Title

Introductio

Instance
Based
Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

Smooth Sensitivity and Sampling in Private Data Analysis

Sofya Raskhodnikova ,Kobbi Nissim, Adam Smith Presented by: Lidor Avigad

Weizmann Institute

March 17, 2008

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- A client would like to calculate some function on database.
- The function should not reveal any specific information about any user.
- We mask the real output by noise function.
- But the result should be reasonable accurate.

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- A client would like to calculate some function on database.
- The function should not reveal any specific information about any user.
- We mask the real output by noise function.
- But the result should be reasonable accurate.

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- A client would like to calculate some function on database.
- The function should not reveal any specific information about any user.
- We mask the real output by noise function.
- But the result should be reasonable accurate.

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- A client would like to calculate some function on database.
- The function should not reveal any specific information about any user.
- We mask the real output by noise function.
- But the result should be reasonable accurate.

Privacy Definition

litle

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

Definition:

Definition (Indistinguishability)

A randomized algorithm \mathcal{A} , is (ϵ, δ) -indistinguishable if for all $x, y \in D^n$ satisfying d(x, y) = 1, and for all sets S of possible outputs:

$$Pr[A(x) \in S] \le e^{\epsilon} \cdot Pr[A(y) \in S] + \delta$$

where δ is negligible function of n.

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- No individual has a pronounced effect on the statistics published by the server.
- Can be considered as a client-server interaction. Each step calculation some function f on database:
 - Composes smoothly t rounds each individually ϵ -indistinguishable is $t\epsilon$ -indistinguishable.
 - will consider only 1-round protocols.

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- No individual has a pronounced effect on the statistics published by the server.
- Can be considered as a client-server interaction. Each step calculation some function f on database:
 - Composes smoothly t rounds each individually ϵ -indistinguishable is $t\epsilon$ -indistinguishable.
 - will consider only 1-round protocols.

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- No individual has a pronounced effect on the statistics published by the server.
- Can be considered as a client-server interaction. Each step calculation some function f on database:
 - Composes smoothly t rounds each individually ϵ -indistinguishable is $t\epsilon$ -indistinguishable.
 - will consider only 1-round protocols.

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- No individual has a pronounced effect on the statistics published by the server.
- Can be considered as a client-server interaction. Each step calculation some function f on database:
 - Composes smoothly t rounds each individually ϵ -indistinguishable is $t\epsilon$ -indistinguishable.
 - will consider only 1-round protocols.

Calibrating Noise to Sensitivity

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- The use of output *perturbation*. Adding random noise to mask the private information.
- Outputting : f(x) + Y where Y is the random noise added.

Definition (Global Sensitivity)

For $f: D^n \to \mathbb{R}^d$, the global sensitivity of f is:

$$GS_f = \max_{x,y:d(x,y)=1} \parallel f(x) - f(y) \parallel$$

where $\|\cdot\| = \|\cdot\|_1$.

Calibrating Noise to Sensitivity

ı itle

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- The use of output *perturbation*. Adding random noise to mask the private information.
- Outputting : f(x) + Y where Y is the random noise added.

Definition (Global Sensitivity)

For $f: D^n \to \mathbb{R}^d$, the global sensitivity of f is:

$$GS_f = \max_{x,y:d(x,y)=1} \parallel f(x) - f(y) \parallel$$

where $||\cdot|| = ||\cdot||_1$.

Calibrating Noise to Sensitivity

ııtıe

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- The use of output *perturbation*. Adding random noise to mask the private information.
- Outputting : f(x) + Y where Y is the random noise added.

Definition (Global Sensitivity)

For $f: D^n \to \mathbb{R}^d$, the global sensitivity of f is:

$$GS_f = \max_{x,y:d(x,y)=1} \parallel f(x) - f(y) \parallel$$

where $\|\cdot\| = \|\cdot\|_1$.

- Theorem: for $f: D^n \to \mathbb{R}^d$, $\mathcal{A}(x) = f(x) + (Y_1, ..., Y_d)$ where $Y_i \sim Lap(GS_f/\epsilon)$ is ϵ -indistinguishable.
- Yields two generic approaches to construction A(x):
 - Show that GS_f is low so can be added directly on f(x).
 - Express f(x) in term of functions $g_1, g_2, ...$ with low global sensitivity. Then analyze how noisy answers $g_1, g_2, ...$ interfere with computation of f(x)
- Approaches are productive to many functions: Principle component analysis, the Perceptron algorithm, k-means, learning ID3 decision trees, statistical learning and many more.

- Theorem: for $f: D^n \to \mathbb{R}^d$, $\mathcal{A}(x) = f(x) + (Y_1, ..., Y_d)$ where $Y_i \sim Lap(GS_f/\epsilon)$ is ϵ -indistinguishable.
- Yields two generic approaches to construction A(x):
 - Show that GS_f is low so can be added directly on f(x).
 - Express f(x) in term of functions $g_1, g_2, ...$ with low global sensitivity. Then analyze how noisy answers $g_1, g_2, ...$ interfere with computation of f(x)
- Approaches are productive to many functions: Principle component analysis, the Perceptron algorithm, k-means, learning ID3 decision trees, statistical learning and many more.

- Theorem: for $f: D^n \to \mathbb{R}^d$, $\mathcal{A}(x) = f(x) + (Y_1, ..., Y_d)$ where $Y_i \sim Lap(GS_f/\epsilon)$ is ϵ -indistinguishable.
- Yields two generic approaches to construction A(x):
 - Show that GS_f is low so can be added directly on f(x).
 - Express f(x) in term of functions $g_1, g_2, ...$ with low global sensitivity. Then analyze how noisy answers $g_1, g_2, ...$ interfere with computation of f(x)
- Approaches are productive to many functions: Principle component analysis, the Perceptron algorithm, k-means, learning ID3 decision trees, statistical learning and many more.

- Theorem: for $f: D^n \to \mathbb{R}^d$, $\mathcal{A}(x) = f(x) + (Y_1, ..., Y_d)$ where $Y_i \sim Lap(GS_f/\epsilon)$ is ϵ -indistinguishable.
- Yields two generic approaches to construction A(x):
 - Show that GS_f is low so can be added directly on f(x).
 - Express f(x) in term of functions $g_1, g_2, ...$ with low global sensitivity. Then analyze how noisy answers $g_1, g_2, ...$ interfere with computation of f(x)
- Approaches are productive to many functions: Principle component analysis, the Perceptron algorithm, k-means, learning ID3 decision trees, statistical learning and many more.

Computing Smooth Sensitivity

Sample Aggregate Framework

- Theorem: for $f: D^n \to \mathbb{R}^d$, $\mathcal{A}(x) = f(x) + (Y_1, ..., Y_d)$ where $Y_i \sim Lap(GS_f/\epsilon)$ is ϵ -indistinguishable.
- Yields two generic approaches to construction A(x):
 - Show that GS_f is low so can be added directly on f(x).
 - Express f(x) in term of functions $g_1, g_2, ...$ with low global sensitivity. Then analyze how noisy answers $g_1, g_2, ...$ interfere with computation of f(x)
- Approaches are productive to many functions: Principle component analysis, the Perceptron algorithm, k-means, learning ID3 decision trees, statistical learning and many more.

Global Sensitivity - Drawbacks

litle

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- The global sensitivity does not consider the instance of the database.
- Yields high noise that might destroy the output.
 Examples to follow...
- Worst case scenario.

Global Sensitivity - Drawbacks

Litle

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- The global sensitivity does not consider the instance of the database.
- Yields high noise that might destroy the output.
 Examples to follow...
- Worst case scenario.

Global Sensitivity - Drawbacks

litle

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- The global sensitivity does not consider the instance of the database.
- Yields high noise that might destroy the output.
 Examples to follow...
- Worst case scenario.

Title

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

 Would like to add noise according to the database instance.

- We add less noise. i.e. tailored noise.
- "Average" case scenario.

Definition (Local Sensitivity)

For $f: D^n \to \mathbb{R}^d$, the local sensitivity of f at x is

$$LS_f(x) = \max_{y:d(x,y)=1} || f(x) - f(y) ||$$

Title

Introductio

Instance Based Additive Noise

Smooth Sensitivity

Sample Aggregate Framework

Conclusions

 Would like to add noise according to the database instance.

- We add less noise. i.e. tailored noise.
- "Average" case scenario.

Definition (Local Sensitivity)

For $f: D^n \to \mathbb{R}^d$, the local sensitivity of f at x is

$$LS_f(x) = \max_{y:d(x,y)=1} || f(x) - f(y) ||$$

Title

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Would like to add noise according to the database instance.
- We add less noise. i.e. tailored noise.
- "Average" case scenario.

Definition (Local Sensitivity)

For $f: D^n \to \mathbb{R}^d$, the local sensitivity of f at x is

$$LS_f(x) = \max_{y:d(x,y)=1} || f(x) - f(y) ||$$

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Would like to add noise according to the database instance.
- We add less noise. i.e. tailored noise.
- "Average" case scenario.

Definition (Local Sensitivity)

For $f: D^n \to \mathbb{R}^d$, the local sensitivity of f at x is:

$$LS_f(x) = \max_{y:d(x,y)=1} \parallel f(x) - f(y) \parallel$$

Local Sensitivity - Remarks

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclucione

- Note that $GS_f = \max_x LS_f(x)$.
- Would like noise magnitude proportional to $LS_f(x)$. Cannot be added directly-too naive.
- Sometimes hard to calculate.

Local Sensitivity - Remarks

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- Note that $GS_f = \max_x LS_f(x)$.
- Would like noise magnitude proportional to $LS_f(x)$. Cannot be added directly-too naive.
- Sometimes hard to calculate.

Local Sensitivity - Remarks

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- Note that $GS_f = \max_x LS_f(x)$.
- Would like noise magnitude proportional to $LS_f(x)$. Cannot be added directly-too naive.
- Sometimes hard to calculate.

Example

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Worst case: $GS_{f_{med}} = \Lambda$.
- On 'typical' inputs f_{med} is not very sensitive: $LS_f = max\{x_m - x_{m-1}, x_{m+1} - x_m\}.$
- Would like noise magnitude to be proportional $LS_{f(x)}$. However the noise level can reveal information:
 - Consider case: $f_{med}(x) = 0$ and $f_{med}(y) = \Lambda$ s.t. d(x, y) = 1.
 - In the first case the probability to get non-zero median is exactly 0.
 - In the second case the probability to get non-zero median is > 0.
 - No differential privacy: $Pr[y \in S] > Pr[x \in S]$ where S is the event "getting non zero median".

Example

Introduction

Instance

Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Worst case: $GS_{f_{med}} = \Lambda$.
- On 'typical' inputs f_{med} is not very sensitive: $LS_{f} = max\{x_m - x_{m-1}, x_{m+1} - x_m\}.$
- Would like noise magnitude to be proportional $LS_{f(x)}$. However the noise level can reveal information:
 - Consider case: $f_{med}(x) = 0$ and $f_{med}(y) = \Lambda$ s.t. d(x, y) = 1.
 - In the first case the probability to get non-zero median is exactly 0.
 - In the second case the probability to get non-zero median is > 0.
 - No differential privacy: $Pr[y \in S] > Pr[x \in S]$ where S is the event "getting non zero median".

Example

Introduction

iiiti oddotioi

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Worst case: $GS_{f_{med}} = \Lambda$.
- On 'typical' inputs f_{med} is not very sensitive: $LS_{f_{med}} = max\{x_m x_{m-1}, x_{m+1} x_m\}.$
- Would like noise magnitude to be proportional $LS_{f(x)}$. However the noise level can reveal information:
 - Consider case: $f_{med}(x) = 0$ and $f_{med}(y) = \Lambda$ s.t. d(x, y) = 1.
 - In the first case the probability to get non-zero median is exactly 0.
 - In the second case the probability to get non-zero median is > 0.
 - No differential privacy: $Pr[y \in S] > Pr[x \in S]$ where S is the event "getting non zero median".

Example

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Worst case: $GS_{f_{med}} = \Lambda$.
- On 'typical' inputs f_{med} is not very sensitive: $LS_{f_{med}} = max\{x_m x_{m-1}, x_{m+1} x_m\}.$
- Would like noise magnitude to be proportional $LS_{f(x)}$. However the noise level can reveal information:
 - Consider case: $f_{med}(x) = 0$ and $f_{med}(y) = \Lambda$ s.t. d(x, y) = 1.
 - In the first case the probability to get non-zero median is exactly 0.
 - In the second case the probability to get non-zero median is > 0.
 - No differential privacy: $Pr[y \in S] > Pr[x \in S]$ where S is the event "getting non zero median".

Example

ntroduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Worst case: $GS_{f_{mad}} = \Lambda$.
- On 'typical' inputs f_{med} is not very sensitive: $LS_{f_{med}} = max\{x_m x_{m-1}, x_{m+1} x_m\}.$
- Would like noise magnitude to be proportional $LS_{f(x)}$. However the noise level can reveal information:
 - Consider case: $f_{med}(x) = 0$ and $f_{med}(y) = \Lambda$ s.t. d(x, y) = 1.
 - In the first case the probability to get non-zero median is exactly 0.
 - In the second case the probability to get non-zero median is > 0.
 - No differential privacy: $Pr[y \in S] > Pr[x \in S]$ where S is the event "getting non zero median".

Example

ntroduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Worst case: $GS_{f_{med}} = \Lambda$.
- On 'typical' inputs f_{med} is not very sensitive: $LS_{f_{med}} = max\{x_m x_{m-1}, x_{m+1} x_m\}.$
- Would like noise magnitude to be proportional $LS_{f(x)}$. However the noise level can reveal information:
 - Consider case: $f_{med}(x) = 0$ and $f_{med}(y) = \Lambda$ s.t. d(x, y) = 1.
 - In the first case the probability to get non-zero median is exactly 0.
 - In the second case the probability to get non-zero median is > 0.
 - No differential privacy: $Pr[y \in S] > Pr[x \in S]$ where S is the event "getting non zero median".

Example

ntroduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Worst case: $GS_{f_{mod}} = \Lambda$.
- On 'typical' inputs f_{med} is not very sensitive: $LS_{f_{med}} = max\{x_m x_{m-1}, x_{m+1} x_m\}.$
- Would like noise magnitude to be proportional $LS_{f(x)}$. However the noise level can reveal information:
 - Consider case: $f_{med}(x) = 0$ and $f_{med}(y) = \Lambda$ s.t. d(x, y) = 1.
 - In the first case the probability to get non-zero median is exactly 0.
 - In the second case the probability to get non-zero median is > 0.
 - No differential privacy: $Pr[y \in S] > Pr[x \in S]$ where S is the event "getting non zero median".

Example

Title Titled (X)

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Worst case: $GS_{f_{med}} = \Lambda$.
- On 'typical' inputs f_{med} is not very sensitive: $LS_{f_{med}} = max\{x_m x_{m-1}, x_{m+1} x_m\}.$
- Would like noise magnitude to be proportional $LS_{f(x)}$. However the noise level can reveal information:
 - Consider case: $f_{med}(x) = 0$ and $f_{med}(y) = \Lambda$ s.t. d(x, y) = 1.
 - In the first case the probability to get non-zero median is exactly 0.
 - In the second case the probability to get non-zero median is > 0.
 - No differential privacy: $Pr[y \in S] > Pr[x \in S]$ where S is the event "getting non zero median".

Sample Aggregate Framework

Conclusions

• The problem: the noise magnitude is sensitive.

 The solution : The noise magnitude should be insensitive too!

Sample Aggregate Framework

Conclusions

• The problem: the noise magnitude is sensitive.

 The solution: The noise magnitude should be insensitive too!

Smooth Bound

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

Consider the following function:

Definition (Smooth Bound

For $\beta > 0$, a function $S: D^n \to \mathbb{R}^+$ is a β -smooth upper bound on the local sensitivity of f if it satisfies the following requirements:

$$\forall x \in D^n$$
: $S(x) \ge LS_f(x)$

$$\forall x, y \in D^n, d(x, y) = 1$$
: $S(x) \leq e^{\beta} S(y)$

Smooth Bound

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Frameworł

Conclusions

Consider the following function:

Definition (Smooth Bound)

For $\beta > 0$, a function $S : D^n \to \mathbb{R}^+$ is a β -smooth upper bound on the local sensitivity of f if it satisfies the following requirements:

$$\forall x \in D^n$$
: $S(x) \geq LS_t(x)$

$$\forall x, y \in D^n, d(x, y) = 1$$
: $S(x) \leq e^{\beta} S(y)$

Calibrating Noise to Smooth Bounds

i itie

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

Adding noise proportional to $S_f(x)/\alpha$, where α is a noise parameter and and S_f is a β smooth upper bound on local sensitivity of f yields a secure output.

Calibrating Noise to Smooth Bounds

Title

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

Definition (Admissible Noise Distribution)

A probability distribution h on \mathbb{R}^d is (α, β) -admissible if, for $\alpha = \alpha(\epsilon, \delta)$, $\beta = \beta(\epsilon, \delta)$, the following two conditions hold for all $\|\Delta\| \le \alpha$ and $|\lambda| \le \beta$ and for all subsets $S \subseteq \mathbb{R}^d$:

- Sliding Property: $\Pr_{Z \sim h}[Z \in S] < e^{\frac{\epsilon}{2}} \Pr_{Z \sim h}[Z \in S + \Delta] + \frac{\delta}{2}$
- Dilation Property: $\Pr_{Z \sim h}[Z \in S] \leq e^{\frac{\delta}{2}} \Pr_{Z \sim h}[Z \in e^{\lambda} \cdot S] + \frac{\delta}{2}$

Conclusio

Example

Let $h(z) \propto \frac{1}{1+|z|^{\gamma}}$ for $\gamma > 1$. These h(x) are $(\frac{\epsilon}{4\gamma}, \frac{\epsilon}{\gamma})$ -admissible, and yields $\delta = 0$.

Example (Laplace Distribution)

Let $h(z) \propto \frac{1}{2} \cdot e^{-|z|}$ is $(\frac{\epsilon}{2}, \frac{\epsilon}{2 \ln 1/\delta})$ -admissible

Conclusio

Example

Let $h(z) \propto \frac{1}{1+|z|^{\gamma}}$ for $\gamma > 1$. These h(x) are $(\frac{\epsilon}{4\gamma}, \frac{\epsilon}{\gamma})$ -admissible, and yields $\delta = 0$.

Example (Laplace Distribution)

Let $\mathit{h}(z) \varpropto \frac{1}{2} \cdot e^{-|z|}$ is $(\frac{\epsilon}{2}, \frac{\epsilon}{2 \ln 1/\delta})$ -admissible.

Conclucione

Theorem

- Let Z be a fresh random variable sampled according to (α, β) -admissible noise probability distribution.
 - For a function $f: D^n \to \mathbb{R}^d$ let $S: D^n \to \mathbb{R}$ be a β -smooth upper bound on the local sensitivity of f

Then the database access mechanism:

$$\mathcal{A}(x) = f(x) + \frac{\mathcal{S}(x)}{\alpha} \cdot Z$$

is (ϵ, δ) -indistinguishable.

Conclusions

Theorem

- Let Z be a fresh random variable sampled according to (α, β) -admissible noise probability distribution.
- For a function $f: D^n \to \mathbb{R}^d$ let $S: D^n \to \mathbb{R}$ be a β -smooth upper bound on the local sensitivity of f

Then the database access mechanism:

$$\mathcal{A}(x) = f(x) + \frac{S(x)}{\alpha} \cdot Z$$

is (ϵ, δ) -indistinguishable.

Conclusions

Noise Distribution:

Theorem

- Let Z be a fresh random variable sampled according to (α, β) -admissible noise probability distribution.
- For a function $f: D^n \to \mathbb{R}^d$ let $S: D^n \to \mathbb{R}$ be a β -smooth upper bound on the local sensitivity of f

Then the database access mechanism:

$$A(x) = f(x) + \frac{S(x)}{\alpha} \cdot Z$$

is (ϵ, δ) -indistinguishable.

Sample Aggregate Framework

Conclusions

Proof.

On two neighbor databases x and y, the output distribution $\mathcal{A}(y)$ is a shifted and scaled version of $\mathcal{A}(x)$. The sliding and dilation properties ensure that $\Pr[\mathcal{A}(y) \in S]$ and $\Pr[\mathcal{A}(x) \in S]$ are close for all sets S of outputs.

Title

Introduction

Instance
Based
Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

How to calculate it?

Smooth Sensitivity

Litle

Introductic

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusio

Define **smooth sensitivity of** *f*:

Definition (Smooth Sensitivity)

For $\beta > 0$, the β -smooth sensitivity of f is

$$S_{f,\beta}^*(x) = \max_{y \in D^n} (LS_f(y) \cdot e^{-\beta d(x,y)})$$

This function is is an **optimal** β -smooth upper bound.

Sample Aggregate Framework

Conclusions

Some generic observations:

• Define sensitivity of *f* as *k* entries of *x* are modified:

Definition

The sensitivity of *f* at distance *k* is

$$A^{(k)}(x) = \max_{y \in D^n: d(x,y) \le k} (LS_f(y))$$

• Smooth sensitivity in term of $A^{(k)}(x)$:

$$S_{f,\epsilon}^*(x) = \max_{k=0,1,2,\dots,n} e^{-k\epsilon} \left(\max_{y \in D^n: d(x,y) = k} LS_f(y) \right) \Rightarrow$$

$$S_f^*(x) = \max_{x \in A^{(k)}(x)} e^{-k\epsilon} A_f(x)$$

Sample Aggregate Framework

Conclusions

Some generic observations:

• Define sensitivity of *f* as *k* entries of *x* are modified:

Definition

The sensitivity of *f* at distance *k* is

$$\mathsf{A}^{(k)}(x) = \max_{y \in D^n: d(x,y) \le k} (LS_f(y))$$

• Smooth sensitivity in term of $A^{(k)}(x)$:

$$S_{f,\epsilon}^*(x) = \max_{k=0,1,2,\dots,n} e^{-k\epsilon} \left(\max_{y \in D^n: d(x,y) = k} LS_f(y) \right) \Rightarrow$$

$$S_{f,\epsilon}^*(x) = \max_{k=0,1,2,\dots,n} e^{-k\epsilon} A^{(k)}(x)$$

Sample Aggregate Framework

Conclusions

Some generic observations:

• Define sensitivity of *f* as *k* entries of *x* are modified:

Definition

The sensitivity of f at distance k is

$$A^{(k)}(x) = \max_{y \in D^n: d(x,y) \le k} (LS_f(y))$$

• Smooth sensitivity in term of $A^{(k)}(x)$:

$$S_{f,\epsilon}^*(x) = \max_{k=0,1,2,\dots,n} e^{-k\epsilon} \left(\max_{y \in D^n: d(x,y) = k} LS_f(y) \right) \Rightarrow$$

$$S_{f,\epsilon}^*(x) = \max_{k=0,1,2,...,n} e^{-k\epsilon} A^{(k)}(x)$$

Conclusion

Some generic observations:

• Define sensitivity of *f* as *k* entries of *x* are modified:

Definition

The sensitivity of f at distance k is

$$A^{(k)}(x) = \max_{y \in D^{n}: d(x,y) \le k} (LS_f(y))$$

• Smooth sensitivity in term of $A^{(k)}(x)$:

$$S_{f,\epsilon}^*(x) = \max_{k=0,1,2,\dots,n} e^{-k\epsilon} \left(\max_{y \in D^n: d(x,y)=k} LS_f(y) \right) \Rightarrow$$

$$S_{f,\epsilon}^*(x) = \max_{k=0,1,2,\dots,n} e^{-k\epsilon} A^{(k)}(x)$$

- Some generic observations:
 - Define sensitivity of f as k entries of x are modified:

Definition

The sensitivity of f at distance k is

$$A^{(k)}(x) = \max_{y \in D^{n}: d(x,y) \le k} (LS_f(y))$$

• Smooth sensitivity in term of $A^{(k)}(x)$:

$$S_{f,\epsilon}^*(x) = \max_{k=0,1,2,\dots,n} e^{-k\epsilon} \left(\max_{y \in D^n: d(x,y)=k} LS_f(y) \right) \Rightarrow$$

$$S_{f,\epsilon}^*(x) = \max_{k=0,1,2,\dots,n} e^{-k\epsilon} A^{(k)}(x)$$

• Focus our attention to $A^{(k)}(x)$.

Title

. .

Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate

Conclusions

Example

Median.

Γitle

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

• The goal: privately releasing *k*-means cluster centers.

- Considering k squared error distribution (k-SED) clustring:
 - Input: set of points $x_1, x_2, ..., x_n \in \mathbb{R}^I$.
 - Output: k centers $c_1, c_2, ..., c_k$ with minimum cost.
 - The cost: $cost_X(c_1, c_2, ..., c_k) = \frac{1}{n} \sum_{i=1}^n \min_j ||x_i c_j||_2^2$
- Need to compute distance for sensitivity framework.
- L₂ norm is not good. two permutations of the centers might be far apart.

$$d_{W}(\{c_{1},...,c_{k}\}, \{\widehat{c}_{1},...,\widehat{c}_{k}\}) = \left(\min_{\pi \in S_{k}} \sum_{j=1}^{k} \parallel c_{j} - \widehat{c}_{\pi(j)} \parallel_{2}^{2}\right)^{\frac{1}{2}}$$

Title

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

• The goal: privately releasing *k*-means cluster centers.

- Considering k squared error distribution (k-SED) clustring:
 - Input: set of points $x_1, x_2, ..., x_n \in \mathbb{R}^I$.
 - Output: k centers $c_1, c_2, ..., c_k$ with minimum cost.
 - The cost: $cost_x(c_1, c_2, ..., c_k) = \frac{1}{n} \sum_{i=1}^n \min_j ||x_i c_j||_2^2$
- Need to compute distance for sensitivity framework.
- L₂ norm is not good. two permutations of the centers might be far apart.

$$d_{W}(\{c_{1},...,c_{k}\}, \{\widehat{c}_{1},...,\widehat{c}_{k}\}) = \left(\min_{\pi \in S_{k}} \sum_{j=1}^{k} \parallel c_{j} - \widehat{c}_{\pi(j)} \parallel_{2}^{2}\right)^{\frac{1}{2}}$$

Title

Introduction

Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

• The goal: privately releasing *k*-means cluster centers.

- Considering k squared error distribution (k-SED) clustring:
 - Input: set of points $x_1, x_2, ..., x_n \in \mathbb{R}^I$.
 - Output: k centers $c_1, c_2, ..., c_k$ with minimum cost.
 - The cost: $cost_x(c_1, c_2, ..., c_k) = \frac{1}{n} \sum_{i=1}^n \min_j ||x_i c_j||_2^2$
- Need to compute distance for sensitivity framework.
- L₂ norm is not good. two permutations of the centers might be far apart.

$$d_{W}(\{c_{1},...,c_{k}\}, \{\widehat{c}_{1},...,\widehat{c}_{k}\}) = \left(\min_{\pi \in S_{k}} \sum_{j=1}^{k} \parallel c_{j} - \widehat{c}_{\pi(j)} \parallel_{2}^{2}\right)^{\frac{1}{2}}$$

Γitle

Instance Based

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- The goal: privately releasing *k*-means cluster centers.
- Considering k squared error distribution (k-SED) clustring:
 - Input: set of points $x_1, x_2, ..., x_n \in \mathbb{R}^I$.
 - Output: k centers $c_1, c_2, ..., c_k$ with minimum cost.
 - The cost: $cost_X(c_1, c_2, ..., c_k) = \frac{1}{n} \sum_{i=1}^n \min_j ||x_i c_j||_2^2$
- Need to compute distance for sensitivity framework.
- L₂ norm is not good. two permutations of the centers might be far apart.

$$d_{W}(\{c_{1},...,c_{k}\}, \{\widehat{c}_{1},...,\widehat{c}_{k}\}) = \left(\min_{\pi \in S_{k}} \sum_{j=1}^{k} \parallel c_{j} - \widehat{c}_{\pi(j)} \parallel_{2}^{2}\right)^{\frac{1}{2}}$$

Γitle

Instance Based

Computing

Sensitivity
Sample
Aggregate

Framework

Conclusions

• The goal: privately releasing *k*-means cluster centers.

- Considering k squared error distribution (k-SED) clustring:
 - Input: set of points $x_1, x_2, ..., x_n \in \mathbb{R}^I$.
 - Output: k centers $c_1, c_2, ..., c_k$ with minimum cost.
 - The cost: $cost_x(c_1, c_2, ..., c_k) = \frac{1}{n} \sum_{i=1}^n \min_j ||x_i c_j||_2^2$
- Need to compute distance for sensitivity framework.
- L₂ norm is not good. two permutations of the centers might be far apart.

$$d_{W}(\{c_{1},...,c_{k}\}, \{\widehat{c}_{1},...,\widehat{c}_{k}\}) = \left(\min_{\pi \in S_{k}} \sum_{j=1}^{k} \parallel c_{j} - \widehat{c}_{\pi(j)} \parallel_{2}^{2}\right)^{\frac{1}{2}}$$

Title

Instance Based

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusion

- The goal: privately releasing *k*-means cluster centers.
- Considering k squared error distribution (k-SED) clustring:
 - Input: set of points $x_1, x_2, ..., x_n \in \mathbb{R}^I$.
 - Output: k centers $c_1, c_2, ..., c_k$ with minimum cost.
 - The cost: $cost_x(c_1, c_2, ..., c_k) = \frac{1}{n} \sum_{i=1}^n \min_j ||x_i c_j||_2^2$
- Need to compute distance for sensitivity framework.
- L₂ norm is not good. two permutations of the centers might be far apart.

$$d_{W}(\{c_{1},...,c_{k}\}, \{\widehat{c}_{1},...,\widehat{c}_{k}\}) = \left(\min_{\pi \in S_{k}} \sum_{j=1}^{k} \parallel c_{j} - \widehat{c}_{\pi(j)} \parallel_{2}^{2}\right)^{\frac{1}{2}}$$

itle

Instance Based

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

• The goal: privately releasing *k*-means cluster centers.

- Considering k squared error distribution (k-SED) clustring:
 - Input: set of points $x_1, x_2, ..., x_n \in \mathbb{R}^I$.
 - Output: k centers $c_1, c_2, ..., c_k$ with minimum cost.
 - The cost: $cost_x(c_1, c_2, ..., c_k) = \frac{1}{n} \sum_{i=1}^n \min_j ||x_i c_j||_2^2$
- Need to compute distance for sensitivity framework.
- L₂ norm is not good. two permutations of the centers might be far apart.

$$d_{W}(\{c_{1},...,c_{k}\}, \{\widehat{c}_{1},...,\widehat{c}_{k}\}) = \left(\min_{\pi \in S_{k}} \sum_{j=1}^{k} \parallel c_{j} - \widehat{c}_{\pi(j)} \parallel_{2}^{2}\right)^{\frac{1}{2}}$$

itle

ntroductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusio

- The goal: privately releasing *k*-means cluster centers.
- Considering k squared error distribution (k-SED) clustring:
 - Input: set of points $x_1, x_2, ..., x_n \in \mathbb{R}^I$.
 - Output: k centers $c_1, c_2, ..., c_k$ with minimum cost.
 - The cost: $cost_x(c_1, c_2, ..., c_k) = \frac{1}{n} \sum_{i=1}^n \min_j ||x_i c_j||_2^2$
- Need to compute distance for sensitivity framework.
- L₂ norm is not good. two permutations of the centers might be far apart.

$$d_{W}(\{c_{1},...,c_{k}\}, \{\widehat{c}_{1},...,\widehat{c}_{k}\}) = \left(\min_{\pi \in S_{k}} \sum_{j=1}^{k} \parallel c_{j} - \widehat{c}_{\pi(j)} \parallel_{2}^{2}\right)^{\frac{1}{2}}$$

Sample Aggregate Framework

- The output space of algorithm \mathcal{M} is $(\mathbb{R}^l)^k$.
 - Computing the Wesserstein distance is efficient: maximum matching in a bipartite graph.
- Add noise with respect to L_2^{lk} norm. L_2 distance is an upper bound on the Wesserstein distance.
- Compute sensitivity w.r.t. Wesserstein distance, but add noise w.r.t. *L*₂.

Sample Aggregate Framework

- The output space of algorithm \mathcal{M} is $(\mathbb{R}^l)^k$.
- Computing the Wesserstein distance is efficient: maximum matching in a bipartite graph.
- Add noise with respect to L_2^{lk} norm. L_2 distance is an upper bound on the Wesserstein distance.
- Compute sensitivity w.r.t. Wesserstein distance, but add noise w.r.t. *L*₂.

Sample Aggregate Framework

- The output space of algorithm \mathcal{M} is $(\mathbb{R}^l)^k$.
- Computing the Wesserstein distance is efficient: maximum matching in a bipartite graph.
- Add noise with respect to L_2^{lk} norm. L_2 distance is an upper bound on the Wesserstein distance.
- Compute sensitivity w.r.t. Wesserstein distance, but add noise w.r.t. *L*₂.

- The output space of algorithm \mathcal{M} is $(\mathbb{R}^l)^k$.
- Computing the Wesserstein distance is efficient: maximum matching in a bipartite graph.
- Add noise with respect to L_2^{lk} norm. L_2 distance is an upper bound on the Wesserstein distance.
- Compute sensitivity w.r.t. Wesserstein distance, but add noise w.r.t. L₂.

Sensitivity of Clustering

- Denote by $f_{cc}(x)$ the k-SED cluster centers. Assume $Diam(x) = \Lambda$.
- The cost function has global sensitivity of at most $\frac{\Lambda}{n}$.
- The global sensitivity of $f_{cc}(x)$ is much higher: $\Omega(\Lambda)$. See figure below.
- Adding noise to $f_{cc}(x)$ according to global sensitivity erases centers completely.
- Intuition: Local sensitivity should be low since moving a few data points should not change the centers significantly.
- Do not know how to smooth bound $LS_{f_{cc}}$.

Sample Aggregate

Framework

Figure 1: A sensitive 2-SED instance

Basic Framework

Title

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

The Settings:

- \mathcal{M} a metric space with distance function $d_{\mathcal{M}}(\cdot, \cdot)$ with diameter Λ .
- f is defined on databases with variable size.
- For a particular input $x \in D^n$ the function value f(x) can be **approximated well** by evaluating f on o(n) random sample.

Basic Framework

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

The Settings:

- \mathcal{M} a metric space with distance function $d_{\mathcal{M}}(\cdot, \cdot)$ with diameter Λ .
- f is defined on databases with variable size.
- For a particular input $x \in D^n$ the function value f(x) can be **approximated well** by evaluating f on o(n) random sample.

Basic Framework

Title

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

The Settings:

- \mathcal{M} a metric space with distance function $d_{\mathcal{M}}(\cdot, \cdot)$ with diameter Λ .
- f is defined on databases with variable size.
- For a particular input $x \in D^n$ the function value f(x) can be **approximated well** by evaluating f on o(n) random sample.

Basic Framework

The framework:

- Randomly partition the database into m small databases equal sized.
- Let $U_1, U_2, ..., U_m$ be random subsets of size $\frac{n}{m}$ selected from 1,...,n with no replacement.
- Denote by $x|_U$ the subset of x with indices in U.
- Evaluate $f(x|_{U_1}), ..., f(x|_{U_n})$ denote result as $z_1, ..., z_n$.
- output $\overline{f}(x) = g(z_1, ..., z_n)$. Where g is the aggregation function called **center-of-attention**.

Figure 2: The Sample-Aggregate Framework

ntroductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

tle

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Aggregation the results of approximation function on the database.
- Properties:
 - Smooth upper bounded.
 - Add little noise.
 - Give solution that close to the real function calculated.
- Focus on small balls centered at point in the input set.
- Even if we take out s points the majority of the points will be inside of the ball.
- Hence the solution will not change much after changing some points.

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Aggregation the results of approximation function on the database.
- Properties:
 - Smooth upper bounded.
 - Add little noise.
 - Give solution that close to the real function calculated.
- Focus on small balls centered at point in the input set.
- Even if we take out s points the majority of the points will be inside of the ball.
- Hence the solution will not change much after changing some points.

Title

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Aggregation the results of approximation function on the database.
- Properties:
 - Smooth upper bounded.
 - Add little noise.
 - Give solution that close to the real function calculated.
- Focus on small balls centered at point in the input set.
- Even if we take out s points the majority of the points will be inside of the ball.
- Hence the solution will not change much after changing some points.

itle

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Aggregation the results of approximation function on the database.
- Properties:
 - Smooth upper bounded.
 - Add little noise.
 - Give solution that close to the real function calculated.
- Focus on small balls centered at point in the input set.
- Even if we take out s points the majority of the points will be inside of the ball.
- Hence the solution will not change much after changing some points.

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- Aggregation the results of approximation function on the database.
- Properties:
 - Smooth upper bounded.
 - Add little noise.
 - Give solution that close to the real function calculated.
- Focus on small balls centered at point in the input set.
- Even if we take out s points the majority of the points will be inside of the ball.
- Hence the solution will not change much after changing some points.

itle

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusion

- Aggregation the results of approximation function on the database.
- Properties:
 - Smooth upper bounded.
 - Add little noise.
 - Give solution that close to the real function calculated.
- Focus on small balls centered at point in the input set.
- Even if we take out s points the majority of the points will be inside of the ball.
- Hence the solution will not change much after changing some points.

- Aggregation the results of approximation function on the database.
- Properties:
 - Smooth upper bounded.
 - Add little noise.
 - Give solution that close to the real function calculated.
- Focus on small balls centered at point in the input set.
- Even if we take out s points the majority of the points will be inside of the ball.
- Hence the solution will not change much after changing some points.

- l itle
- Instance
 Based
 Additive Noise
- Computing Smooth Sensitivity
- Sample Aggregate Framework
- Conclusions

ntroductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusion

- Aggregation the results of approximation function on the database.
- Properties:
 - Smooth upper bounded.
 - Add little noise.
 - Give solution that close to the real function calculated.
- Focus on small balls centered at point in the input set.
- Even if we take out *s* points the majority of the points will be inside of the ball.
- Hence the solution will not change much after changing some points.

ntroduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusion:

- Aggregation the results of approximation function on the database.
- Properties:
 - Smooth upper bounded.
 - Add little noise.
 - Give solution that close to the real function calculated.
- Focus on small balls centered at point in the input set.
- Even if we take out *s* points the majority of the points will be inside of the ball.
- Hence the solution will not change much after changing some points.

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

The main idea: Changing one point in the database will change very few small databases.

- $\overline{f}(x)$ should have the following properties:
 - if most of the z_i 's are close to some point, then $\bar{f}(x)$ should be close to that point.
 - We can efficiently compute a smooth upper bound on the local sensitivity of $\overline{f}(x)$.
- But what is approximated well?

Definition

A function $f: D^* \to \mathcal{M}$ is approximated to within accuracy r on the input x using samples of size n' if

$$\Pr_{U\subset [n],|U|=n'}[d_{\mathcal{M}}(f(x|_U),f(x))\leq r]\geq \frac{3}{4}$$

Conclusions

Theorem (Main)

Let $f: D^* \to \mathbb{R}^d$ be an efficient computable function with range of diameter Λ and L_1 metric on the output space. Set $\epsilon > \frac{2d}{\sqrt{m}}$ and $m = w(\log^2 n)$. The sample-aggregate mechanism \mathcal{A} is an ϵ -indistinguishable efficient mechanism. Moreover. if f is approximated within accuracy r on the database $x = (x_1, ..., x_n)$ using sample size $\frac{n}{m}$, then each coordinate of the random variable $\mathcal{A}(x) - f(x)$ has expected magnitude of $O(\frac{r}{\epsilon}) + \frac{\Lambda}{\epsilon} e^{-\Omega(\frac{\epsilon \sqrt{m}}{d})}$.

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

Corollary

Suppose that ϵ is constant. If f is approximated within accuracy r on input x using sample of size $o(\frac{n}{d^2}\log^2 n)$, then \mathcal{A} releases f(x) with expected error $O(r) + \Lambda \cdot neg(\frac{n}{d})$ in each coordinate.

Title

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusio

Good Aggregation

- No point has a probability of at least $1 2^{-\sqrt{m} + \log n}$ probability to effect more then \sqrt{m} small databases.
- Therefore we will focus on generalization of the local sensitivity:

Definition

For $g: D^m \to \mathcal{M}$ and $z \in D^m$, the local sensitivity of g at x with step s is:

$$LS_g^{(s)}(z) = \max_{z':d(z,z') < s} d_{\mathcal{M}}(g(z),g(z'))$$

Aggregation for General Metric Spaces

Litle

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

• The definition of β -smooth upper bound has to be changed too:

Definition

For $\beta > 0$ a function $S : D^m \to \mathbb{R}^+$ is a β -smooth upper bound on the sensitivity of g with step size s if

$$\forall z \in D^m$$
: $S(z) \geq LS_g^{(s)}(z)$

$$\forall z, z' \in D^m, d(z, z') \leq s: S(z) \leq e^{\beta} S(z')$$

Good Aggregation

Title

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

Definition (Good Aggregation)

In a metric space \mathcal{M} with diameter Λ , an (m, β, s) -aggregation is a pair of functions, an aggregation function $g: \mathcal{M}^m \to \mathcal{M}$ and a sensitivity function function $S: \mathcal{M}^m \to \mathbb{R}^+$, such that

- **1** S is a β -smooth upper bound on $LS_g^{(s)}$.
- ② If at least $\frac{2m}{3}$ entries in z are in some ball $\mathcal{B}(c,r)$ then
 - (a) $g(z) \in \mathcal{B}(c, O(r))$
 - (b) $S(z) = O(r) + \Lambda \cdot e^{-\Omega(\beta m/s)}$

Good Aggregation

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

Definition (Good Aggregation)

Let $g_0(z)\in\mathcal{M}$ be a point with minimum t_0 -radius, where $t_0=(\frac{m+s}{2}+1)$, and let $S_0(z)=2\max_{k\geq 0}(r^z(t_0+(k+1)s)e^{-\beta k})$. Then the pair (g_0,S_0) is a good aggregation.

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- The server adds noise f(x) + N(x)Z, where N(x) scale-up factor (noise magnitude), $Z \sim NoiseDist(D^n)$ with $\sigma(Z) = 1$.
- Noise magnitude is proportional to global sensitivity.
 Independent of x.
- Drawbacks:
 - Noise magnitude can be too large, effecting accuracy.
 - Does not use the properties of *x*.
- Use Local Sensitivity. But can be sensitive too!

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- The server adds noise f(x) + N(x)Z, where N(x) scale-up factor (noise magnitude), Z ~ NoiseDist(Dⁿ) with σ(Z) = 1.
- Noise magnitude is proportional to global sensitivity.
 Independent of x.
- Drawbacks:
 - Noise magnitude can be too large, effecting accuracy.
 - Does not use the properties of x.
- Use Local Sensitivity. But can be sensitive too!

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- The server adds noise f(x) + N(x)Z, where N(x) scale-up factor (noise magnitude), Z ~ NoiseDist(Dⁿ) with σ(Z) = 1.
- Noise magnitude is proportional to global sensitivity.
 Independent of x.
- Drawbacks:
 - Noise magnitude can be too large, effecting accuracy.
 - Does not use the properties of x.
- Use Local Sensitivity. But can be sensitive too!

Title

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- The server adds noise f(x) + N(x)Z, where N(x) scale-up factor (noise magnitude), $Z \sim NoiseDist(D^n)$ with $\sigma(Z) = 1$.
- Noise magnitude is proportional to global sensitivity.
 Independent of x.
- Drawbacks:
 - Noise magnitude can be too large, effecting accuracy.
 - Does not use the properties of x.
- Use Local Sensitivity. But can be sensitive too!

Title

Introductio

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- The server adds noise f(x) + N(x)Z, where N(x) scale-up factor (noise magnitude), $Z \sim NoiseDist(D^n)$ with $\sigma(Z) = 1$.
- Noise magnitude is proportional to global sensitivity.
 Independent of x.
- Drawbacks:
 - Noise magnitude can be too large, effecting accuracy.
 - Does not use the properties of x.
- Use Local Sensitivity. But can be sensitive too!

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

- The server adds noise f(x) + N(x)Z, where N(x) scale-up factor (noise magnitude), $Z \sim NoiseDist(D^n)$ with $\sigma(Z) = 1$.
- Noise magnitude is proportional to global sensitivity.
 Independent of x.
- Drawbacks:
 - Noise magnitude can be too large, effecting accuracy.
 - Does not use the properties of x.
- Use Local Sensitivity. But can be sensitive too!

Title

Introductio

Instance Based Additive Nois

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- The class of *smooth* upper bounds S_f to LS_f s.t. adding noise proportional to S_f is safe.
- Define special class S_f^* that is optimal in the sense that $S_f^*(x) \leq S_f(x)$ for every other smooth S_f .
- Will show how to calculate the smooth sensitivity for:
 - Median
 - Minimal spanning tree cost

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- The class of *smooth* upper bounds S_f to LS_f s.t. adding noise proportional to S_f is safe.
- Define special class S_f^* that is optimal in the sense that $S_f^*(x) \leq S_f(x)$ for every other smooth S_f .
- Will show how to calculate the smooth sensitivity for:
 - Median
 - Minimal spanning tree cost

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- The class of *smooth* upper bounds S_f to LS_f s.t. adding noise proportional to S_f is safe.
- Define special class S_f^* that is optimal in the sense that $S_f^*(x) \leq S_f(x)$ for every other smooth S_f .
- Will show how to calculate the smooth sensitivity for:
 - Median
 - Minimal spanning tree cost

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- The class of *smooth* upper bounds S_f to LS_f s.t. adding noise proportional to S_f is safe.
- Define special class S_f^* that is optimal in the sense that $S_f^*(x) \leq S_f(x)$ for every other smooth S_f .
- Will show how to calculate the smooth sensitivity for:
 - Median
 - Minimal spanning tree cost

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- The class of *smooth* upper bounds S_f to LS_f s.t. adding noise proportional to S_f is safe.
- Define special class S_f^* that is optimal in the sense that $S_f^*(x) \leq S_f(x)$ for every other smooth S_f .
- Will show how to calculate the smooth sensitivity for:
 - Median
 - Minimal spanning tree cost

Title

Introduction

Instance Based Additive Noise

Computing Smooth Sensitivity

Sample Aggregate Framework

Conclusions

- The class of *smooth* upper bounds S_f to LS_f s.t. adding noise proportional to S_f is safe.
- Define special class S_f^* that is optimal in the sense that $S_f^*(x) \leq S_f(x)$ for every other smooth S_f .
- Will show how to calculate the smooth sensitivity for:
 - Median
 - Minimal spanning tree cost

The Sample and Aggregate Framework:

- Replacing f with f for which low sensitivity is low and efficiently computable. \overline{f} as smoothed version of f.
- f is evaluated on a sublinear number of random samples from database x.
- Evaluations done several times.
- Results combined with a novel aggregation function called *center of attention*.
- The output denoted as \bar{f} released with the smooth sensitivity framework.
- If f(x) approximated well by evaluation on random samples $\Rightarrow \bar{f}(x)$ is close to f(x).

Instance

Based Additive Noise

Smooth Sensitivity

Sample Aggregate Framework

- Replacing f with \overline{f} for which low sensitivity is low and efficiently computable. \overline{f} as smoothed version of f.
- f is evaluated on a sublinear number of random samples from database x.
- Evaluations done several times.
- Results combined with a novel aggregation function called *center of attention*.
- The output denoted as \bar{f} released with the smooth sensitivity framework.
- If f(x) approximated well by evaluation on random samples $\Rightarrow \bar{f}(x)$ is close to f(x).

- Title
- Instance Based
- Computing Smooth Sensitivity
- Sample Aggregate Framework
- Conclusions

- Replacing f with \overline{f} for which low sensitivity is low and efficiently computable. \overline{f} as smoothed version of f.
- f is evaluated on a sublinear number of random samples from database x.
- Evaluations done several times.
- Results combined with a novel aggregation function called center of attention.
- The output denoted as \bar{f} released with the smooth sensitivity framework.
- If f(x) approximated well by evaluation on random samples $\Rightarrow \bar{f}(x)$ is close to f(x).

- Title
- Indioduction
- Based Additive Noise
- Computing Smooth Sensitivity
- Sample Aggregate Framework
- Conclusions

- Replacing f with \overline{f} for which low sensitivity is low and efficiently computable. \overline{f} as smoothed version of f.
- f is evaluated on a sublinear number of random samples from database x.
- Evaluations done several times.
- Results combined with a novel aggregation function called *center of attention*.
- The output denoted as \bar{f} released with the smooth sensitivity framework.
- If f(x) approximated well by evaluation on random samples $\Rightarrow \bar{f}(x)$ is close to f(x).

- Title
- Instance Based
- Computing Smooth Sensitivity
- Sample Aggregate Framework
- Conclusions

- Replacing f with \overline{f} for which low sensitivity is low and efficiently computable. \overline{f} as smoothed version of f.
- f is evaluated on a sublinear number of random samples from database x.
- Evaluations done several times.
- Results combined with a novel aggregation function called center of attention.
- The output denoted as \bar{f} released with the smooth sensitivity framework.
- If f(x) approximated well by evaluation on random samples $\Rightarrow \bar{f}(x)$ is close to f(x).

- Title
- Inetance
- Based Additive Noise
- Smooth Sensitivity
- Aggregate Framework
- Conclusions

The Sample and Aggregate Framework:

- Replacing f with \overline{f} for which low sensitivity is low and efficiently computable. \overline{f} as smoothed version of f.
- f is evaluated on a sublinear number of random samples from database x.
- Evaluations done several times.
- Results combined with a novel aggregation function called center of attention.
- The output denoted as \bar{f} released with the smooth sensitivity framework.
- If f(x) approximated well by evaluation on random samples $\Rightarrow \bar{f}(x)$ is close to f(x).

Title

Instance Based Additive Noise

Computing Smooth Sensitivity

Aggregate Framework

- Replacing f with \overline{f} for which low sensitivity is low and efficiently computable. \overline{f} as smoothed version of f.
- f is evaluated on a sublinear number of random samples from database x.
- Evaluations done several times.
- Results combined with a novel aggregation function called center of attention.
- The output denoted as \bar{f} released with the smooth sensitivity framework.
- If f(x) approximated well by evaluation on random samples $\Rightarrow \bar{f}(x)$ is close to f(x).

- Title
- Instance
- Based Additive Noise
- Sensitivity
 Sample
- Conclusions

Title

Introduction

Instance
Based
Additive Noise

Smooth Sensitivity

Sample Aggregate Framework

Conclusions

Questions?

Thank You!

Title

Introduction

Instance
Based
Additive Noise

Smooth Sensitivity

Sample Aggregate Framework

Conclusions

Questions?

Thank You!