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Differential Privacy

Introduction

@ A client would like to calculate some function on
database.

@ The function should not reveal any specific information
about any user.

@ We mask the real output by noise function.

@ But the result should be reasonable accurate.



Privacy Definition

Definition:

Introduction
Definition (Indistinguishability)
A randomized algorithm A, is (e, §)-indistinguishable if for all

X,y € D" satisfying d(x, y) = 1, and for all sets S of
possible outputs:

PriA(x) € S] < € - PriA(y) € S] + 6

where ¢ is negligible function of n.
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Privacy Definition-Remarks

Introduction @ No individual has a pronounced effect on the statistics
published by the server.

@ Can be considered as a client-server interaction. Each
step calculation some function f on database:

e Composes smoothly - t rounds each individually
e-indistinguishable is te-indistinguishable.

e will consider only 1-round protocols.



Calibrating Noise to Sensitivity

@ The use of output perturbation. Adding random noise to
Introduction mask the private information.



Calibrating Noise to Sensitivity

@ The use of output perturbation. Adding random noise to
Introduction mask the private information.

@ Outputting : f(x) + Y where Y is the random noise
added.



Calibrating Noise to Sensitivity

@ The use of output perturbation. Adding random noise to
Introduction mask the private information.

@ Outputting : f(x) + Y where Y is the random noise
added.

Definition (Global Sensitivity)
For f : D" — RY, the global sensitivity of f is:

St = f(x)—f
GS;=  max | f(x)~1(y) |

1.

where | - [|=||
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@ Theorem: for f: D" — RY, A(x) = f(x) + (Y1, ..., Ya)
where Y; ~ Lap(GS¢/e) is e-indistinguishable.
Introduction

@ Yields two generic approaches to construction A(x):

e Show that GS¢ is low so can be added directly on f(x).

e Express f(x) in term of functions g1, gz, ... with low
global sensitivity. Then analyze how noisy answers
a1, 92, ... interfere with computation of f(x)

@ Approaches are productive to many functions: Principle
component analysis, the Perceptron algorithm,
k-means, learning ID3 decision trees, statistical
learning and many more.
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Global Sensitivity - Drawbacks

Introduction

@ The global sensitivity does not consider the instance of
the database.

@ Yields high noise that might destroy the output.
Examples to follow...

@ Worst case scenario.
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Local Sensitivity

@ Would like to add noise according to the database
instance.

Instance

Based i @ We add less noise. i.e. tailored noise.
itive Noise

@ "Average" case scenario.

Definition (Local Sensitivity)

For f : D" — RY, the local sensitivity of f at x is:

LS(x) = W ) =) |
y:d(x,y
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Local Sensitivity - Remarks

Instance

Adte Noiss o Note that GS; = maxy LS¢(x).

@ Would like noise magnitude proportional to LS;(x).
Cannot be added directly-too naive.

@ Sometimes hard to calculate.
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Local Sensitivity Example

fmed(X) = median(xq, ..., x,) on bounded interval D = [0, A].
@ Worst case: GS;_, = A.
Instance

Based @ On 'typical inputs fy,eq is Not very sensitive:
Additive Noise
LS ., = max{Xm — Xm—1, Xm1 — Xm}-
@ Would like noise magnitude to be proportional LSy(y).
However the noise level can reveal information:
o Consider case: fmeq(X) = 0 and freq(y) = A s.t.
d(x,y)=1.
e In the first case the probability to get non-zero median
is exactly 0.
@ In the second case the probability to get non-zero
median is > 0.
o No differential privacy: Pr[y € S] > Pr[x € S] where S
is the event "getting non zero median".
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Instance

Based @ The problem: the noise magnitude is sensitive.
Additive Noise

@ The solution : The noise magnitude should be
insensitive too!
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Smooth Bound

Consider the following function:
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Definition (Smooth Bound)

For 3 > 0, a function S: D" — R™ is a 3-smooth upper
bound on the local sensitivity of f if it satisfies the following
requirements:
Vx e D" S(x) > LS¢(x)
Vx,y € D", d(x,y)=1: S(x) < €e’S(y)




Calibrating Noise to Smooth Bounds

Instance
Based
Additive Noise

Adding noise proportional to S¢(x)/«, where « is a noise
parameter and and Sy is a 3 smooth upper bound on local
sensitivity of f yields a secure output.



Calibrating Noise to Smooth Bounds

Definition (Admissible Noise Distribution)

Instance

Beged | A probability distribution /7 on R is («, 3)-admissible if, for
a = afe,0), B = B(e,0), the following two conditions hold for
all | A ||[< «and |\ < 3 and for all subsets S C R:
@ Sliding Property:
Prz.,[Z € S] < €Prz.[Z € S+ A+ 8
@ Dilation Property:
Pro[Ze€ S| <e:Prz.[Zcer S]+3




Instance
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(45, 5)-admissible, and yields § = 0.




Instance
Based
Additive Noise

Let h(2) o 47z for v > 1. These h(x) are

(45, £)-admissible, and yields ¢ = 0.

ﬂa

Example (Laplace Distribution)

Let h(z) o< § - e 1?1 is (5, zyy75)-admissible.
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Instance
Based
Additive Noise

Noise Distribution:

Theorem

@ Let Z be a fresh random variable sampled according to
(a, B)-admissible noise probability distribution.

@ For a functionf : D" — RY letS: D" — R be a
(-smooth upper bound on the local sensitivity of f

Then the database access mechanism:

A(x):f(x)+¥-z

is (e, 9)-indistinguishable.




Instance
Based
Additive Noise

On two neighbor databases x and y, the output distribution
A(y) is a shifted and scaled version of A(x). The sliding
and dilation properties ensure that Pr[A(y) € S] and
Pr[A(x) € S] are close for all sets S of outputs. O




Computing

Smooth How to calculate it ?

Sensitivity



Smooth Sensitivity

Define smooth sensitivity of f:

Definition (Smooth Sensitivity)

Smooth ™ For 8 > 0, the 3-smooth sensitivity of f is

Sensitivity

S75(x) = max(LSy(y) - 00y

This function is is an optimal 5-smooth upper bound.
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@ Some generic observations:
e Define sensitivity of f as k entries of x are modified:

Definition

The sensitivity of f at distance k is

) K () —
A= oy ()
Sensitivity

o Smooth sensitivity in term of AK)(x):

S;.(x)= max ek max LS =
r.e(X) k=0l Be...n (yeD":d(x,y)—k f(y)>

Si(x) =, max e "AW(x)

e Focus our attention to A%)(x).



Computing

Smooth
Sensitivity
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A Motivating Example: Clustering

@ The goal: privately releasing k-means cluster centers.

@ Considering k — squared — error — distribution (k-SED)
clustring:

e Input: set of points X1, Xo, ..., X, € R’

e Output: k centers ¢y, Co, ..., Cx with minimum cost.

o The cost: costy(C, Ca, ..., Ck) = X S0, min; || x; — ¢; ||3
@ Need to compute distance for sensitivity framework.

Sample

= @ [, norm is not good. two permutations of the centers
Framework might be far apart.

Wesserstein Distance (earthmover metric):

n=

dw({cy,...,ck}, {C1,...,Ck}) = mmZH ¢ — Co(jy I3



@ The output space of algorithm M is (R/)k.

Sample
Aggregate
Framework



@ The output space of algorithm M is (R/)k.

@ Computing the Wesserstein distance is efficient:
maximum matching in a bipartite graph.

Sample
Aggregate
Framework



@ The output space of algorithm M is (R/)k.

@ Computing the Wesserstein distance is efficient:
maximum matching in a bipartite graph.

— @ Add noise with respect to LX norm. L, distance is an
Aggregate upper bound on the Wesserstein distance.

Framework



@ The output space of algorithm M is (R/)k.

@ Computing the Wesserstein distance is efficient:
maximum matching in a bipartite graph.

— @ Add noise with respect to LX norm. L, distance is an
Aggregate upper bound on the Wesserstein distance.

Framework

@ Compute sensitivity w.r.t. Wesserstein distance, but
add noise w.r.t. Lo.



Sensitivity of Clustering

@ Denote by f.c(x) the k-SED cluster centers. Assume
Diam(x) = A.

@ The cost function has global sensitivity of at most %

@ The global sensitivity of f.c(x) is much higher: Q(A).
See figure below.

@ Adding noise to f.c(x) according to global sensitivity
erases centers completely.

e @ Intuition: Local sensitivity should be low since moving a

S few data points should not change the centers
significantly.

@ Do not know how to smooth bound LS;,.

Framework

Figure 1: A sensitive 2-sED instance
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Basic Framework

The Settings:

@ M a metric space with distance function du(-, ) with
diameter A.

@ f is defined on databases with variable size.

Sample
Aggregate . . .
Framework @ For a particular input x € D" the function value f(x) can

be approximated well by evaluating f on o(n) random
sample.



Basic Framework

The framework:

@ Randomly partition the database into m small
databases equal sized.

@ Let Uy, Us, ..., Uy be random subsets of size I selected
from 1,...,n with no replacement.
@ Denote by x|y the subset of x with indices in U.

Sample @ Evaluate f(x|y,), ..., f(x|u,) denote result as z1, ..., Zp.
Aggregate

RERTETALS @ output f(x) = g(z1, ..., zn). Where g is the aggregation
function called center-of-attention.

Noise calibrated
to smooth
sensitivity of ¢

Figure 2: The Sample-Aggregate Framework
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The Center of Attention

The Center of Attention:
@ Aggregation the results of approximation function on
the database.
@ Properties:
e Smooth upper bounded.

o Add little noise.
Sample @ Give solution that close to the real function calculated.
Aggregate

Framework @ Focus on small balls centered at point in the input set.

@ Even if we take out s points the majority of the points
will be inside of the ball.

@ Hence the solution will not change much after changing
some points.



@ The main idea: Changing one point in the database will
change very few small databases.

@ f(x) should have the following properties:

e if most of the z/’s are close to some point, then f(x)
should be close to that point.

e We can efficiently compute a smooth upper bound on
the local sensitivity of f(x).

Sample @ But what is approximated well ?
Aggregate

Framework

Definition

A function f : D* — M is approximated to within accuracy r
on the input x using samples of size n’ if

AW

Pr [du(f(x|u), f(x)) < r] =
ucnl,|Uj=n




Sample
Aggregate
Framework

Theorem (Main)

Let f : D* — RY be an efficient computable function with
range of diameter \ and Ly metric on the output space. Set
€> \F and m= w(Iog n). The sample-aggregate
mechanism A is an e-indistinguishable efficient mechanism.
Moreover. if f is approximated within accuracy r on the
database x = (xy, ..., Xn) using sample size 7., then each
coordinate of the random variable A(x) — f(x) has expected

magnitude of O(%) + 2 e~ ).




Suppose that e is constant. If f is approximated within
accuracy r on input x using sample of size o( g log® n), then
Sample A releases f(x) with expected error O(r) + A - neg(g) in

A t g
Framowork each coordinate.




Aggregation for General Metric Spaces

Good Aggregation

@ No point has a probability of at least 1 — 2-vm+legn
probability to effect more then \/m small databases.

@ Therefore we will focus on generalization of the local
sensitivity:

Definition

Sample
Aggregate g s
Framework Forg: D™ — M and z € D™, the local sensitivity of g at x

with step s is:

LSP(z)= max du(9(2),9(Z))

7':d(z,7')<s




Aggregation for General Metric Spaces

@ The definition of 5-smooth upper bound has to be
changed too:

Definition

For 3 > 0 a function S: D™ — R is a 3-smooth upper
. bound on the sensitivity of g with step size s if
Fremenerk Vze D™ S(z) > LSY)(2)
Vz,Z e D™, d(z,Z)<s: S(z)<e’S(Z)




Good Aggregation

Definition (Good Aggregation)

In a metric space M with diameter A, an

(m, 3, s)-aggregation is a pair of functions, an aggregation
function g : M™ — M and a sensitivity function function
S: M™— R*, such that

Sample @ Sis a /-smooth upper bound on LS_g,s).

Aggregate
Framework

Q If at least %’" entries in z are in some ball B(c, r) then

(a) g(z) € B(c, O(r))
(b) S(2)=0(r)+N- e XBM/s)




Good Aggregation

Definition (Good Aggregation)

Let go(z) € M be a point with minimum #-radius, where
fh = ("2 + 1), and let
Sample So(2) = 2maxy>o(r?(to + (k + 1)s)e~5%). Then the pair

Al t 0 -
S (g0, So) is a good aggregation.
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What Did We Cover ?

@ The server adds noise f(x) + N(x)Z, where N(x)
scale-up factor (noise magnitude), Z ~ NoiseDist(D")
with o(Z) = 1.

@ Noise magnitude is proportional to global sensitivity.
Independent of x.

@ Drawbacks:

e Noise magnitude can be too large, effecting accuracy.
e Does not use the properties of x.

@ Use Local Sensitivity. But can be sensitive too!

Conclusions
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What Did We Cover ?
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What Did We Cover ?

The Sample and Aggregate Framework:

@ Replacing f with f for which low sensitivity is low and
efficiently computable. f as smoothed version of f.

@ fis evaluated on a sublinear number of random
samples from database x.

@ Evaluations done several times.
@ Results combined with a novel aggregation function
called center of attention.

@ The output denoted as f released with the smooth
sensitivity framework.

Conclusions

o If f(x) approximated well by evaluation on random
samples = f(x) is close to f(x).
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Thank You !
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