Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

Conclusions

Mechanism Design via Differential Privacy

Frank McSherry, Kunal Talwar

Presented by: Lidor Avigad

Weizmann Institute

March 17, 2008

Preliminaries

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

Conclucione

- Differential Privacy: How to disclose general non-specific information, but hide information about a specific participant.
- Mechanism Design: The design and analysis of algorithms robust to strategic manipulation of their inputs by self-interested agents.

Preliminaries

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

- Differential Privacy: How to disclose general non-specific information, but hide information about a specific participant.
- Mechanism Design: The design and analysis of algorithms robust to strategic manipulation of their inputs by self-interested agents.

Differential Privacy

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

onclusion

Definition

A randomized function \mathcal{M} gives ϵ -differential privacy if for all data sets D_1 and D_2 differing on a single user, and all $S \subseteq Range(\mathcal{M})$:

$$Pr[\mathcal{M}(D_1) \in S] \leq e^{\epsilon} \cdot Pr[\mathcal{M}(D_2) \in S]$$

Note that:

- Any event S is not substantially more of less likely as a result of specific user participation.
- Any event that are unlikely of impossible without a specific user participation remains so after introducing the data to the computation.

Differential Privacy

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differentia Privacy Mechanisr

Applications to Pricing and Auctions

onclusion

Definition

A randomized function \mathcal{M} gives ϵ -differential privacy if for all data sets D_1 and D_2 differing on a single user, and all $S \subseteq Range(\mathcal{M})$:

$$Pr[\mathcal{M}(D_1) \in S] \leq e^{\epsilon} \cdot Pr[\mathcal{M}(D_2) \in S]$$

Note that:

- Any event S is not substantially more of less likely as a result of specific user participation.
- Any event that are unlikely of impossible without a specific user participation remains so after introducing the data to the computation.

Differential Privacy

Γitle

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanisn

Applications to Pricing and Auctions

Conclusio

Definition

A randomized function \mathcal{M} gives ϵ -differential privacy if for all data sets D_1 and D_2 differing on a single user, and all $S \subseteq Range(\mathcal{M})$:

$$Pr[\mathcal{M}(D_1) \in S] \leq e^{\epsilon} \cdot Pr[\mathcal{M}(D_2) \in S]$$

Note that:

- Any event S is not substantially more of less likely as a result of specific user participation.
- Any event that are unlikely of impossible without a specific user participation remains so after introducing the data to the computation.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

- Subfield of economics theory, interested in designing economics mechanism.
- The notion of social choice aggregation of the preferences of the different participants toward a single joint decision.
- Implement desired social choices in a strategic settings.
- Agents, often selfish, acts rationally.
- Few examples:
 - Auctions buyers and sellers the social choice: the identity of the winner.
 - Elections voters and candidates the social choice: the outcome of the elections.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

- Subfield of economics theory, interested in designing economics mechanism.
- The notion of social choice aggregation of the preferences of the different participants toward a single joint decision.
- Implement desired social choices in a strategic settings.
- Agents, often selfish, acts rationally.
- Few examples:
 - Auctions buyers and sellers the social choice: the identity of the winner.
 - Elections voters and candidates the social choice: the outcome of the elections.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

- Subfield of economics theory, interested in designing economics mechanism.
- The notion of social choice aggregation of the preferences of the different participants toward a single joint decision.
- Implement desired social choices in a strategic settings.
- Agents, often selfish, acts rationally.
- Few examples:
 - Auctions buyers and sellers the social choice: the identity of the winner.
 - Elections voters and candidates the social choice: the outcome of the elections.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

- Subfield of economics theory, interested in designing economics mechanism.
- The notion of social choice aggregation of the preferences of the different participants toward a single joint decision.
- Implement desired social choices in a strategic settings.
- Agents, often selfish, acts rationally.
- Few examples:
 - Auctions buyers and sellers the social choice: the identity of the winner.
 - Elections voters and candidates the social choice: the outcome of the elections.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

- Subfield of economics theory, interested in designing economics mechanism.
- The notion of social choice aggregation of the preferences of the different participants toward a single joint decision.
- Implement desired social choices in a strategic settings.
- Agents, often selfish, acts rationally.
- Few examples:
 - Auctions buyers and sellers the social choice: the identity of the winner.
 - Elections voters and candidates the social choice: the outcome of the elections.

Vickrey Auction

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and

Conclusions

Consider the following auction problem.

Example (Vickrey Auction)

Alice would like to sell on auction a picture. But she would like to sell it to the bidder which benefits most of it.

Vickrey Auction Solution

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and

Conclucione

Example (Vickrey Auction - Second Price Auction)

Alice will sell the picture to the highest bidder at the price of the **second highest** bid!

Vickrey Auction Theorem

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

`onclusions

Theorem

Let $w_1, ..., w_n$ be the bids of n bidders. Then for every $w_1, ..., w_n$ and every w_i' , let u_i be the i's utility if he bids w_i and u_i' his utility if he bids w_i' . Then $u_i \ge u_i'$

 The importance of truth telling in mechanism design as a concept.

Vickrey Auction Theorem

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

onclusions.

Theorem

Let $w_1, ..., w_n$ be the bids of n bidders. Then for every $w_1, ..., w_n$ and every w_i' , let u_i be the i's utility if he bids w_i and u_i' his utility if he bids w_i' . Then $u_i \ge u_i'$

 The importance of truth telling in mechanism design as a concept.

Title

Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

- A provider has unlimited number of good that it would like to sell at a given price: pay-per-view, music files etc'.
- The cost of production is almost zero.
- There are *n* bidders who would like to buy the goods.
- The more cheaper it costs the more items a bidder would buy.

Title

Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

- A provider has unlimited number of good that it would like to sell at a given price: pay-per-view, music files etc'.
- The cost of production is almost zero.
- There are *n* bidders who would like to buy the goods.
- The more cheaper it costs the more items a bidder would buy.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

- A provider has unlimited number of good that it would like to sell at a given price: pay-per-view, music files etc'.
- The cost of production is almost zero.
- There are *n* bidders who would like to buy the goods.
- The more cheaper it costs the more items a bidder would buy.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

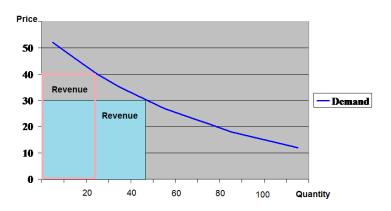
General Differential Privacy Mechanism

Applications to Pricing and Auctions

- A provider has unlimited number of good that it would like to sell at a given price: pay-per-view, music files etc'.
- The cost of production is almost zero.
- There are *n* bidders who would like to buy the goods.
- The more cheaper it costs the more items a bidder would buy.

Title

Preliminaries


Unlimited Supply auctions

Differential
Privacy as a
Solution
Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

anclucione

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

- A provider has unlimited number of good that it would like to sell at a given price, pay-per-view, digital goods etc'.
- There are *n* bidders. Each bidder *i* has a non-increasing demand curve $b_i : [0, 1] \to \mathbb{R}^+$.
- For price $p \in [0, 1]$ the provider can sell $\sum_{i=1}^{n} b_{i}(p)$.
- Yielding a profit of $q(b, p) = p \cdot \sum_{i=1}^{n} b_{i}(p)$ say dollars in revenue.
- Each bidder has limited resources $p \cdot b_i(p) \le 1$.

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

- A provider has unlimited number of good that it would like to sell at a given price, pay-per-view, digital goods etc'.
- There are *n* bidders. Each bidder *i* has a non-increasing demand curve $b_i : [0, 1] \to \mathbb{R}^+$.
- For price $p \in [0, 1]$ the provider can sell $\sum_{i=1}^{n} b_{i}(p)$.
- Yielding a profit of $q(b, p) = p \cdot \sum_{i=1}^{n} b_{i}(p)$ say dollars in revenue.
- Each bidder has limited resources $p \cdot b_i(p) \le 1$.

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

- A provider has unlimited number of good that it would like to sell at a given price, pay-per-view, digital goods etc'.
- There are *n* bidders. Each bidder *i* has a non-increasing demand curve $b_i : [0, 1] \to \mathbb{R}^+$.
- For price $p \in [0, 1]$ the provider can sell $\sum_{i=1}^{n} b_{i}(p)$.
- Yielding a profit of $q(b, p) = p \cdot \sum_{i=1}^{n} b_{i}(p)$ say dollars in revenue.
- Each bidder has limited resources $p \cdot b_i(p) \le 1$.

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

- A provider has unlimited number of good that it would like to sell at a given price, pay-per-view, digital goods etc'.
- There are *n* bidders. Each bidder *i* has a non-increasing demand curve $b_i : [0, 1] \to \mathbb{R}^+$.
- For price $p \in [0, 1]$ the provider can sell $\sum_{i=1}^{n} b_{i}(p)$.
- Yielding a profit of $q(b, p) = p \cdot \sum_{i=1}^{n} b_{i}(p)$ say dollars in revenue.
- Each bidder has limited resources $p \cdot b_i(p) \le 1$.

Title

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

- A provider has unlimited number of good that it would like to sell at a given price, pay-per-view, digital goods etc'.
- There are *n* bidders. Each bidder *i* has a non-increasing demand curve $b_i : [0, 1] \to \mathbb{R}^+$.
- For price $p \in [0, 1]$ the provider can sell $\sum_{i=1}^{n} b_{i}(p)$.
- Yielding a profit of $q(b, p) = p \cdot \sum_{i=1}^{n} b_{i}(p)$ say dollars in revenue.
- Each bidder has limited resources $p \cdot b_i(p) \le 1$.

Main Problem

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

Sensitive to bidder input!

Slight change can send bidders empty handed, thus reducing revenue!

Main Problem

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

Sensitive to bidder input!

Slight change can send bidders empty handed, thus reducing revenue!

Proposed Solution

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

Define:

$$q(b,p) = p \cdot \sum_{i}^{n} b_{i}(p)$$

Theorem

Selecting p according to this distribution yields almost optimal solution:

$$\varepsilon_{q}^{\epsilon}(\mathbf{b}) := choose \ p \ with \ probability \ \propto e^{\epsilon q(\mathbf{b},p)} \cdot p$$

Proposed Solution

Title

Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

conclusions

Define:

$$q(\mathbf{b}, \mathbf{p}) = \mathbf{p} \cdot \sum_{i}^{n} \mathbf{b}_{i}(\mathbf{p})$$

Theorem

Selecting p according to this distribution yields almost optimal solution:

$$\varepsilon_a^{\epsilon}(b) := choose \ p \ with \ probability \ \propto e^{\epsilon q(b,p)} \cdot p$$

Preliminaries

Unlimited Supply auctions

Privacy as a Solution Concept

General Differential Privacy Mechanism

to Pricing and Auctions

Conclusions

Why? We will prove general result.

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

Why? We will prove general result.

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

Differential Privacy Mechanism

to Pricing and

Conclucione

Cut ...

Title

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

- Approximate truthfulness ϵ -dominance, no agent has more then ϵ -additive incentive to reply non-truthfully.
- Collusion resistance resistance to coalitions.
- Compatibility robust under composition.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differentia Privacy Mechanisr

Applications to Pricing and Auctions

Conclusion

- Approximate truthfulness

 ε-dominance, no agent has more then ε-additive incentive to reply non-truthfully.
- Collusion resistance resistance to coalitions.
- Compatibility robust under composition.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differentia Privacy Mechanisr

Applications to Pricing and Auctions

conclusion

- Approximate truthfulness

 ε-dominance, no agent has more then ε-additive incentive to reply non-truthfully.
- Collusion resistance resistance to coalitions.
- Compatibility robust under composition

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differentia Privacy Mechanisr

Applications to Pricing and Auctions

Conclusio

- Approximate truthfulness

 ε-dominance, no agent has more then ε-additive incentive to reply non-truthfully.
- Collusion resistance resistance to coalitions.
- Compatibility robust under composition.

Approximate Truthfulness

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

onclusions.

Theorem

Any mechanism \mathcal{M} giving ϵ -differential privacy make truth telling $(e^{\epsilon} - 1)$ -dominant strategy for any utility function $u : Range(\mathcal{M}) \to [0, 1]$.

Approximate Truthfulness - Proof

ritie

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanisn

Applications to Pricing and Auctions

Conclusions

Following from this lemma:

Lemma (Approximate Truthfulness)

For any mechanism \mathcal{M} giving ϵ -differential privacy and any non-negative function $g: Range(\mathcal{M}) \to \mathbb{R}^+$, for any D_1 and D_2 differing on single input

$$\mathbb{E}[g(\mathcal{M}(D_1))] \leq e^{\epsilon} \cdot \mathbb{E}[g(\mathcal{M}(D_2))]$$

Collusion Resistance

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanisn

Applications to Pricing and Auctions

onclusions

Theorem

For any mechanism \mathcal{M} giving ϵ -differential privacy and any non-negative function $g: Range(\mathcal{M}) \to \mathbb{R}^+$, for any D_1 and D_2 differing on at most t inputs

$$\mathbb{E}[g(\mathcal{M}(D_1))] \leq e^{\epsilon t} \cdot \mathbb{E}[g(\mathcal{M}(D_2))]$$

- When *g* is is the sum of the utility functions of *t* agents.
- Side payments are irrelevant.

Collusion Resistance

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanisn

Applications
o Pricing and
Auctions

Conclusions

Theorem

For any mechanism \mathcal{M} giving ϵ -differential privacy and any non-negative function $g: Range(\mathcal{M}) \to \mathbb{R}^+$, for any D_1 and D_2 differing on at most t inputs

$$\mathbb{E}[g(\mathcal{M}(D_1))] \leq e^{\epsilon t} \cdot \mathbb{E}[g(\mathcal{M}(D_2))]$$

- When g is is the sum of the utility functions of t agents.
- Side payments are irrelevant.

Collusion Resistance

Title

Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanisn

Applications to Pricing and Auctions

onclusions

Theorem

For any mechanism \mathcal{M} giving ϵ -differential privacy and any non-negative function $g: Range(\mathcal{M}) \to \mathbb{R}^+$, for any D_1 and D_2 differing on at most t inputs

$$\mathbb{E}[g(\mathcal{M}(D_1))] \leq e^{\epsilon t} \cdot \mathbb{E}[g(\mathcal{M}(D_2))]$$

- When g is is the sum of the utility functions of t agents.
- Side payments are irrelevant.

Compatibility

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

`onclusions

Theorem

The sequential application of mechanisms $\{\mathcal{M}_i\}$, each giving $\{\epsilon_i\}$ -differential privacy, gives $\sum_i \epsilon_i$ -differential privacy.

Agent cannot skew the result effectively over time.

The Goal of Privacy Mechanism

Privacy mechanism \mathcal{M} maps randomly n inputs from domain \mathcal{D} into range \mathcal{R} assuming measure μ on \mathcal{R} .

$$\mathcal{M}:\mathcal{D}^n \to \mathcal{R}$$

Also define a query function q

$$q:\mathcal{D}^n imes\mathcal{R} o\mathbb{R}$$

The higher, the better.

The goal of \mathcal{M} : when given $d \in \mathcal{D}^n$ return $r^* \in \mathcal{R}$ s.t.

$$r^* := \max_{r \in \mathcal{R}} \{q(d, r)\}$$

while quaranteeing differential privacy

Preliminaries

Supply auctions

Privacy as a Solution

General Differential Privacy Mechanism

Auctions

The Goal of Privacy Mechanism

Privacy mechanism \mathcal{M} maps randomly n inputs from domain \mathcal{D} into range \mathcal{R} assuming measure μ on \mathcal{R} .

$$\mathcal{M}:\mathcal{D}^n \to \mathcal{R}$$

Also define a query function q

$$\mathbf{q}:\mathcal{D}^n\times\mathcal{R}\to\mathbb{R}$$

The higher, the better.

The goal of \mathcal{M} : when given $d \in \mathcal{D}^n$ return $r^* \in \mathcal{R}$ s.t.

$$r^* := \max_{r \in \mathcal{R}} \{q(d, r)\}$$

while guaranteeing differential privacy

Preliminaries

Unlimited Supply auctions

Privacy as a Solution Concept

General Differential Privacy Mechanism

to Pricing and Auctions

The Goal of Privacy Mechanism

Privacy mechanism \mathcal{M} maps randomly n inputs from domain \mathcal{D} into range \mathcal{R} assuming measure μ on \mathcal{R} .

$$\mathcal{M}:\mathcal{D}^n\to\mathcal{R}$$

Also define a query function q

$$\mathbf{q}: \mathcal{D}^n \times \mathcal{R} \to \mathbb{R}$$

The higher, the better.

The goal of \mathcal{M} : when given $d \in \mathcal{D}^n$ return $r^* \in \mathcal{R}$ s.t.

$$r^* := \max_{r \in \mathcal{R}} \{ q(d, r) \}$$

while guaranteeing differential privacy

Preliminaries

Supply auctions

Differential
Privacy as a
Solution
Concept

General
Differential
Privacy
Mechanism

to Pricing and Auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

Definition

For any function $q:\mathcal{D}^n \times \mathcal{R} \to \mathbb{R}$, and base measure μ over \mathcal{R} define:

$$\varepsilon_q^{\epsilon}(d) := \text{choose } r \text{ with probability } \propto e^{\epsilon q(d,r)} \cdot \mu(r)$$

Note that:

- Small additive change to q(d, r) has a limited multiplicative influence (as in differential privacy).
- The probability associated with r increases exponentially biasing the distribution towards the optimum.

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

Definition

For any function $q:\mathcal{D}^n\times\mathcal{R}\to\mathbb{R}$, and base measure μ over \mathcal{R} define:

$$\varepsilon_q^{\epsilon}(d) := \text{choose } r \text{ with probability } \propto e^{\epsilon q(d,r)} \cdot \mu(r)$$

Note that:

- Small additive change to q(d, r) has a limited multiplicative influence (as in differential privacy).
- The probability associated with r increases exponentially biasing the distribution towards the optimum.

Conclusions

Definition

For any function $q:\mathcal{D}^n\times\mathcal{R}\to\mathbb{R}$, and base measure μ over \mathcal{R} define:

$$\varepsilon_q^{\epsilon}(d) := \text{choose } r \text{ with probability } \propto e^{\epsilon q(d,r)} \cdot \mu(r)$$

Note that:

- Small additive change to q(d, r) has a limited multiplicative influence (as in differential privacy).
- The probability associated with r increases exponentially biasing the distribution towards the optimum.

Privacy

Theorem

 $\varepsilon_q^{\epsilon}(d)$ gives $(2\epsilon\Delta q)$ differential privacy, where Δq is the largest possible difference in the query function on inputs that differ on single value.

Proof.

By definition the density of $\varepsilon_q^{\epsilon}(d)$ at r is:

$$\frac{e^{\epsilon q(d,r)} \cdot \mu(r)}{\int_{r} e^{\epsilon q(d,r)} \cdot \mu(r) dr} \le e^{2\epsilon \Delta q} \frac{e^{\epsilon q(d^*,r)} \cdot \mu(r)}{\int_{r} e^{\epsilon q(d^*,r)} \cdot \mu(r) dr}$$

 $max_r\{q(d_1,r)-q(d_2,r)|d_1,d_2 \text{ differs on one value}\} = \Delta q$

The minimum is $-\Delta q$.

Plug into the enumerator and denominator resp.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Privacy

Theorem

 $\varepsilon_q^{\epsilon}(d)$ gives $(2\epsilon\Delta q)$ differential privacy, where Δq is the largest possible difference in the query function on inputs that differ on single value.

Proof.

By definition the density of $\varepsilon_{\mathbf{q}}^{\epsilon}(\mathbf{d})$ at r is:

$$\frac{e^{\epsilon q(d,r)} \cdot \mu(r)}{\int_r e^{\epsilon q(d,r)} \cdot \mu(r) dr} \leq e^{2\epsilon \Delta q} \frac{e^{\epsilon q(d^*,r)} \cdot \mu(r)}{\int_r e^{\epsilon q(d^*,r)} \cdot \mu(r) dr}$$

 $max_r\{q(d_1, r) - q(d_2, r) | d_1, d_2 \text{ differs on one value}\} = \Delta q$

The minimum is $-\Delta q$.

Plug into the enumerator and denominator resp.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

Conclusio

Accuracy

Define $\mu(A)$ for $A \subseteq \mathcal{R}$ the base measure normalized. Define p(A) the measure defined by $\varepsilon_q^{\epsilon}(d)$ normalized.

Lemma

Let $S_t = \{r \mid q(d,r) > OPT - t\}$, then $p(\overline{S}_{2t}) \leq \frac{e^{-\epsilon t}}{\mu(S_t)}$, where OPT is $max_r\{q(d,r)\}$.

Proof.

$$p(\overline{S}_{2t}) \leq \frac{p(S_{2t})}{p(S_t)}$$

$$= \frac{\int_{\overline{S}_{2t}} e^{\epsilon q(d,r)} \mu(r) dr}{\int_{S_t} e^{\epsilon q(d,r)} \mu(r) dr} \leq e^{-\epsilon t} \cdot \frac{\mu(\overline{S}_{2t})}{\mu(S_t)} \leq \frac{e^{-\epsilon t}}{\mu(S_t)}$$

Title

Preliminaries

Unlimited Supply auctions

Differential
Privacy as a
Solution
Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Accuracy

Define $\mu(A)$ for $A \subseteq \mathcal{R}$ the base measure normalized. Define p(A) the measure defined by $\varepsilon_{\sigma}^{\epsilon}(d)$ normalized.

Lemma

Let $S_t = \{r \mid q(d,r) > OPT - t\}$, then $p(\overline{S}_{2t}) \leq \frac{e^{-\epsilon t}}{\mu(S_t)}$, where OPT is $max_r\{q(d,r)\}$.

Proof.

$$\begin{aligned}
\rho(\overline{S}_{2t}) &\leq \frac{p(\overline{S}_{2t})}{p(S_t)} \\
&= \frac{\int_{\overline{S}_{2t}} e^{\epsilon q(d,r)} \mu(r) dr}{\int_{S_t} e^{\epsilon q(d,r)} \mu(r) dr} \leq e^{-\epsilon t} \cdot \frac{\mu(\overline{S}_{2t})}{\mu(S_t)} \leq \frac{e^{-\epsilon t}}{\mu(S_t)}
\end{aligned}$$

Title

Preliminarie

Supply auctions

Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Accuracy Theorem

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

onclusions

Theorem

For those values of t satisfying $t \ge \epsilon^{-1} \ln \frac{OPT}{t\mu(S_t)}$ we have $\mathbb{E}[q(d, \varepsilon_q^{\epsilon}(d))] \ge OPT - 3t$.

Proof.

From previous lemma: $p(S_{2t}) > 1 - \frac{e^{-\epsilon t}}{\mu(S_t)}$ Substitute t: $p(S_{2t}) > 1 - \frac{1}{\epsilon RT}$.

$$\mathbb{E}[q(d,arepsilon_q^\epsilon(d))] \geq (1-rac{t}{OPT})(OPT-2t) \geq OPT-3t$$

Accuracy Theorem

Title

Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

conclusions

Theorem

For those values of t satisfying $t \ge \epsilon^{-1} \ln \frac{OPT}{t\mu(S_t)}$ we have $\mathbb{E}[q(d, \varepsilon_q^{\epsilon}(d))] \ge OPT - 3t$.

Proof.

From previous lemma: $p(S_{2t}) > 1 - \frac{e^{-\epsilon t}}{\mu(S_t)}$.

Substitute t: $p(S_{2t}) > 1 - \frac{t}{OPT}$.

$$\mathbb{E}[q(d, \varepsilon_{o}^{\epsilon}(d))] \geq (1 - \frac{t}{OPT})(OPT - 2t) \geq OPT - 3t$$

Accuracy Implications

Title

Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

Recall:

Theorem

For those values of t satisfying $t \ge \epsilon^{-1} \ln \frac{OPT}{t\mu(S_t)}$ we have $\mathbb{E}[q(d, \varepsilon_q^{\epsilon}(d))] \ge OPT - 3t$.

The implications are:

- Central parameter: $\mu(S_t)$ defines how large we must take t so our exponential bias can overcome the small size of $\mu(S_t)$.
- In case of discrete $\mathcal R$ a uniform μ makes $\mu(S_t) \geq \frac{1}{|\mathcal R|}$.

Accuracy Implications

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

Recall:

Theorem

For those values of t satisfying $t \ge \epsilon^{-1} \ln \frac{OPT}{t\mu(S_t)}$ we have $\mathbb{E}[q(d, \varepsilon_q^{\epsilon}(d))] \ge OPT - 3t$.

The implications are:

- Central parameter: $\mu(S_t)$ defines how large we must take t so our exponential bias can overcome the small size of $\mu(S_t)$.
- In case of discrete \mathcal{R} a uniform μ makes $\mu(S_t) \geq \frac{1}{|\mathcal{R}|}$.

Accuracy Implications

Recall:

Theorem

For those values of t satisfying $t \ge \epsilon^{-1} \ln \frac{OPT}{t\mu(S_t)}$ we have $\mathbb{E}[q(d, \varepsilon_q^{\epsilon}(d))] \ge OPT - 3t$.

The implications are:

- Central parameter: $\mu(S_t)$ defines how large we must take t so our exponential bias can overcome the small size of $\mu(S_t)$.
- In case of discrete \mathcal{R} a uniform μ makes $\mu(S_t) \geq \frac{1}{|\mathcal{R}|}$.

Preliminarie

Unlimited Supply auctions

Privacy as a Solution Concept

General

Differential

Privacy Mechanism Applications to Pricing and

Proof of Unlimited Supply Auction

TITIE

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanisn

Applications to Pricing and Auctions

Conclusions

Theorem

Taking:

$$q(\mathbf{b}, \mathbf{p}) = \mathbf{p} \cdot \sum_{i}^{n} \mathbf{b}_{i}(\mathbf{p})$$

the mechanism $\varepsilon_q^{\epsilon}(d)$ gives 2ϵ -differential privacy and has expected revenue at least OPT $-3\epsilon^{-1} \ln(e + \epsilon^2 OPTm)$

Conclusions

Privacy:

Proof.

Privacy follows since bidder *i* can change q(b, p) at most by $p \cdot b_i(p) \le 1$. Using privacy theorem.

Revenue:

Proof.

Take
$$t = \epsilon^{-1} \ln (e + \epsilon^2 OPTm)$$
.

Applications to Pricing and Auctions

conclusions

Privacy:

Proof.

Privacy follows since bidder *i* can change q(b, p) at most by $p \cdot b_i(p) \le 1$. Using privacy theorem.

Revenue

Proof

Take
$$t = \epsilon^{-1} \ln (e + \epsilon^2 OPTm)$$
.

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanisn

Applications to Pricing and Auctions

Conclusions

Privacy:

Proof.

Privacy follows since bidder *i* can change q(b, p) at most by $p \cdot b_i(p) \le 1$. Using privacy theorem.

Revenue:

Proof

Take
$$t = \epsilon^{-1} \ln (e + \epsilon^2 OPTm)$$
.

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

Conclusions

Privacy:

Proof.

Privacy follows since bidder *i* can change q(b, p) at most by $p \cdot b_i(p) \le 1$. Using privacy theorem.

Revenue:

Proof.

Take
$$t = \epsilon^{-1} \ln (e + \epsilon^2 OPTm)$$
.

• The bidders has attributes like: age, income etc'.

• The market can be segmented according these properties resulting different pricing policies.

- SEG_k the number of permitted segmentation of n users to k market.
- OPT_k the optimal revenue with the markets segmented into k parts.

Theorem

Taking q to be the revenue function over segmentations into k markets and their prices, $\varepsilon_q^{\epsilon}(d)$ has expected revenue is at least $OPT_k - 3\epsilon^{-1} \ln{(e + \epsilon^{k+1} OPT_k SEG_k m^k)}$

Title

Preliminarie

Unlimited Supply auctions

Differential
Privacy as a
Solution
Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

- The bidders has attributes like: age, income etc'.
- The market can be segmented according these properties resulting different pricing policies.
- SEG_k the number of permitted segmentation of n users to k market.
- OPT_k the optimal revenue with the markets segmented into k parts.

Theorem

Taking **q** to be the revenue function over segmentations into k markets and their prices, $\varepsilon_q^{\epsilon}(d)$ has expected revenue is at least $OPT_k - 3\epsilon^{-1} \ln{(e + \epsilon^{k+1} OPT_k SEG_k m^k)}$

1 4 7 1 7 7 7 7 7 7 7 7 7

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanisn

Applications to Pricing and Auctions

- The bidders has attributes like: age, income etc'.
- The market can be segmented according these properties resulting different pricing policies.
- SEG_k the number of permitted segmentation of n users to k market.
- OPT_k the optimal revenue with the markets segmented into k parts.

Theorem

Taking q to be the revenue function over segmentations into k markets and their prices, $\varepsilon_q^{\epsilon}(d)$ has expected revenue is at least $OPT_k - 3\epsilon^{-1} \ln{(e + \epsilon^{k+1} OPT_k SEG_k m^k)}$

4 L P 4 C P 4 L P 4 L P 14 C

Title

Preliminarie

Unlimited Supply auctions

Differential
Privacy as a
Solution
Concept

General
Differential
Privacy
Mechanisn

Applications to Pricing and Auctions

• The bidders has attributes like: age, income etc'.

 The market can be segmented according these properties resulting different pricing policies.

- SEG_k the number of permitted segmentation of n users to k market.
- OPT_k the optimal revenue with the markets segmented into k parts.

Theorem

Taking q to be the revenue function over segmentations into k markets and their prices, $\varepsilon_q^{\epsilon}(d)$ has expected revenue is at least $OPT_k - 3\epsilon^{-1} \ln{(e + \epsilon^{k+1} OPT_k SEG_k m^k)}$

4 L P 4 C P 4 L P 4 L P 14 C

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanisn

Applications to Pricing and Auctions

- The bidders has attributes like: age, income etc'.
- The market can be segmented according these properties resulting different pricing policies.
- SEG_k the number of permitted segmentation of n users to k market.
- OPT_k the optimal revenue with the markets segmented into k parts.

Theorem

Taking q to be the revenue function over segmentations into k markets and their prices, $\varepsilon_q^{\epsilon}(d)$ has expected revenue is at least $OPT_k - 3\epsilon^{-1} \ln{(e + \epsilon^{k+1} OPT_k SEG_k m^k)}$

- Title
- Preliminarie
- Unlimited Supply auctions
- Differential
 Privacy as a
 Solution
 Concept
- General
 Differential
 Privacy
 Mechanisn
- Applications to Pricing and Auctions
- Conclusi

Litle

Preliminaries

Unlimited Supply auctions

Differential
Privacy as a
Solution
Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

Conclusions

- "Truthfulness" is solution concept for mechanism design.
- Helps to design mechanism in complex environment, for example recourse.
- Simplifies the analysis of mechanism.
- Differential privacy leads to relaxation of truthfulness.
 There incentive to misrepresent a value is non-zero, but tightly controlled.
- Can handle collisions and repeated runs.
- Address problem that cannot be addressed with strict truthfulness as the unlimited supply pricing problem.

Title

Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanism

Applications to Pricing and Auctions

Conclusions

- "Truthfulness" is solution concept for mechanism design.
- Helps to design mechanism in complex environment, for example recourse.
- Simplifies the analysis of mechanism.
- Differential privacy leads to relaxation of truthfulness.
 There incentive to misrepresent a value is non-zero, but tightly controlled.
- Can handle collisions and repeated runs.
- Address problem that cannot be addressed with strict truthfulness as the unlimited supply pricing problem.

Title

Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

- "Truthfulness" is solution concept for mechanism design.
- Helps to design mechanism in complex environment, for example recourse.
- Simplifies the analysis of mechanism.
- Differential privacy leads to relaxation of truthfulness.
 There incentive to misrepresent a value is non-zero, butightly controlled.
- Can handle collisions and repeated runs.
- Address problem that cannot be addressed with strict truthfulness as the unlimited supply pricing problem.

Litle

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

- "Truthfulness" is solution concept for mechanism design.
- Helps to design mechanism in complex environment, for example recourse.
- Simplifies the analysis of mechanism.
- Differential privacy leads to relaxation of truthfulness.
 There incentive to misrepresent a value is non-zero, but tightly controlled.
- Can handle collisions and repeated runs.
- Address problem that cannot be addressed with strict truthfulness as the unlimited supply pricing problem.

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

- "Truthfulness" is solution concept for mechanism design.
- Helps to design mechanism in complex environment, for example recourse.
- Simplifies the analysis of mechanism.
- Differential privacy leads to relaxation of truthfulness.
 There incentive to misrepresent a value is non-zero, but tightly controlled.
- Can handle collisions and repeated runs.
- Address problem that cannot be addressed with strict truthfulness as the unlimited supply pricing problem.

Title

Preliminarie

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

Differential Privacy as a Solution Concept:

- "Truthfulness" is solution concept for mechanism design.
- Helps to design mechanism in complex environment, for example recourse.
- Simplifies the analysis of mechanism.
- Differential privacy leads to relaxation of truthfulness.
 There incentive to misrepresent a value is non-zero, but tightly controlled.
- Can handle collisions and repeated runs.
- Address problem that cannot be addressed with strict truthfulness as the unlimited supply pricing problem.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General
Differential
Privacy
Mechanisn

Applications to Pricing and Auctions

Conclusions

Differential Privacy as a Solution Concept:

- "Truthfulness" is solution concept for mechanism design.
- Helps to design mechanism in complex environment, for example recourse.
- Simplifies the analysis of mechanism.
- Differential privacy leads to relaxation of truthfulness.
 There incentive to misrepresent a value is non-zero, but tightly controlled.
- Can handle collisions and repeated runs.
- Address problem that cannot be addressed with strict truthfulness as the unlimited supply pricing problem.

Title

Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

- Previous approaches to differential privacy focus on real valued insensitive functions.
- Sensitive functions as in unlimited supply auction.
 Single bidder can make difference.
- Other problem domains with non-numeric output: classifiers in machine learning, route flow etc'.
- The framework will address this issues producing privacy preserving mechanism if given suitable measurable range.

Title

Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

- Previous approaches to differential privacy focus on real valued insensitive functions.
- Sensitive functions as in unlimited supply auction.
 Single bidder can make difference.
- Other problem domains with non-numeric output: classifiers in machine learning, route flow etc'.
- The framework will address this issues producing privacy preserving mechanism if given suitable measurable range.

Title

Preliminarie

Unlimited Supply auctions

Differential
Privacy as a
Solution
Concept

General Differential Privacy Mechanisn

Applications to Pricing and Auctions

Conclusions

- Previous approaches to differential privacy focus on real valued insensitive functions.
- Sensitive functions as in unlimited supply auction.
 Single bidder can make difference.
- Other problem domains with non-numeric output: classifiers in machine learning, route flow etc'.
- The framework will address this issues producing privacy preserving mechanism if given suitable measurable range.

Title

Preliminarie

Unlimited Supply auctions

Differential
Privacy as a
Solution
Concept

General Differential Privacy Mechanisn

Applications to Pricing and Auctions

Conclusions

- Previous approaches to differential privacy focus on real valued insensitive functions.
- Sensitive functions as in unlimited supply auction.
 Single bidder can make difference.
- Other problem domains with non-numeric output: classifiers in machine learning, route flow etc'.
- The framework will address this issues producing privacy preserving mechanism if given suitable measurable range.

Litle

Preliminarie

Unlimited Supply auctions

Differential
Privacy as a
Solution
Concept

General Differential Privacy Mechanisn

Applications to Pricing and Auctions

Conclusions

- Previous approaches to differential privacy focus on real valued insensitive functions.
- Sensitive functions as in unlimited supply auction.
 Single bidder can make difference.
- Other problem domains with non-numeric output: classifiers in machine learning, route flow etc'.
- The framework will address this issues producing privacy preserving mechanism if given suitable measurable range.

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution

General Differential Privacy Mechanism

Applications to Pricing an Auctions

Conclusions

• Applications to Digital Goods Auctions:

- Unlimited supply auction.
- Attribute Auctions

Title

Preliminarie:

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differentia Privacy

Applications to Pricing ar

Conclusions

- Applications to Digital Goods Auctions:
 - Unlimited supply auction.
 - Attribute Auctions

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as Solution

General
Differentia
Privacy
Mochanism

Applications to Pricing an Auctions

Conclusions

Applications to Digital Goods Auctions:

- Unlimited supply auction.
- Attribute Auctions

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution Concept

General Differential Privacy Mechanism

Applications to Pricing and Auctions

Conclusions

Questions?

Thank You!

Title

Preliminaries

Unlimited Supply auctions

Differential Privacy as a Solution

General Differential

Applications

Conclusions

Questions?

Thank You!