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Abstract

In unsupervised ensemble learning, one ob-
tains predictions from multiple sources or
classifiers, yet without knowing the reliability
and expertise of each source, and with no la-
beled data to assess it. The task is to combine
these possibly conflicting predictions into an
accurate meta-learner. Most works to date
assumed perfect diversity between the differ-
ent sources, a property known as conditional
independence. In realistic scenarios, how-
ever, this assumption is often violated, and
ensemble learners based on it can be severely
sub-optimal. The key challenges we address
in this paper are: (i) how to detect, in an un-
supervised manner, strong violations of con-
ditional independence; and (ii) construct a
suitable meta-learner. To this end we in-
troduce a statistical model that allows for
dependencies between classifiers. Based on
this model, we develop novel unsupervised
methods to detect strongly dependent clas-
sifiers, better estimate their accuracies, and
construct an improved meta-learner. Using
both artificial and real datasets, we showcase
the importance of taking classifier dependen-
cies into account and the competitive perfor-
mance of our approach.

1 Introduction

In recent years unsupervised ensemble learning has be-
come increasingly popular. In multiple application do-
mains, one obtains the predictions, over a large set of
unlabeled instances, of an ensemble of different experts
or classifiers with unknown reliability. Common tasks
are combining these possibly conflicting predictions
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into an accurate meta-learner, and assessing the ac-
curacy of the experts, both without any labeled data.

A leading example is crowdsourcing, whereby a tedious
labeling task is distributed to many annotators. Com-
putational biology is another field where unsupervised
ensemble learning is of increasing interest. Here, sev-
eral recent works [1, 3, 8, 17] propose to solve difficult
biological prediction tasks by applying multiple algo-
rithms and merging their results. Additional examples
of unsupervised ensemble learning appear, among oth-
ers, in medicine [15] and decision science [20].

Perhaps the first to address unsupervised ensemble
learning were Dawid and Skene [6]. A key assump-
tion in their work was of perfect diversity between the
different classifiers. Namely, their labeling errors were
assumed statistically independent of each other. This
property, known as conditional independence is illus-
trated in the graphical model of Fig. 1 (left). In [6],
Dawid and Skene proposed to estimate the model pa-
rameters, i.e. the accuracies of the different classifiers,
by the EM procedure on the non-convex likelihood
function. With the increasing popularity of crowd-
sourcing and other unsupervised ensemble learning ap-
plications, there has been a surge of interest in this line
of work, and multiple extensions of it [14,21,23,25,26].
As the quality of the solution found by the EM algo-
rithm critically depends on its starting point, several
recent works derived computationally efficient spectral
methods to suggest a good initial guess [2, 10, 11, 18].
There have also been works employing a Bayesian ap-
proach, in particular for unsupervised ordinal predic-
tion problems, see e.g. [12, 13].

Despite its popularity and usefulness, the model of
Dawid and Skene has several limitations. One no-
table limitation is its assumption that all instances are
equally difficult, with each classifier having the same
probability of error over all instances. This issue was
addressed among others, by Whitehill et. al. [26] who
introduced a model of instance difficulty, and by Tian
et. al. [24] who proposed a model where instances are
divided into groups, and the expertise of each classifier
is group dependent.
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A second limitation, at the focus of our work, is the as-
sumption of perfect conditional independence between
all classifiers. As we illustrate below, this assump-
tion may be strongly violated in real-world scenarios.
Furthermore, as shown in Sec. 5, neglecting classifier
dependencies may yield quite sub-optimal predictions.
Yet, to the best of our knowledge, relatively few works
have attempted to address this important issue.

To handle classifier dependencies, Donmez et. al. [7]
proposed a model with pairwise interactions between
all classifier outputs. However, they noted that em-
pirically, their model did not yield more accurate pre-
dictions. Platanios et. al. [19] developed a method to
estimate the error rates of possibly dependent classi-
fiers. Their method is based on analyzing the agree-
ment rates between groups of classifiers, together with
a prior on weak dependence amongst them.

The present work is partly motivated by the ongo-
ing somatic mutation DREAM (Dialogue for Reverse
Engineering Assessments and Methods) challenge, a
sequence of open competitions for detecting irregular-
ities in the DNA string. This is a real-world example
of unsupervised ensemble learning, where participants
in this competition are given access to the predictions
of more than 100 different classifiers, over more than
100,000 instances. These classifiers were constructed
by various labs worldwide, each employing their own
biological knowledge and possibly proprietary labeled
data. The task is to construct, in an unsupervised
fashion, an accurate ensemble learner.

In figure 2 we present the empirical conditional covari-
ance matrix between different classifiers in one of the
databases of the DREAM challenge, for which ground
truth labels have been disclosed. Under the condi-
tional independence assumption, the population con-
ditional covariance between every two classifiers should
be exactly zero. Figure 2, in contrast, exhibits strong
dependencies between groups of classifiers. In this pa-
per we show the importance of taking these dependen-
cies into account.

Unsupervised ensemble learning in the presence of pos-
sibly dependent classifiers raises the following two key
challenges: (i) detect, in an unsupervised manner,
strong violations of conditional independence; and (ii)
construct a suitable meta-learner.

To cope with these challenges, in Sec. 2 we introduce
a new model for the joint distribution of all classifiers
which allows for dependencies between them through
an intermediate layer of latent variables. This gener-
alizes the model of Dawid and Skene, and allows for
groups of strongly correlated classifiers, as observed
for example in the DREAM data.

In Sec. 3 we devise a simple algorithm to detect sub-
sets of strongly dependent classifiers using only their
predictions and no labeled data. This is done by ex-
ploiting the structural low-rank properties of the clas-
sifiers’ covariance matrix. Figure 3 shows our result-
ing estimate for deviations from conditional indepen-
dence on the same data as figure 2. Comparing the two
figures illustrates the ability of our method to detect
strong dependencies with no labeled data.

In Sec. 4 we propose methods to better estimate the
accuracies of the classifiers and construct an improved
meta-learner, both in the presence of strong depen-
dencies between some of the classifiers. Finally, in
Sec. 5 we illustrate the competitive performance of
our modified ensemble-learner on artificial data, sev-
eral UCI datasets and three datasets from the DREAM
challenge. These empirical results showcase the limi-
tations of the strict conditional independence model,
and highlight the importance of modeling the statisti-
cal dependencies between different classifiers in unsu-
pervised ensemble learning scenarios.

2 Problem Setup

Notations. Consider a binary classification problem
with instance space X and output space Y = {−1, 1}.
A labeled instance (x, y) ∈ X ×Y is a realization of the
random variable (X,Y ). The joint distribution p(x, y),
and the marginals pX(x) and pY (y), are all unknown.
We further denote by b the class imbalance of Y ,

b = pY (1)− pY (−1). (1)

Let {fi}mi=1 be a set of m binary classifiers operating
on X . As our classification problem is binary, the ac-
curacy of the i-th classifier is fully characterized by its
sensitivity ψi and specificity ηi,

ψi=Pr (fi(X)=1|Y =1) , ηi=Pr (fi(X)=−1|Y =−1)

For future use, we denote by πi its balanced accuracy,
given by the average of its sensitivity and specificity

πi = 1
2 (ψi + ηi). (2)

Note that when the class imbalance is zero, πi is simply
the overall accuracy of the i-th classifier.

The classical conditional independence model.
In the model proposed by Dawid and Skene [6], de-
picted in Fig. 1(left), all m classifiers were as-
sumed conditionally independent given the class label.
Namely, for any set of predictions a1, . . . , am ∈ {±1}

Pr(f1 = a1, . . . , fm = am|Y ) =
∏
i

Pr(fi = ai|Y ) (3)
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Fig. 1: (Left) The perfect conditional independence model of Dawid and Skene. All classifiers are independent
given the class label Y ; (Right) The generalized model considered in this work.

As shown in [6], the maximum likelihood estimation
(MLE) for y given the parameters ψi, ηi and b is linear
in the predictions of f1, ..., fm

ŷ = sign
( m∑
i=1

wifi(x) + w0

)
, wi = w(ψi, ηi). (4)

Hence, the main challenge is to estimate the model
parameters ψi and ηi. A simple approach to do so, as
described in [10,18], is based on the following insight:
A classifier which is totally random has zero corre-
lation with any other classifier. In contrast, a high
correlation between the predictions of two classifiers
is a strong indication that both are highly accurate,
assuming they are not both adversarial.

In many realistic scenarios, however, an ensemble may
contain several strongly dependent classifiers. Such a
scenario has several consequences: First, the above in-
sight that high correlation between two classifiers im-
plies that both are accurate breaks down. Second, as
shown in Sec. 5, estimating the classifiers’ parameters
ψi, ηi as if they were conditionally independent may be
highly inaccurate. Third, in contrast to Eq. (4), the
optimal ensemble learner is in general non-linear in
the m classifiers. Applying the linear meta-classifier
of Eq. (4) may be suboptimal, even when provided
with the true classifier accuracies.

A model for conditionally dependent classifiers.
In this paper we significantly relax the conditional in-
dependence assumption. We introduce a new model
which allows classifiers to be dependent through un-
observed latent variables, and develop novel methods
to learn the model parameters and construct an im-
proved non-linear meta-learner.

In contrast to the 2-layer model of Dawid and Skene,
our proposed model, illustrated in Fig. 1(right), has
an additional intermediate layer with K ≤ m latent
binary random variables {αk}Kk=1. In this model, the
unobserved αk are conditionally independent given

the true label Y , whereas each observed classifier de-
pends on Y only through a single and unknown latent
variable. Classifiers that depend on different latent
variables are thus conditionally independent given Y ,
whereas classifiers that depend on the same latent vari-
able may have strongly correlated errors. Each hidden
variable can be interpreted as a separate unobserved
teacher, or source of information, and the classifiers
that depend on it are different perturbations of it.
Namely, the m observed predictions for each instance
are in fact generated by a hidden model with intrinsic
dimensionality K, where possibly K � m.

We now describe in detail our probabilistic model.
Since the latent variables α1, . . . , αK are conditionally
independent given Y , their distribution is character-
ized by the class imbalance b and the 2K probabilities

Pr(αk = 1|Y = 1) and Pr(αk = −1|Y = −1).

Next, we introduce an assignment function c : [m] →
[K], such that if classifier fi depends on αk then c(i) =
k. The dependence of classifier fi on the class label Y
is only through its latent variable αc(i),

Pr(fi|αc(i), Y ) = Pr(fi|αc(i)). (5)

Hence, classifiers fi, fj with c(i) 6= c(j) maintain the
original conditional independence assumption of Eq.
(3). In contrast, classifiers fi, fj with c(i) = c(j) are
only conditionally independent given αc(i),

Pr(fi = ai, fj = aj |αc(i)) =

Pr(fi = ai|αc(i)) Pr(fj = aj |αc(i)). (6)

Note that if the number of groups K is equal to the
number of classifiers, then all classifiers are condition-
ally independent, and we recover the original model of
Dawid and Skene.

Since the model now consists of three layers, the re-
maining parameters to describe it are the sensitivity
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ψαi and specificity ηαi of the i-th classifier given its
latent variable αc(i),

ψαi =Pr(fi = 1|αc(i) = 1), ηαi =Pr(fi =−1|αc(i) =−1).

By Eq. (5), the overall sensitivity ψi of the i-th clas-
sifier is related to ψαi and ηαi via

ψi = Pr(αc(i) =1|Y =1)ψαi +Pr(αc(i) =−1|Y =1)(1−ηαi )
(7)

with a similar expression for its overall specificity ηi.

Remark on Model Identifiability. Note that the
model depicted in Fig. 1(right) is in general not iden-
tifiable. In some cases, the dependency structure can
be described by more than one model. For example,
the classical model of Dawid and Skene can also be re-
covered with a single latent variable K = 1, by having
α1 = Y . See [5] for the exact conditions for identifi-
ability. However, for the purpose of classification and
aggregation these models are equivalent, and our pur-
pose is to recover one of them.

Problem Formulation. We consider the following
totally unsupervised scenario. Let Z be a binary m×n
matrix with entries Zij = fi(xj), where fi(xj) is the
label predicted by classifier fi at instance xj . We as-
sume xj are drawn i.i.d. from pX(x). We also assume
the m classifiers satisfy our generalized model, but oth-
erwise we have no prior knowledge as to the number of
groups K, the assignment function c or the classifier
accuracies (sensitivities ψi,ψ

α
i and specificities ηi, η

α
i ).

Given only the matrix Z of binary predictions and no
labeled data, we consider the following problems:

1. Is it possible to detect strongly dependent classi-
fiers, and estimate the number of groups and the
corresponding assignment function c?

2. Given a positive answer to the previous question,
how can we estimate the sensitivities and speci-
ficities of the m different classifiers and construct
an improved, possibly non-linear, meta learner ?

3 Estimating the assignment function

In principle, one could try to estimate all model pa-
rameters by maximum likelihood. This results, how-
ever, in a hard combinatorial problem. As we show
below, the main challenge in our model is to estimate
the number of groups K and the assignment function
c. Once c is obtained, we will see in Section 4 that
constructing a suitable meta-learner can be reduced to
the conditional independent case, already addressed in
previous works [10,11,18,28].

We start by estimating the values of K and c. We
do so using the low-rank structure of the covariance
matrix of the classifiers, implied by our model.

The covariance matrix. Let R denote the m×m
population covariance matrix of the m classifiers

rij = E[(fi − E[fi])(fj − E[fj ])]. (8)

The following lemma describes its structure. It gen-
eralizes a similar lemma, for the standard Dawid and
Skene model, proven in [18]. The proof of this and
other lemmas below appear in the appendix.

Lemma 1. There exists two vectors von, voff ∈ Rm
such that for all i 6= j,

rij =

{
voffi · voffj if c(i) 6= c(j)

voni · vonj if c(i) = c(j)
(9)

The population covariance matrix is therefore a com-
bination of two rank-one matrices. The block diagonal
elements i, j with c(i) = c(j) correspond to the rank-
one matrix von(von)T , where on stands for on-block,
while the off-block diagonal elements, with c(i) 6= c(j)
correspond to another rank-one matrix voff (voff )T .
Let us define the indicator 1c(i, j)

1c(i, j) =

{
1 c(i) = c(j)

0 otherwise
(10)

The non-diagonal elements of R can be written as,

rij = 1c(i, j)voni vonj + (1− 1c(i, j))voffi voffj . (11)

Learning the model in the ideal setting. It is
instructive to first examine the case where the data is
generated according to our model, and the population
covariance matrix R is exactly known, i.e. n = ∞.
The question of interest is how to efficiently recover
the assignment function in this setting. To this end,
let us look at the possible values of the determinant of
2× 2 submatrices of R,

Mijkl = det

(
rij ril
rkj rkl

)
(12)

Due to the low rank structure described in Lemma 1,
we have the following result, with the exact conditions
appearing in the appendix.

Lemma 2. Assume the two vectors von and voff are
sufficiently different, then Mijkl = 0 if and only if ei-
ther: (i) Three or more of the indices i, j, k and l be-
long to the same group or (ii) c(i) 6= c(j), c(j) 6= c(k),
c(k) 6= c(l) and c(l) 6= c(i).

With details in the appendix, comparing the indices
(j, k, l) where M(i1, j, k, l) = 0 with i1 fixed, to those
where M(i2, j, k, l) = 0, we can deduce, in polynomial
time, whether c(i1) = c(i2).
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Learning the model in practice. In practical sce-
narios, the population covariance matrix R is un-
known, though we can estimate it by the sample co-
variance matrix R̂. Furthermore, our model is typi-
cally only an approximation of the classifiers depen-
dency structure. Given only R̂, the approach to re-
cover the assignment function described above, based
on exact matching of the pattern of zeros of the deter-
minants of various 2×2 submatrices is not applicable.

In principle, a possible approach to estimate c from R̂,
is to define the following residual

∆(von, voff , c) =
∑
i 6=j

1c(i, j)(voni vonj − r̂ij)2+

(1− 1c(i, j))(voffi voffj − r̂ij)2. (13)

and find its global minimum. Unfortunately, as stated
in the following lemma, this is not a simple task.

Lemma 3. Minimizing the residual of Eq. (13) for a
general covariance matrix R̂ is NP-hard.

In light of Lemma 3, we now present a tractable algo-
rithm to estimate K and c and provide some theoret-
ical support for it. Our algorithm is inspired by the
ideal setting which highlighted the importance of the
determinants of 2× 2 submatrices. To detect pairs of
classifiers fi, fj that strongly violate the conditional
independence assumption, we thus compute the fol-
lowing score matrix Ŝ = Ŝ(R̂),

ŝij =
∑

k 6=i,j;l 6=i,j

|r̂ij r̂kl − r̂ilr̂kj |. (14)

To motivate Eq. (14), consider the score matrix S
computed with the population covariance R. Lemma
2 characterized the cases where the submatrices in Eq.
(14) are of rank one, and hence their determinant is
zero. When c(i) 6= c(j) most submatrices come from
four different groups, i.e. will have rank one, and thus
the sum sij will be small. On the other hand, when
c(i) = c(j) many submatrices will not be rank one
and thus sij will be large, assuming no degeneracy

between von and voff . As Ŝ
n→∞−−−−→ S, large values of

ŝij indicate a strong conditional dependence between
classifiers fi and fj .

The following lemma provides some theoretical jus-
tification for the utility of the score matrix S com-
puted with the population covariance, in recovering
the assignment function c. For simplicity, we analyze
a symmetric case where the class imbalance b = 0,
Pr(αk = −1|y = −1) = Pr(αk = 1|y = 1) and all
groups have equal size of m/K. We measure devia-
tion from conditional independence by the following

Algorithm 1 Estimating the assignment function c
and vectors von, voff

1: Estimate the covariance matrix R (8).
2: Obtain the score matrix by (14)
3: for all 1 < k < m do
4: Estimate c by performing spectral clustering

with the Laplacian of the score matrix.
5: Use the clustering function to estimate the two

vectors von, voff .
6: Calculate residual by (13).
7: end for
8: Pick the assignment function and vectors which

yield minimal residual.

conditional covariance matrices, C+ and C−,

c+ij = E[(fi − E[fi])(fj − E[fj ])|Y = 1]

c−ij = E[(fi − E[fi])(fj − E[fj ])|Y = −1]. (15)

Finally, we assume the balanced accuracies of all clas-
sifiers satisfy (2πi − 1) > δ for some δ > 0.

Lemma 4. Under the assumptions described above, if
c(i) = c(j) then

sij > m2

(
1− 3

K

)
δ2|c+ij | = m2

(
1− 3

K

)
δ2|c−ij |

(16)
In contrast, if c(i) 6= c(j) then

sij <
m2

K

(
5− 8

K

)
. (17)

An immediate corollary from lemma 4, is that if the
classifiers are sufficiently accurate, and their depen-
dencies within each group are strong enough then the
score matrix exhibits a clear gap with max

c(i)6=c(j)
Sij <

min
c(i)=c(j)

Sij . In this case, even a simple single-linkage

hierarchical clustering algorithm can recover the cor-
rect assignment function from S. In reality, as only Ŝ
is available, we apply spectral clustering which is more
robust, and works better in practice.

We illustrate the usefulness of the score matrix us-
ing the DREAM challenge S1 dataset, which contains
m = 124 classifiers. Fig. 2 shows the matrix of condi-
tional covariance 1

2 (C+ + C−) of Eq. (15), computed
using the ground truth labels. Fig. 3 shows the score
matrix Ŝ computed using only the classifiers predic-
tions. We also plot the values of the score matrix vs.
the conditional covariance in figure 4. Clearly, a high
score is a reliable indication for strong conditional de-
pendencies between classifiers.

It is important to note that the time complexity to
build the score matrix S is O(m4), which in general



Unsupervised Ensemble Learning with Dependent Classifiers

 

 

20 40 60 80 100 120

20

40

60

80

100

120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2: The conditional covariance matrix 1
2 (C+ +

C−) of the DREAM dataset S1, computed using
the ground truth labels.
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Fig. 3: The score matrix Ŝ of the DREAM S1
dataset, computed from the matrix of classifier
predictions. For visualization purposes, the upper
limit of the above score matrix is fixed at 250.

may be considered too expensive. However, in many
real world problems where the number of classifiers
m ≈ 100, our algorithm typically runs in less than
an hour. If needed, this can be sped-up by sampling
elements of S instead of computing the full matrix [9].

Estimating the assignment function c. We es-
timate c by spectral clustering the score matrix Ŝ of
Eq. (14). As the number of clusters or groups K
is unknown, we choose the one which minimizes the
residual function defined in Eq. (13). The steps for es-
timating the number of groups K and the assignment
function c are summarized in Algorithm 1. Note that
retrieving von and voff from the covariance matrix is
a rank-one matrix completion problem, for which sev-
eral solutions exist, for example see [4]. Also note that
while we perform spectral clustering for various num-
ber of clusters, the costly eigen-decoposition step only
needs to be done once.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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1
2 (C
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S

Fig. 4: Values of S vs. the corresponding conditional
covariance matrix 1

2 (C++C−) for the DREAM dataset
S1. The blue dots represent the mean value, the up-
per and lower red dots represent the 80th and 20th
quantiles, respectively.

4 The latent spectral meta learner

Estimating the model parameters. Given esti-
mates of K and of the assignment function c, estimat-
ing the remaining model parameters can be divided
into two stages: (i) Estimating the sensitivity and
specificity of the different classifiers given the latent
variables αk: ψαi , η

α
i (ii) Estimating the probabilities

associated with the latent variables, Pr(αk = 1|Y = 1)
and Pr(αk = −1|Y = −1).

The key observation is that each of these stages can be
solved by the classical conditional independent model
of [6]. In particular, classifiers with a common latent
variable are conditionally independent given its value.
Similarly the K latent variables themselves are condi-
tionally independent given the true label Y . Thus,
we can solve the two stages sequentially by any of
the various methods already developed for the Dawid
and Skene model. In our implementation, we used the
spectral meta learner proposed in [10], whose code is
publicly available. A pseudo-code for this process ap-
pears in Algorithm 2.

Label Predictions. We predict the label of an in-
stance x by maximing the likelihood function

ŷ = argmax
y=±1

Pr(f1(x), . . . , fm(x)|y) (18)

that corresponds to our generative model, Fig.
1(right). The above probability depends on the model
parameters b, ψαi , η

α
i , ψα, ηα, and the assignment func-

tion c for which we use the values estimated above.

Classifier selection. In some cases, it is required to
construct a sparse ensemble learner which uses only
a small subset of at most M out of the available m
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Algorithm 2 Estimate model parameters

1: Input: Matrix of predictions fi(xj), parameters
K and c.

2: for k = 1, ..,K do
3: Find all classifiers fi where c(i) = k
4: Estimate ψαi , η

α
i and E[αk]

5: Estimate the latent values αk(xj), ∀j = 1, ..., n
6: end for
7: Estimate Pr(αk = 1|Y = 1),Pr(αk = −1|Y = −1)

classifiers. This problem of selecting a small subset
of classifiers, known as ensemble pruning, has mostly
been studied in supervised settings, see [16,22,27].

Under the conditional independence assumption, the
best subset simply consists of the M most accurate
classifiers. In our model, in contrast, the correlations
between the classifiers have to be taken into account.
Assuming the required number of classifiers is smaller
than the number of groups M ≤ K, a simple approach
is to select the M most accurate classifiers under the
constraint that they all come from different groups.
This creates a balance between accuracy and diversity.

5 Experiments

We demonstrate the performance of the latent vari-
able model on artificial data, on datasets from the UCI
repository and on the ICGA-TCGA dream challenge.
Code is available at the author’s website.

We compared the following unsupervised ensemble
methods: (1) Majority voting, which serves as a
baseline; (2) SML+EM - a spectral meta-learner based
on the independence assumption [10] providing an ini-
tial guess followed by EM iterations; (3) Oracle-CI: A
linear meta-learner based on Eq. (4), which assumes
conditional independence but is given the exact accu-
racies of all the individual classifiers. (4) L-SML (latent
SML), the new algorithm presented in this work.

On the artificial data, we also compute its oracle meta-
learner, denoted Oracle-L, which is given the exact
structure and parameters of the model, and predicts
the label Y by maximum likelihood. For the UCI
datasets we also compared to CUBAM (Caltech UCSD
Binary Annotation Model) [25]. For the UCI and
Dream challenge, we added a comparison to a super-
vised method - a linear SVM classifier trained with the
predictions of the m classifiers as its input features.

5.1 Artificial Data

To validate our theoretical analysis, we generated ar-
tificial binary data according to our assumed model,
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Oracle−CI
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Fig. 5: Simulated data: Ensemble learner balanced
accuracy vs. the size of group 1.

on a balanced classification problem with b = 0. We
generated an ensemble of m = 20 classifiers with
n = 104 instances. We consider the case where there
is only one group G1 of correlated classifiers, with the
remaining m − |G1| classifiers all conditionally inde-
pendent. All the parameters of the ensemble were
chosen uniformly at random from the following in-
tervals: Pr(α = 1|Y = 1),Pr(α = −1|Y = −1) ∈
[0.5, 0.8], {ψαi , ηαi } ∈ [0.7, 0.9]. Note that for |G1| = 1
all classifiers are conditionally independent. Fig. 5
compares the balanced accuracy of the five unsuper-
vised ensemble learners described above, as a function
of the size of the first group |G1|. As seen in Fig.
5, up to |G1| = 7, the ensemble learner based on the
concept of correlated classifiers achieves similar results
to the optimal classifier (’oracle-L’). As expected from
Lemma 4, as |G1| increases, it is harder to correctly es-
timate c with the score matrix. A figure with a similar
experiment with m = 40 classifiers appears in the ap-
pendix. There, our algorithm maintained its stability
up to |G1|=16. This is in accordance with Lemma 4,
since the parameter that determines the performance
of our algorithm is not the absolute size of G1, but the
ratio between its size and the number of classifiers.

A complementary figure showing the probability to re-
cover the correct assignment function as a function of
|G1| appears in the appendix. As expected, the degra-
dation in performance starts when the algorithm fails
to correctly estimate the model structure.

5.2 UCI data sets

For each of the following 4 UCI datasets, Magic, Spam-
base, Miniboo and Musk, we constructed an ensemble
of m = 16 classifiers, consisting of: 4 random forests, 3
logistic model trees, 4 SVM and 5 naive Bayes. Each
classifier was trained on a separate, randomly chosen
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labeled dataset. In our unsupervised ensemble sce-
nario we had access only to their predictions on a large
independent test set.

We present results for the magic dataset, which con-
tains 19000 instances with 11 attributes. The task is
to classify each instance as background or high en-
ergy gamma rays. As seen in Fig. 6, the L-SML im-
proves substantially over the standard SML, and even
on the oracle classifier that assumes conditional in-
dependence. Our method also outperforms the best
individual classifier as well as the supervised method.

Figs. 10 and 11 in the appendix show the conditional
covariance matrix and our assignment. It can be ob-
served that strongly dependent classifiers are indeed
grouped together correctly. Fig. 16 compares the clas-
sifiers error rate estimated by the L-SML and by the
method presented in [19]. For additional results on the
other UCI datasets, see the appendix.

5.3 The DREAM mutation calling challenge

The ICGC-TCGA DREAM challenge is an interna-
tional effort to improve standard methods for identi-
fying cancer-associated mutations and rearrangements
in whole-genome sequencing (WGS) data. This pub-
licly available database contains both real and syn-
thetic in-silico tumor instances. The database contains
14 different datasets, each with over 100,000 instances.

Participants in the competition are given access to the
predictions of about a hundred different classifiers (de-
noted there as pipe-lines)1. These classifiers were con-
structed by various labs worldwide, each employing
their own biological knowledge and possibly propri-
etary labeled data. The two current challenges are
to construct a meta-learner, by using either (1) all m
classifiers; or (2) at most five of them. We evaluated
proposed meta-classifiers fmc by their balanced error,

1−π = 1
2 (Pr(fmc = 1|y = −1)+Pr(fmc = −1|y = 1)).

Below we present results on the datasets S1, S2 and
S3 for which ground-truth labels have been released.

Mean Best Vote
SML
EM

Or-
CI

L-
SML

SVM

1 6.1 1.7 2.8 1.7 1.7 1.6 1.82
2 8.7 1.8 4.0 2.8 2.8 2.3 1.23
3 8.3 2.5 4.3 2.3 2.3 1.8 1.7

Table 1: DREAM challenge I. Balanced error using
full ensemble, the first two columns give the mean and
smallest balanced error of all classifiers.

1The data is available at http://dreamchallenges.org/

Med Max Vote SML CBM LSML Oracle SVM

π

0.74

0.76

0.78

0.8

0.82

0.84

Fig. 6: UCI magic dataset, a comparison of four un-
supervised ensemble learners, alongside the oracle en-
semble based on the conditional independence assump-
tion, and a SVM supervised ensemble.

Vote SML+EM Oracle-CI L-SML
S1 3.2 2.3 1.9 2.0
S2 4.3 4.1 2.5 2.8
S3 2.9 2.9 2.8 2.5

Table 2: Balanced error of sparse meta-classifiers.

Challenge I. The balanced errors of the different
meta-learners, constructed using all m classifiers, are
given in table 1. The L-SML method outperforms the
other meta-learners in all three datasets. On dataset
S3 it reduces the balanced error by more than 20%
over competing meta learners.

Challenge II. Here the goal is to construct a sparse
meta-learner based on at most five individual classi-
fiers from the ensemble. For the methods based on
the Dawid and Skene model (SML+EM, voting and
Oracle-CI), we took the 5 classifiers with the highest
estimated (or known) balanced accuracies. For our
model, since the estimated number of groups is larger
than five, we took the five classifiers with highest esti-
mated balanced accuracies, under the constraint that
they belong to five different groups. For all meth-
ods, the final prediction was made by a simple vote
of the five chosen classifiers. Though potentially sub-
optimal, we nonetheless use it as our purpose was to
compare the diversity of the chosen classifiers. As seen
in table 2, our method outperforms voting and SML,
and is comparable to the oracle learner.
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A Proof of Lemma 1

This proof is based on the following lemma, which appears in [18]:
If two classifiers fi, fj are conditionally independent given the class label Y , then the covariance between them
is equal to

rij = (1− b2)(ψi + ηi − 1)(ψj + ηj − 1). (19)

In our model, if c(i) 6= c(j), then fi, fj are indeed conditionally independent (Fig. 1,right). The first part of

lemma 1 thus follows directly from Eq. (19), with voffi =
√

1− b2(ψi + ηi − 1).

To prove the second part of lemma 1, we note that according to our model, two classifiers fi, fj with c(i) = c(j)
are conditionally independent given the value of their latent variable α. Therefore, we can treat α as the class
label, and apply Eq. (19) with b replaced by the expectation of α, and the sensitivity and specificity ψi, ηi
replaced by ψαi , η

α
i respectively. Hence, Eq. (19) becomes,

rij = (1− E[α]2)(ψαi + ηαi − 1)(ψαj + ηαj − 1) = voni vonj , (20)

where voni =
√

1− E[α]2(ψαi + ηαi − 1), and α = αc(i).

B Proof of Lemma 2

We assume that von and voff are sufficiently different in the following precise sense: We require that for all 4
distinct indices i, j, k, l, voni · vonj · vonk · vonl 6= voffi · voffj · voffk · voffl .

Next, we elaborate on the relation between voffi and voni . Let us denote by ψyα, η
y
α the sensitivity and specificity

of the latent variable α. Let fi be a classifier that depends on α. Applying Bayes rule, its overall sensitivity and
specificity are given by,

ψi = ψyαψ
α
i + (1− ψyα)(1− ηαi ) ηi = ηyαη

α
i + (1− ηyα)(1− ψαi ).

Adding ψi and ηi we get the following,

ψi + ηi − 1 = (ψyα + ηyα − 1)(ψαi + ηαi − 1). (21)

If c(i) = c(j) we have the following dependency between (voffi , voffj ) and (voni , vonj ),[
voffi

voffj

]
= (1− b2)(ψiα + ηiα − 1)

[
(ψαi + ηαi − 1)
(ψαj + ηαj − 1)

]
=

(1− b2)(ψiα + ηiα − 1)√
1− E[α]2

[
voni
vonj

]
(22)

It follows that two elements voffi , voffj where c(i) = c(j) are linearly dependent with the corresponding elements
of voni , vonj . This fact shall be useful in proving the lemma.

To prove lemma 2 we analyze all various possibilities for the group assignments of the four indices i, j, k, l of

M(i, j, k, l) = det

(
rij ril
rkj rkl

)
.

1. c(i) = c(j) = c(k) = c(l): In this case M(i, j, k, l) = voni vonj vonk vonl − voni vonl vonk vonj = 0.

2. c(i) 6= c(j), and c(j) 6= c(k), and c(k) 6= c(l) and c(l) 6= c(i): Here M(i, j, k, l) = voffi voffj voffk voffl −
voffi voffl voffk voffj = 0.

3. c(i) = c(l) = c(k) 6= c(j): M(i, j, k, l) = voffi voffj vonk vonl − voni vonl voffk voffj = voffj vonl

(
voffi vonk − voni voffk

)
.

From the linear dependency shown in Eq. (22),
(
voffi vonk − voni voffk

)
= 0.

4. c(i) = c(j), c(k) = c(l) and c(i) 6= c(k): M(i, j, k, l) = voni vonj vonk vonl − voffi voffl voffk voffj 6= 0 from our
assumption.

It can be seen that Mijkl is equal to zero only if either three or more of the indices are equal (cases (1) and (2))
or all four pairs of indices which appear in the determinant belong to different groups (case (3)).
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C Algorithm for the ideal setting

An immediate conclusion from lemma 2, is that the indices i, j, k and l for which M(i, j, k, l) = 0 depend only
on the assignment function. This means we can compare the pattern of zeros for M(i1, j, k, l) and M(i2, j, k, l)
to decide if fi1 and fi2 belong to the same group. If c(i1) = c(i2) then M(i1, j, k, l) = 0 ⇐⇒ M(i2, j, k, l) = 0.
On the other hand if c(i1) 6= c(i2) and at least one of the indices i1 and i2 , w.l.o.g i1, belongs to a group with
more than one element, then there exist indices j, k and l such that M(i1, j, k, l) 6= 0 but M(i2, j, k, l) = 0. This
occurs when c(i1) = c(j), and c(i2) 6= c(j) 6= c(k) 6= c(l).

This means that by comparing the pattern of zeros, we can recover the assignment function. Notice, that
according to the algorithm, all singleton classifiers, that is, classifiers who are conditionally independent with the
rest of the ensemble, are grouped together under a common latent variable. This is not a problem, as our model
is not unique and this is an equivalent probabilistic model, with the associated latent variable being identical to
Y .

Algorithm 3 Check if c(i1) = c(i2)

1: Initialize (m− 2)× (m− 3)× (m− 4) arrays T1, T2 to zero
2: for j 6= k 6= l 6= i1, i2 do
3: if ri1jrkl − ri1lrkj = 0 then (T1(j, k, l) = 1)
4: end if
5: if ri2jrkl − ri2lrkj = 0 then (T2(j, k, l) = 1)
6: end if
7: end for
8: if (T1 = T2) then
9: c(i1) = c(i2).

10: else
11: c(i1) 6= c(i2).
12: end if

D Minimizing ∆ is a NP hard problem

We prove lemma 3 for the case of K = 2 clusters and known vectors vvvoff , vvvon. Our goal is to find a minimizer
for the following residual:

ĉ = argmin
c

∆(c) = argmin
c

∑
i,j

1c(i, j)(voni vonj − rij)2 + (1− 1c(i, j))(voffi voffj − rij)2 (23)

For the case of K = 2 we can simplify the residual considerably. Let us define a vector xxx ∈ {−1, 1}m where
xi = 1 if c(i) = 1 and xi = −1 if c(i) = 2. We can replace the indicator function 1(i, j) with the following,

1(i, j) =
(1 + xixj)

2
, 1− 1(i, j) =

(1− xixj)
2

. (24)

In addition, we can replace the minimization over c with a minimization over xxx,

x̂xx = argmin
xxx∈{±1}m

∑
i,j

(1 + xixj)

2
(voni vonj − rij)2 +

(1− xixj)
2

(voffi voffj − rij)2

= argmin
xxx∈{±1}m

∑
i,j

1

2

(
(voni vonj − rij)2 + (voffi voffj − rij)2

)
+
xixj

2

(
(voni vonj − rij)2 + (voffi voffj − rij)2

)
. (25)

The first term does not depend on xxx and we can omit it from the minimization problem. Let us also define the
matrix R̃,

r̃ij =

(
(voni vonj − rij)2 + (voffi voffj − rij)2

)
2

(26)
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We are left with the following minimization problem:

x̂xx = argmin
xxx∈{±1}m

∑
i,j

xixj r̃ij = argmin
xxx∈{±1}m

xxxT R̃xxx (27)

If there is a binary vector whose residual is precisely zero, then it can be found by computing the eigenvector with
smallest eigenvalue of the matrix R̃. If, however, the minimal residual is not zero, then eq. (27) is a quadratic
optimization problem involving discrete variables, which is well known to be a NP-hard problem.

E Proof of Lemma 4

We start by proving the first part of the lemma, where c(i) = c(j). The score matrix sij is a sum of all possible
2× 2 determinants,

si,j =
∑
k,l 6=i,j

|rijrkl − rilrjk| =
∑
k,l 6=i,j

sklij , (28)

where we define sklij as a single score element. The following table separates the various score elements sklij into
four types, and states the number of elements in each type.

Element type Number of elements
c(i) = c(j) 6= c(k) 6= c(l) m2

(
1− 3

K + 2
K2

)
c(i) = c(j) 6= c(k) = c(l) m2

(
1− 1

K

) (
1
K −

1
m

)
c(i) = c(j) = c(k) 6= c(l) 2m2

(
1
K −

2
m

) (
1− 1

K

)
c(i) = c(j) = c(k) = c(l) m2

(
1
K −

2
m

) (
1
K −

3
m

)
According to lemma 1, the contribution to the score from elements of the third and fourth type is exactly 0 (see
details in Sec. B). We will focus on analyzing the score elements of the first type c(i) = c(j) 6= c(k) 6= c(l),
which is the dominant factor assuming K ≥ 4. Let us denote by παi the balanced accuracy of classifier i with
relation to αc(i),

παi =
1

2
(ψαi + ηαi )

Recall, that we assume a symmetrical case where b = 0, and Pr(α = 1|y = 1) = Pr(α = −1|y = −1). These
assumptions imply that E[αk] = 0 for all k = 1...K.

Let us consider Lemma 1 in order to analyze the value of sklij ,

sklij = |rijrkl − rijrjk| = |(2παi − 1)(2παj − 1)(2πk − 1)(2πl − 1)− (2πi − 1)(2πj − 1)(2πk − 1)(2πl − 1)|
= |(2πk − 1)(2πl − 1)

(
(2παi − 1)(2παj − 1)− (2πi − 1)(2πj − 1)

)
| (29)

For simplicity of notation, let us denote by γ the ratio of true positives and negatives of the latent variables:

γ = Pr(αk = 1|Y = 1) = Pr(αk = −1|Y = −1) (30)

It can easily be shown that the following holds:

(2πi − 1) = (2γ − 1)(2παi − 1) (2πj − 1) = (2γ − 1)(2παj − 1) (31)

Inserting (31) into (29) we get,

sklij = |(2πk − 1)(2πl − 1)(2παi − 1)(2παj − 1)(1− (2γ − 1)2)| =
|4(2πk − 1)(2πl − 1)(2παi − 1)(2παj − 1)(γ(1− γ))| (32)

Let us now derive the values of the conditional covariance matrices C+, C−. First, In order to obtain C+, we
can apply the first part of Lemma 1,

C+ = E[(fi − µi)(fj − µj)|Y = 1] = (1− E[αc(i)|Y = 1]2)(2παi − 1)(2παj − 1) (33)



Unsupervised Ensemble Learning with Dependent Classifiers

A similar argument applies to C−, with E[αc(i)|Y = −1]. The conditional expectation of α is equal to,

E[α|Y = 1] = 2γ − 1 E[α|Y = −1] = 1− 2γ (34)

A simple derivation yields the following for both cases,

(1− E[α|Y = 1]2) = (1− E[α|Y = −1]2) = 4γ(1− γ) (35)

The value of c+ij is therefore equal to c−ij , and both are equal to the following,

c+ij = c−ij = 4γ(1− γ)(2παi − 1)(2παj − 1) (36)

Inserting (36) into (32) yields,

sklij = |(2πk − 1)(2πl − 1)c+ij | = |(2πk − 1)(2πl − 1)c−ij | (37)

For simplicity, since C+ = C−, we will use only C+. The total score contribution of the first type of elements is
therefore, ∑

k,l

sklij = |c+ij |
∑
k,l

|(2πk − 1)(2πl − 1)| (38)

Assuming (2πi − 1) > δ > 0, ∀i, the latter simplifies to,

sij = |c+ij |δ
2m2(1− 3

K + 2
K2 ) > |c+ij |δ

2m2(1− 3
K ) (39)

We next turn to proving an upper bound when c(i) 6= c(j). Once again we separate the different elements into
five types,

Element type Number of elements
c(i) 6= c(j) 6= c(k) 6= c(l) m2

(
1− 5

K + 6
K2

)
c(i) 6= c(j) 6= c(k) = c(l) m2

(
1− 2

K

) (
1
K −

1
m

)
c(i) 6= c(j) = c(k) 6= c(l) 4m2

(
1
K −

1
m

) (
1− 2

K

)
c(i) 6= c(j) = c(k) = c(l) 2m2

(
1
K −

2
m

) (
1
K −

2
m

)
c(k) = c(i) 6= c(j) = c(l) 2m2

(
1
K −

1
m

) (
1
K −

1
m

)
The contribution comes from the second,third and fourth types, as according to our model, if all indices come
from different groups, or if three come from the same group, the determinant is equal to 0 (see Sec. B). In
addition, since (2πi − 1) > δ > 0∀i, the values of rij are positive for all (i, j) pairs. Since 0 < rij ≤ 1 for all
score elements sklij = |rijrkl − rilrkj | ≤ 1. The total value of sij is bounded by the following

sij ≤ m2

(
1

K
− 1

m

)(
5− 8

K
− 2

m

)
<
m2

K

(
5− 8

K

)
. (40)

F Additional results

F.1 Artificial data

In Fig. 7 we present the probability of our spectral clustering based algorithm to recover both the correct
number of classes K and the correct assignment function c, as a function of |G1|. Up to |G1| = 6, our algorithm
successfully estimates c, with no errors. When |G1| > 7, the performance of the algorithm deteriorates. The
degradation in performance presented in Fig. 5, corresponds to the point where the algorithm fails to estimate
c correctly.

In Fig. 8 we present the mean squared error (MSE) in estimating the sensitivities and specificities of the m
classifiers, as a function of |G1|, defined as

MSE({ψi, ηi}mi=1) = 1
2m

m∑
i=1

(
(ψ̂i − ψi)2 + (η̂i − ηi)2

)
. (41)
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Fig. 7: Probability of estimating the exact assign-
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Fig. 9: Artifical data - The total number of classifiers equals m = 40. The graph presents the balanced accuracies
of several aggregation methods versus the size of the correlated group.

We compare the following three methods: (1) Majority vote ; (2) SML+EM; (3)L-SML. It can be seen that
the performance of the SML degrades very fast when the conditional independence assumption is violated. The
performance of the L-SML is almost perfect up to the point where |G1| = 6, where as we have seen in Fig. 7,
the model is still correctly estimated. The performance is still superior to other methods, even for large values
of |G1|. In Fig. 9 we repeat the same experiment described in Sec. 5.1 with m = 40 classifiers. Comparing Fig.
9 to Fig. 5 it can be seen that it is not the absolute value of the size of G1 that determines the performance, but
the ratio between |G1| and the number of classifiers m.

F.2 UCI results

For the magic dataset, Fig. 10 presents the conditional covariance matrix 1
2 (C+ +C−), which is unknown to us.

The group of SVM classifiers (12-16) are highly dependent, as well as the group of Naive Base classifiers (8-11).
The groups of Random Forest classifiers and logistic model trees are weakly dependent.

Fig. 11 presents an example of the estimated assignment function ĉ for the same dataset. The groups of SVM
classifiers were assigned together, as well as the Naive Base classifiers. Except for a single pair, the Random
Forest and logistic model trees were assigned to separate groups.
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Fig. 11: Magic database - The estimated group
return by our algorithm.

In figures 12,13 and 14 we present the results for the following 3 additional datasets from the UCI repository:

• Musk dataset - detection of certain types of molecules.

• Spam dataset - detection of spam from regular mail.

• Miniboo dataset - detection of electron neutrinos (signal) from muon neutrinos (background).

The base classifiers are identical to the ones used for the Magic dataset: (1) 4 Random Forest (2) 3 Logistic
Model Trees (3) 3 Naive Bayes (4) 4 SVM .

In figures 12-15, the x-axis is the L-SML balanced error, and the y-axis is the SML balanced error. The results
of multiple experiments, each time with the classifiers constructed using different random subset of labeled
examples, are presented as blue dots, while the red line represents the y = x line, i.e. when the error of the
L-SML and SML are the same. For the Magic dataset, figure 15, we add two lines which represent 2% and 4%
improvement over the standard SML.

We can see in the figures that the improvement due to explicit modeling of possible classifier dependencies is con-
sistent across all datasets. The amount of improvement changes, however from dataset to dataset. The following
table presents a summary of the different properties of the datasets together with the average improvement in
the balanced accuracy between the two methods.

Next, we compare the estimated error rates of the L-SML to the agreement based method (AR) proposed in [19].
Both methods were tested on the magic dataset, with the same ensemble described in Sec. 5.2. Fig. 16 presents
the estimated error versus. the true error rate for each of the classifiers in the ensemble. It can be seen that the
estimates of both methods contain a bias and are overly optimistic. However, the L-SML successfully identifies
the subsets of accurate and inaccurate classifiers.

Dataset Number of instances number of features Mean difference
Magic 19000 11 4%
Spam 4600 57 0.5%

Miniboo 130000 50 0.2%
Musk 6600 168 4.7%
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Fig. 12: UCI ’musk’ dataset, a comparison between
the balanced error of the SML and L-SML.
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Fig. 13: UCI spambase dataset, a comparison be-
tween the balanced error of the SML and L-SML.
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Fig. 14: UCI miniboo dataset, a comparison be-
tween the balanced error of the SML and L-SML.
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provement over the SML results.
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