given by

Z =

∫

Ω

exp(−U(x))dx (7)

In what follows we assume that the potential U(x) is shifted by the suitable constant (which
does not change the SDE (2)), so that Z = 1. Also, we use the notation µ(x) = Pr{x} =
p(x) = e−U(x) interchangeably to denote the (invariant) probability measure on the space.

Note that in both scenarios, the steady state probability density, given by (6) is identical.
Therefore, for the purpose of our initial analysis, which does not directly take into account
the possible time dependence of the data, it is only the features of the underlying potential
U(x) and the geometry of Ω that come into play.

The Langevin equation (2) or the corresponding Fokker-Planck equation (3) are com-
monly used to describe the time evolution of mechanical, physical, chemical, or biological
systems driven by noise. The study of their behavior, and specifically the decay to equilib-
rium has been the subject of much theoretical research [21, 22]. In general, the solution of
the Fokker-Planck equation (3) can be written in terms of an eigenfunction expansion

p(x, t) =
∞∑

j=0

aje
−λjtϕj(x) (8)

where −λj are the eigenvalues of the FP operator, with λ0 = 0 < λ1 ≤ λ2 ≤ . . ., ϕj(x) are
their corresponding eigenfunctions, and the coefficients aj depend on the initial conditions.
Obviously, the long term behavior of the system is approximately governed by only the
first few eigenfunctions ϕ0, ϕ1, . . . , ϕk, where k is typically small and depends on the time
scale of interest. In low dimensions, e.g. n ≤ 3 for example, it is possible to numerically
approximate these eigenfunctions via space discretization methods of the FP operator. In
high dimensions, however, this approach is in general infeasible and one typically resorts
to simulations of trajectories of the corresponding SDE (2). In this case, there is a need
to employ statistical methods to analyze the simulated trajectories, identify slow variables,
meta-stable states, reaction pathways connecting them and mean first passage times between
them. As described in this paper, approximations to ϕj and to the coefficients aj can be
computed from a large set of simulated data.

5



3 Diffusion Maps

3.1 Finite Data

Let {xi}N
i=1, denote N data samples, either merged from many different simulations of the

stochastic equation (2), or simply given without an underlying dynamical system. In [7],
Coifman and Lafon suggested the following method, based on the definition of a Markov
chain on the data, for the analysis of the geometry of general datasets:

For a fixed value of ε (a metaparameter of the algorithm), define an isotropic diffusion
kernel,

kε(x,y) = exp

(
−‖x− y‖2

4ε

)
(9)

Assume that the transition probability between points xi and xj is proportional to kε(xi,xj),
and construct an N ×N Markov matrix, as follows

M(i, j) =
kε(xi,xj)

pε(xi)
(10)

where pε is the required normalization constant, given by

pε(xi) =
∑

j

kε(xi,xj) (11)

For large enough values of ε the Markov matrix M is fully connected (in the numerical sense)
and therefore has an eigenvalue λ0 = 1 with multiplicity one and a sequence of additional
n− 1 non-increasing eigenvalues λj < 1, with corresponding right eigenvectors ψj.

The stochastic matrix M naturally induces a distance between any two data points, based
on their dynamic proximity. Specifically, we define a diffusion distance at time t as follows,

D2
t (x,y) = ‖p(z, t |x)− p(z, t |y)‖2

w =
∑
z

(p(z, t |x)− p(z, t |y))2w(z)

where p(z, t |x) is the probability that the random walk is located at z at time t given a
starting location x at time t = 0. As shown in [23], with the weight function w(z) = 1/pε(z),
we have the following identity

D2
t (x, y) =

∑
j

λ2t
j (ψj(x)− ψj(y))2 (12)

We thus define the diffusion map at time m as the mapping from x to the vector

Ψm(x) = (λm
0 ψ0(x), λm

1 ψ1(x), . . . , λm
k ψk(x))

for some small value k. According to (12), for large enough k the Euclidean distance between
the diffusion map coordinates is approximately equal to the diffusion distance between the
points in the original space.
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In [7], it was demonstrated that this mapping gives a low dimensional parametrization
of the geometry and density of the data. In the field of data analysis, this construction is
known as the normalized graph Laplacian. In [11], Shi and Malik suggested using the first
non-trivial eigenvector to compute an approximation to the optimal normalized cut of a
graph, while the first few eigenvectors were suggested by Weiss et al. [9, 10] for clustering.
Similar constructions, falling under the general term of kernel methods have been used in the
machine learning community for classification and regression [24]. In this paper we elucidate
the connection between this construction, the structure of the eigenvectors and eigenvalues
and the underlying potential U(x) and geometry of Ω.

3.2 The Limiting Diffusion Process

To analyze the eigenvalues and eigenvectors of the normalized graph Laplacian, we consider
them as a finite approximation of a suitably defined diffusion operator acting on the con-
tinuous probability space from which the data was sampled. We thus consider the limit of
the above Markov chain process as the number of samples approaches infinity. For a finite
value of ε, the Markov chain in discrete time and space converges to a Markov process in
discrete time but continuous space. Then, in the limit ε → 0, this jump process converges
to a diffusion process in Ω, whose local transition probability depends on the non-uniform
probability measure µ(x) = e−U(x).

We first consider the case of a fixed ε > 0, and take N →∞. Using the similarity of (9)
to the diffusion kernel, we view ε as a measure of time and consider a discrete jump process
at time intervals ∆t = ε, with a transition probability between points y and x proportional
to kε(x,y). However, since the density of points is not uniform but rather given by the
measure µ(x), we define an associated normalization factor pε(y) as follows,

pε(y) =

∫

Ω

kε(x, y)µ(x)dx (13)

and a forward transition probability

Mf (x|y) = Pr(x(t + ε) = x |x(t) = y) =
kε(x,y)

pε(y)
(14)

Equations (13) and (14) are the continuous analogues of the discrete equations (11) and (10).
For future use, we also define a symmetric kernel Ms(x,y) as follows,

Ms(x,y) =
kε(x,y)√
pε(x)pε(y)

(15)

Note that pε(x) is an estimate of the local probability density at x, computed by averaging
the density in a neighborhood of radius O(ε1/2) around x. Indeed, for a unit normalized
kernel, as ε → 0 we have that

pε(x) = p(x) + ε∆p(x) + O(ε3/2) (16)
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We now define forward, backward and symmetric Chapman-Kolmogorov operators on
functions defined on this probability space, as follows,

Tf [ϕ](x) =

∫

Ω

Mf (x|y)ϕ(y)dµ(y) (17)

Tb[ψ](x) =

∫

Ω

Mf (y|x)ψ(y)dµ(y) (18)

and

Ts[ϕ](x) =

∫

Ω

Ms(x,y)ϕ(y)dµ(y) (19)

If ϕ(x) is the probability of finding the system at location x at time t = 0, then Tf [ϕ] is the
evolution of this probability to time t = ε. Similarly, if ψ(z) is some function on the space,
then Tb[ψ](x) is the mean (average) value of that function at time ε for a random walk that
started at x, and so Tm

b [ψ](x) is the average value of the function at time t = mε.

By definition, the operators Tf and Tb are adjoint under the inner product with weight
µ, while the operator Ts is self adjoint under this inner product,

〈Tfϕ, ψ〉µ = 〈ϕ, Tbψ〉µ, 〈Tsϕ, ψ〉µ = 〈ϕ, Tsψ〉µ (20)

Moreover, since Ts is obtained via conjugation of the kernel Mf with
√

pε(x) all three
operators share the same eigenvalues. The corresponding eigenfunctions can be found via
conjugation by

√
pε. For example, if Tsϕs = λϕs, then the corresponding eigenfunctions for

Tf and Tb are ϕf =
√

pεϕs and ϕb = ϕs/
√

pε, respectively. Since
√

pε is the first eigenfunction
with λ0 = 1 of Ts, the steady state of the forward operator is simply pε(x), while for the
backward operator it is the constant function ψb = 1.

Obviously, the eigenvalues and eigenvectors of the discrete Markov chain described in
the previous section are discrete approximations to the eigenvalues and eigenfunctions of
these continuum operators. Mathematical proofs of this convergence as N → ∞ under
various assumptions appear in [7, 28, 14, 29]. Therefore, for a better understanding of the
finite sample case, we are interested in the properties of the eigenvalues and eigenfunctions
of either one of the operators Tf , Tb or Ts, and how these relate to the measure µ(x) (or
equivalently to corresponding potential U(x)) and to the geometry of Ω. To this end, we
look for functions ϕ(x) such that

Tjϕ =

∫

Ω

Mj(x, y)ϕ(y) Pr{y}dy = λϕ(x) (21)

where j ∈ {f, b, s}.
While in the case of a finite amount of data, ε must remain finite so as to have enough

neighbors in a ball of radius O(ε1/2) near each point x, as the number of samples tends to
infinity we can take smaller and smaller values of ε. Therefore, it is instructive to look at the
limit ε → 0. In this case, the transition probability densities of the continuous in space but
discrete in time Markov chain converge to those of a diffusion process, whose time evolution
is described by a differential equation

∂p

∂t
= Hfp
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where Hf is the infinitesimal generator or propagator of the forward operator, defined as

Hf = lim
ε→0

Tf − I

ε

As shown in the Appendix, the asymptotic expansion of the corresponding integrals in the
limit ε → 0 gives

Hfϕ = ∆ϕ− ϕ
(
eU∆e−U

)
(22)

Similarly, the inifinitesimal operator of the backward operator is given by

Hbψ = lim
ε→0

Tb − I

ε
ψ = ∆ψ − 2∇ψ · ∇U (23)

As expected, ψ0 = 1 is the eigenfunction with λ0 = 0 of the backward infinitesimal operator,
while ϕ0 = e−U is the eigenfunction of the forward one. Thus, if N is large enough and ε
is small enough, the structure of the right eigenvectors of the finite matrix M is similar to
those of the eigenfunctions of the infinitesimal operators Hb.

A few important remarks are due at this point. First, note that the backward operator
(23) has the same functional form as the backward FPE (5), but with a potential 2U(x)
instead of U(x). The forward operator (22) has a different functional form from the forward
FPE (3) corresponding to the stochastic differential equation (2). This should come as no
surprise, since (22) is the differential operator of an isotropic diffusion process on a space
with non-uniform probability measure µ(x), which is obviously different from the standard
anisotropic diffusion in a space with a uniform measure, as described by the SDE (2) [21].

Interestingly, however, the form of the forward operator is the same as the Schrödinger
operator of quantum physics [25], e.g.

Hϕ = ∆ϕ− ϕV (x) (24)

where in our case the potential V (x) has the following specific form

V (x) = ‖∇U(x)‖2 −∆U(x). (25)

Therefore, in the limit N →∞, ε → 0, the left eigenvectors of the Markov matrix M converge
to the eigenfunctions of the Schrödinger operator (24) with a potential (25). The properties
of the first few of these eigenfunctions have been extensively studied for simple potentials
V (x) [25].

In order to see why the forward operator Hf also corresponds to a potential 2U(x)
instead of U(x), we recall the correspondence [18], between the Schrödinger equation with a
sypersymmetric potential of the specific form (25) and a diffusion process described by the
Fokker-Planck equation (3). The transformation

p(x, t) = ψ(x, t)e−U(x)/2 (26)

applied to the original FPE (3) yields the Schrödinger equation with imaginary time

−∂ψ

∂t
= ∆ψ − ψ

(‖∇U‖2

4
− ∆U

2

)
(27)
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Comparing (27) with (25), we conclude that the eigenvalues of the operator (22) are the same
as those of a Fokker-Planck equation with a potential 2U(x). Therefore, in general, for data
sampled from the SDE (2), there is no direct correspondence between the eigenvalues and
eigenfunctions of the normalized graph Laplacian and those of the corresponding Fokker-
Planck equation (3). However, when the original potential U(x) has two metastable states
separated by a large barrier, corresponding to two well separated clusters, so does 2U(x).
Therefore, the first non-trivial eigenvalue is governed by the mean passage time between
the two barriers, and the first non-trivial eigenfunction gives a parametrization of the path
between them (see also the analysis in the next section).

We note that in [26], Horn and Gottlieb suggested a clustering algorithm based on the
Schrödinger operator (24), where they constructed an approximate eigenfunction ψ(x) =
pε(x) as in our eq. (11), and computed its corresponding potential V (x) from eq. (24). The
clusters were then defined by the minima of the potential V . Employing a similar asymptotic
analysis, one can show that in the appropriate limit, the computed potential V is given by
(25). This asymptotic analysis and the connection between the quantum operator and a
diffusion process thus provides further mathematical insight for the success of their method.
Indeed, when U has a deep parabolic minima at a point x, corresponding to a well defined
cluster, so does V .

4 Anisotropic Diffusion Maps

As shown in the previous section, the eigenvalues and eigenvectors of the normalized graph
Laplacian operator correspond to those of a Fokker-Planck operator with a potential 2U(x)
instead of the single U(x). In this section we present a different normalization that yields
infinitesimal generators corresponding to the potential U(x) without the additional factor
of two.

In fact, following [7] we consider in more generality a whole family of different normal-
izations and their corresponding diffusions, and we show that, in addition to containing the
graph Laplacian normalization of the previous section, this collection of diffusions includes
at least two other Laplacians of interest: the Laplace-Beltrami operator, which captures the
Riemannian geometry of the data set, and the backward Fokker-Planck operator of equation
(5).

Instead of applying the graph Laplacian normalization to the isotropic kernel kε(x,y),
we first appropriately adapt the kernel into an anisotropic one to obtain a new weighted
graph, to which we apply the random walk graph Laplacian normalization. More precisely,
we proceed as follows: start with a Gaussian kernel kε(x,y) and let α > 0 be a parameter
indexing our family of diffusions. Define an estimate for the local density as

pε(x) =

∫
kε(x,y) Pr{y}dy

and consider the family of kernels

k(α)
ε (x, y) =

kε(x, y)

pα
ε (x)pα

ε (y)
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We now apply the graph Laplacian normalization by computing the normalization factor

d(α)
ε (y) =

∫
k(α)

ε (x, y) Pr{x}dx

and forming a forward transition probability kernel

M
(α)
f (x|y) = Pr{x(t + ε) = x|x(t) = y} =

k
(α)
ε (x, y)

d
(α)
ε (y)

Similar to the analysis of section 3.2, we can construct the corresponding forward, symmetric
and backward diffusion kernels. It can be shown (see appendix A) that the forward and
backward infinitesimal generators of this diffusion are

H(α)
b ψ = ∆ψ − 2(1− α)∇φ · ∇U (28)

H(α)
f ϕ = ∆ϕ− 2α∇ϕ · ∇U + (2α− 1)ϕ

(
(∇U)2 −∆U

)
(29)

We mention three interesting cases:

• For α = 0, this construction yields the classical normalized graph Laplacian with the
infinitesimal operator given by equation (23)

Hbψ = ∆ψ − 2∇U · ∇ψ

• For α = 1, the backward generator gives the Laplace-Beltrami operator:

Hbψ = ∆ψ (30)

In other words, this diffusion captures only the geometry of the data (e.g. the domain
Ω), with the density e−U playing absolutely no role. Therefore, this normalization
separates the geometry of the underlying manifold from the statistics on it.

• For α = 1
2
, the infinitesimal operator of the forward and backward operators coincide

and are given by
Hfϕ = Hbϕ = ∆ϕ−∇ϕ · ∇U (31)

which is exactly the backward FPE (5), with a potential U(x).

Therefore, the last case with α = 1/2 provides a consistent method to approximate the
eigenvalues and eigenfunctions corresponding to the stochastic differential equation (2). This
is done by constructing a graph Laplacian with an appropriately anisotropic weighted graph.

As discussed above and in more detail in [7, 13, 30], in the presence of a spectral gap,
the Euclidian distance between any two points after the diffusion map embedding into Rk

is almost equal to their diffusion distance on the original dataset. Thus, for dynamical
systems with only a few slow time scales and many fast time scales, only a small number of
diffusion map coordinates need be retained for the coarse grained representation of the data
at medium to long times, at which the fast coordinates have equilibrated. Therefore, the
diffusion map can be considered as an empirical method to perform data-driven or equation-
free homogenization. In particular, since this observation yields a computational method
for the approximation of the top eigenfunctions and eigenvalues, this method can be applied
towards the design of fast and efficient simulations that can be initialized on arbitrary points
on the diffusion map. This application is described in a separate publication [30].
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5 Examples

In this section we present the potential strength of the diffusion map method by analyzing,
both analytically and numerically a few toy examples with simple potentials U(x). More
complicated high dimensional examples of stochastic dynamical systems are analyzed in
[30], while other applications such as the analysis of images for which we typically have no
underlying probability model appear in [7]. An example where the density plays no role but
the geometry Ω defines the structure of the eigenvalues and eigenvectors is described in [23].

5.1 Parabolic potential in 1-D

We start with the simplest case of a parabolic potential in one dimension, which in the context
of the SDE (2), corresponds to the well known Ornstein-Uhlenbeck process. We thus consider
a potential U(x) = x2/2τ , with a corresponding normalized density p = e−U/

√
2πτ .

The normalization factor pε can be computed explicitly

pε(y) =

∫ ∞

−∞

e−(x−y)2/2ε

√
2πε

e−x2/2τ

√
2πτ

dx =
1√

2π(τ + ε)
e−y2/2(τ+ε)

where, for convenience, we multiplied the kernel kε(x, y) by a normalization factor 1/
√

2πε.
Therefore, the eigenvalue/eigenfunction problem for the symmetric operator Ts with a finite
ε reads

Tsϕ =

∫ ∞

−∞

exp
(
− (x−y)2

2ε

)
√

2πε
exp

(
x2 + y2

4(ε + τ)

)
exp

(
− y2

2τ

)√
τ + ε

τ
ϕ(y)dy = λϕ(x)

The first eigenfunction, with eigenvalue λ0 = 1 is given by

ϕ0(x) = C
√

pε(x) = C exp

(
− x2

4(ε + τ)

)

The second eigenfunction, with eigenvalue λ1 = τ/(τ + ε) < 1 is, up to normalization

ϕ1(x) = x exp

(
− x2

4(ε + τ)

)

In general, the sequence of eigenfunctions and eigenvalues is characterized by the following
lemma:

Lemma: The eigenvalues of the operator Ts are λk = (τ/(τ + ε))k, with the corresponding
eigenvectors given by

ϕk(x) = pk(x) exp

(
− x2

4(τ + ε)

)
(32)

where pk is a polynomial of degree k (even or odd depending on k).
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In the limit ε → 0 we obtain the eigenfunctions of the corresponding infinitesimal gener-
ator. For the specific potential U(x) = x2/2τ , the eigenfunction problem for the backward
generator reads

ψxx − 2
x

τ
ψx = −λψ (33)

and its solutions are the well known Hermite polynomials. Due to the relation between this
operator and the Schrödinger operator, these are also the eigenfunctions of the quantum
harmonic oscillator (after multiplication by the appropriate Gaussian) [25].

Note that plotting the second vs. the first backward eigenfunctions (with the convention
that the zeroth eigenfunction is the constant one, which we typically ignore), is the same
as plotting x2 + 1 vs x, e.g. a parabola. Therefore, we expect that for a large enough
and yet finite data-set sampled from this potential, the plot of the corresponding discrete
eigenfunctions should lay on a parabolic curve (see next section for a numerical example).

5.2 Multi-Dimensional Parabolic Potential

We now consider a harmonic potential in n-dimensions, of the form

U(x) =
∑

j

x2
j

2τj

(34)

where, in addition, we assume τ1 À τ2 > τ3 > . . . > τn, so that x1 is a slow variable in the
context of the SDE (2).

We note that for this specific potential, the probability density has a separable structure,
p(x) = p1(x1) . . . pn(xn), and so does the kernel kε(x,y), and consequently, also the sym-
metric kernel Ms(x, y). Therefore, there is an outer-product structure to the eigenvalues
and eigenfunctions of the integral operators Tf , Ts, Tb. For example, in two dimensions the
eigenfunctions and eigenvalues are given by

ϕi,j(x1, x2) = ϕ1,i(x1)ϕ2,j(x2) and λi,j = µi
1µ

j
2 (35)

where µ1 = τ1/(τ1 + ε) and µ2 = τ2/(τ2 + ε). Since by assumption τ1 À τ2, then upon
ordering of the eigenfunctions by decreasing eigenvalue, the first non-trivial eigenfunctions
are ϕ1,0, ϕ2,0, . . ., which depend only on the slow variable x1. Note that indeed, regardless of
the value of ε, as long as τ2 > 2τ1 we have that λ2

1 > λ2. Therefore, in this example the first
few coordinates of the diffusion map give a (redundant) parametrization of the slow variable
x1 in the system.

In figure 1 we present numerical results corresponding to a 2-dimensional potential with
τ1 = 1, τ2 = 1/25. In the upper left some 3500 points sampled from the distribution p = e−U

are shown. In the lower right and left panels, the first two non-trivial backward eigenfunctions
ψ1 and ψ2 are plotted vs. the slow variable x1. Note that except at the edges, where the
statistical sampling is poor, the first eigenfunction is linear in x1 while the second one is
quadratic in x1. In the upper right panel we plot ψ2 vs. ψ1 and note that they indeed lie on
a parabolic curve, as predicted by the analysis of the previous section.

13



−4 −2 0 2 4
−3

−2

−1

0

1

2

3

3500 data points

−4 −2 0 2 4
−10

−8

−6

−4

−2

0

2

2−D plot of ψ
2
 vs. ψ

1

−5 0 5
−4

−2

0

2

4

ψ
1
 vs. x

−5 0 5
−10

−8

−6

−4

−2

0

2

ψ
2
 vs. x

Figure 1: The anisotropic diffusion map on a harmonic potential in 2-D.

5.3 A potential with two minima

We now consider a double well potential U(x) with two minima, one at xL and one at xR. For
simplicity, we assume a symmetric potential around (xL + xR)/2, with U(xL) = U(xR) = 0
(see figure 2). In the context of data clustering this can be viewed as approximately a mixture
of two Gaussian clouds, while in the context of stochastic dynamical systems this potential
defines two meta-stable states.

We first consider an approximation to the quantity pε(x), given by eq. (13). For x near
xL, U(x) ≈ (x− xL)2/τL, while for x near xR, U(x) ≈ (x− xR)2/τR. Therefore,

e−U(y) ≈ e−(y−xL)2/2τL + e−(y−xR)2/2τR (36)

and

pε(x) ≈ 1√
2

( √
τL√

τL + ε
e−(x−xL)2/2(τL+ε) +

√
τR√

τR + ε
e−(x−xR)2/2(τR+ε)

)

=
1√
2

[ϕL(x) + ϕR(x)] (37)

where ϕL and ϕR are the first forward eigenfunctions corresponding to a single well potential
centered at xL or at xR, respectively. As is well known both in the theory of quantum physics
and in the theory of the Fokker-Planck equation, an approximate expression for the next
eigenfunction is

ϕ1(x) =
1√
2

[ϕL(x)− ϕR(x)]

Therefore, the first non-trivial eigenfunction of the backward operator is given by

ψ1(x) =
ϕL(x)− ϕR(x)

ϕL(x) + ϕR(x)
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Figure 2: Numerical results for a double well potential in 2-D.

This eigenfunction is roughly +1 in one well and −1 in the other well, with a sharp transition
between the two values near the barrier between the two wells. Therefore, this eigenfunction
is indeed suited for clustering. Moreover, in the context of a mixture of two Gaussian clouds,
clustering according to the sign of ψ1(x) is asymptotically equivalent to the optimal Bayes
classifier.

Example: Consider the following potential in two dimensions,

U(x, y) =
1

4
x4 − 25

12
x3 +

9

2
x2 + 25

y2

2
(38)

In the x direction, this potential has a double well shape with two minima, one at x = 0 and
one at x = 4, separated by a potential barrier with a maximum at x = 2.25.

In figure 2 we show some numerical results of the diffusion map on some 1200 points
sub-sampled from a stochastic simulation with this potential which generated about 40,000
points. On the upper right panel we plotted the potential U(x, 0), showing the two wells. In
the upper left, a scatter plot of all the points, color coded according to the value of the local
estimated density pε, (with ε = 0.25) is shown, where the two clusters are easily observed.
In the lower left panel, the first non-trivial eigenfunction is plotted vs. the first coordinate
x. Note that even though there is quite a bit of variation in the y-variable inside each of the
wells, the first eigenfunction ψ1 is essentially a function of only x, regardless of the value of
y. In the lower right we plot the first three backward eigenfunctions. Note that they all lie
on a curve, indicating that the long time asymptotics are governed by a single time scale,
the passage time between the two wells, and not by the local fluctuations inside them.

5.4 Potential with three wells

We now consider the following two dimensional potential energy with three wells,

U(x, y) = 3βe−x2
[
e−(y−1/3)2 − e−(y−5/3)2

]
− 5βe−y2

[
e−(x−1)2 + e−(x+1)2

]
(39)
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Figure 3: Numerical results for a triple well potential in 2-D.
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Figure 4: Diffusion map for the iris data set.

where β = 1/kT is a thermal factor. This potential has two deep wells near (−1, 0) and
(1, 0) and a shallower well near (0, 5/3), which we denote as the points L,R, C, respectively,
The transitions between the wells of this potential have been analyzed in many works [27].
In figure 3 we plotted on the left the results of 1400 points sub-sampled from a total of 80000
points randomly generated from this potential confined to the region [−2.5, 2.5]2 ⊂ R2 at
temperature β = 2, color-coded by their local density. On the right we plotted the first two
diffusion map coordinates ψ1(x), ψ2(x). Notice that in the diffusion map coordinates, the
majority of the sampled points get mapped into a triangle where each vertex corresponds to
one of the points L,R, C. This figure shows that there are two possible pathways to go from
L to R. A direct (short) way and an indirect longer way, that passes through the shallow
well centered at C.

5.5 Iris data set

We conclude this section with a diffusion map analysis of one of the most popular multivariate
datasets in pattern recognition, the iris data set. This set contains 3 distinct classes of
samples in four dimensions, with 50 samples in each class. In figure 4 we see on the left
the result of the three dimensional diffusion map on this dataset. In the diffusion map
coordinates, all 50 points of class 1 (blue) are shrunk into a single point in the diffusion map
space and can thus be easily distinguished from classes two and three (red and green). In the
right plot we see the results of re-running the diffusion map on the 100 remaining red and
green samples. The 2-D plot of the first two diffusion maps coordinates shows that there is
no perfect separation between these two classes. However, clustering according to the sign
of ψ1(x) gives misclassifications rates similar to those of other methods, of the order of 6-8
samples depending on the value chosen for the kernel width ε.
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6 Summary and Discussion

In this paper, we introduced a mathematical framework for the analysis of diffusion maps,
via their corresponding infinitesimal generators. Our results show that diffusion maps are a
natural method for the analysis of the geometry and probability distribution of empirical data
sets. The identification of the eigenvectors of the Markov chain as discrete approximations
to the corresponding differential operators provides a mathematical justification for their
use as a dimensional reduction tool and gives an alternative explanation for their empirical
success in various data analysis applications, such as spectral clustering and approximations
of optimal normalized cuts on discrete graphs [23].

We generalized the standard construction of the normalized graph Laplacian to a one-
parameter family of graph Laplacians that provides a low-dimensional description of the
data combining the geometry of the set with the probability distribution of the data points.
The choice of the diffusion map depends on the task at hand. If, for example, data points
are known to approximately lie on a manifold, and one is solely interested in recovering
the geometry of this set, then an appropriate normalization of a Gaussian kernel allows to
approximate the Laplace-Beltrami operator, regardless of the density of the data points.
This construction achieves a complete separation of the underlying geometry, represented by
the knowledge of the Laplace operator, from the statistics of the points. This is important in
situations where the density is meaningless, and yet points on the manifold are not sampled
uniformly on it. In a different scenario, if the data points are known to be sampled from the
equilibrium distribution of a Fokker-Planck equation, the long-time dynamics of the density
of points can be recovered from an appropriately normalized random walk process. In this
case, there is a subtle interaction between the distribution of the points and the geometry
of the data set, and one must correctly account for both.

While in this paper we analyzed only Gaussian kernels, our asymptotic results are valid
for general kernels, with the appropriate modification that take into account the mean and
covariance matrix of the kernel. Note, however, that although asymptotically in the limit
N → ∞ and ε → 0, the choice of the isotropic kernel is unimportant, for a finite data set
the choice of both ε and the kernel can be crucial for the success of the method.

Finally, in the context of dynamical systems, we showed that diffusion maps with the
appropriate normalization constitute a powerful tool for the analysis of systems exhibiting
different time scales. In particular, as shown in the different examples, these time scales can
be separated and the long time dynamics can be characterized by the top eigenfunctions
of the diffusion operator. Last, our analysis paves the way for fast simulations of physical
systems by allowing larger integration steps along slow variable directions. The exact details
required for the design of fast and efficient simulations based on diffusion maps will be
described in a separate publication [30].

Acknowledgments: The authors would like to thank the referee for helpful suggestions
and for pointing out ref. [26].
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A Infinitesimal operators for a family of graph Lapla-

cians

In this appendix, we present the calculation of the infinitesimal generators for the different
diffusion maps characterized by a parameter α.

Suppose that the data set X consists of a Riemannian manifold with a density p(x) =
e−U(x) and let kε(x, y) be a Gaussian kernel. It was shown in [7] that if kε is scaled appro-
priately, then for any function φ on X,

∫

X

kε(x, y)φ(y)dy = φ(x) + ε(∆φ(x) + q(x)φ(x)) + O(ε
3
2 )

where q is a function that depends on the Riemannian geometry of the manifold and its
embedding in Rn. Using the notations introduced in section 4, it is easy to verify that

pε(x) = p(x) + ε(∆p(x) + q(x)p(x)) + O(ε3/2)

and consequently,

p−α
ε = p−α

(
1− αε

(
∆p

p
+ q

)) (
1 + O(ε3/2)

)

Let

k(α)
ε (x, y) =

kε(x, y)

pα
ε (x)pα

ε (y)

Then, the normalization factor d
(α)
ε is given by

d(α)
ε (x) =

∫
k(α)

ε (x,y)p(y)dy = p−α
ε (x)p1−α(x)

[
1 + ε

(
(1− α)q − α

∆p

p
+

∆p1−α

p1−α(x)

)]

Therefore, the asymptotic expansion of the backward operator gives

T
(α)
b φ =

∫

X

k
(α)
ε (x,y)

d
(α)
ε (x)

φ(y)p(y)dy = φ(x) + ε

(
∆(φp1−α)

p1−α
− φ

∆p1−α

p1−α

)

and its infinitesimal generator is

Hbφ = lim
ε→0

Tb − I

ε
φ =

∆(φp1−α)

p1−α
− ∆(p1−α)

p1−α
φ

Inserting the expression p = e−U into the last equation gives

Hbφ = ∆φ− 2(1− α)∇φ · ∇U

Similarly, the form of the forward infinitesimal operator is

Hfψ = ∆ψ − 2α∇ψ · ∇U + (2α− 1)ψ (∇U · ∇U −∆U)
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