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Differential Privacy

A client would like to calculate some function on
database.

The function should not reveal any specific information
about any user.

We mask the real output by noise function.

But the result should be reasonable accurate.
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Privacy Definition

Definition:

Definition (Indistinguishability)

A randomized algorithm A, is (ε, δ)-indistinguishable if for all
x , y ∈ Dn satisfying d(x , y) = 1, and for all sets S of
possible outputs:

Pr [A(x) ∈ S] ≤ eε · Pr [A(y) ∈ S] + δ

where δ is negligible function of n.
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Privacy Definition-Remarks

No individual has a pronounced effect on the statistics
published by the server.

Can be considered as a client-server interaction. Each
step calculation some function f on database:

Composes smoothly - t rounds each individually
ε-indistinguishable is tε-indistinguishable.

will consider only 1-round protocols.
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Calibrating Noise to Sensitivity

The use of output perturbation. Adding random noise to
mask the private information.
Outputting : f (x) + Y where Y is the random noise
added.

Definition (Global Sensitivity)

For f : Dn → Rd , the global sensitivity of f is:

GSf = max
x ,y :d(x ,y)=1

‖ f (x)− f (y) ‖

where ‖ · ‖=‖ · ‖1.
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Theorem: for f : Dn → Rd , A(x) = f (x) + (Y1, ...,Yd )
where Yi ∼ Lap(GSf/ε) is ε-indistinguishable.

Yields two generic approaches to construction A(x):

Show that GSf is low so can be added directly on f (x).

Express f (x) in term of functions g1,g2, ... with low
global sensitivity. Then analyze how noisy answers
g1,g2, ... interfere with computation of f (x)

Approaches are productive to many functions: Principle
component analysis, the Perceptron algorithm,
k -means, learning ID3 decision trees, statistical
learning and many more.
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Global Sensitivity - Drawbacks

The global sensitivity does not consider the instance of
the database.

Yields high noise that might destroy the output.
Examples to follow...

Worst case scenario.
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Local Sensitivity

Would like to add noise according to the database
instance.

We add less noise. i.e. tailored noise.

"Average" case scenario.

Definition (Local Sensitivity)

For f : Dn → Rd , the local sensitivity of f at x is:

LSf (x) = max
y :d(x ,y)=1

‖ f (x)− f (y) ‖
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Local Sensitivity - Remarks

Note that GSf = maxx LSf (x).

Would like noise magnitude proportional to LSf (x).
Cannot be added directly-too naive.

Sometimes hard to calculate.
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Local Sensitivity Example

Example

fmed (x) = median(x1, ..., xn) on bounded interval D = [0,Λ].
Worst case: GSfmed = Λ.
On ’typical’ inputs fmed is not very sensitive:
LSfmed = max{xm − xm−1, xm+1 − xm}.
Would like noise magnitude to be proportional LSf (x).
However the noise level can reveal information:

Consider case: fmed (x) = 0 and fmed (y) = Λ s.t.
d(x , y) = 1.
In the first case the probability to get non-zero median
is exactly 0.
In the second case the probability to get non-zero
median is > 0.
No differential privacy: Pr [y ∈ S] > Pr [x ∈ S] where S
is the event "getting non zero median".
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The problem: the noise magnitude is sensitive.

The solution : The noise magnitude should be
insensitive too!
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Smooth Bound

Consider the following function:

Definition (Smooth Bound)

For β > 0, a function S : Dn → R+ is a β-smooth upper
bound on the local sensitivity of f if it satisfies the following
requirements:

∀x ∈ Dn: S(x) ≥ LSf (x)
∀x , y ∈ Dn, d(x , y) = 1: S(x) ≤ eβS(y)
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Calibrating Noise to Smooth Bounds

Adding noise proportional to Sf (x)/α, where α is a noise
parameter and and Sf is a β smooth upper bound on local
sensitivity of f yields a secure output.
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Calibrating Noise to Smooth Bounds

Definition (Admissible Noise Distribution)

A probability distribution h on Rd is (α, β)-admissible if, for
α = α(ε, δ), β = β(ε, δ), the following two conditions hold for
all ‖ ∆ ‖≤ α and |λ| ≤ β and for all subsets S ⊆ Rd :

Sliding Property:
PrZ∼h[Z ∈ S] ≤ e

ε
2 PrZ∼h[Z ∈ S + ∆] + δ

2

Dilation Property:
PrZ∼h[Z ∈ S] ≤ e

ε
2 PrZ∼h[Z ∈ eλ · S] + δ

2
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Example

Let h(z) ∝ 1
1+|z|γ for γ > 1. These h(x) are

( ε
4γ ,

ε
γ )-admissible, and yields δ = 0.

Example (Laplace Distribution)

Let h(z) ∝ 1
2 · e

−|z| is ( ε2 ,
ε

2 ln 1/δ )-admissible.
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Noise Distribution:

Theorem
Let Z be a fresh random variable sampled according to
(α, β)-admissible noise probability distribution.
For a functionf : Dn → Rd let S : Dn → R be a
β-smooth upper bound on the local sensitivity of f

Then the database access mechanism:

A(x) = f (x) +
S(x)

α
· Z

is (ε, δ)-indistinguishable.
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Proof.
On two neighbor databases x and y , the output distribution
A(y) is a shifted and scaled version of A(x). The sliding
and dilation properties ensure that Pr[A(y) ∈ S] and
Pr[A(x) ∈ S] are close for all sets S of outputs.
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How to calculate it ?
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Smooth Sensitivity

Define smooth sensitivity of f :

Definition (Smooth Sensitivity)
For β > 0, the β-smooth sensitivity of f is

S∗f ,β(x) = max
y∈Dn

(LSf (y) · e−βd(x ,y))

This function is is an optimal β-smooth upper bound.
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Some generic observations:
Define sensitivity of f as k entries of x are modified:

Definition
The sensitivity of f at distance k is

A(k)(x) = max
y∈Dn:d(x,y)≤k

(LSf (y))

Smooth sensitivity in term of A(k)(x):

S∗f ,ε(x) = max
k=0,1,2,...,n

e−kε
(

max
y∈Dn:d(x,y)=k

LSf (y)

)
⇒

S∗f ,ε(x) = max
k=0,1,2,...,n

e−kεA(k)(x)

Focus our attention to A(k)(x).
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Example
Median.
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A Motivating Example: Clustering

The goal: privately releasing k -means cluster centers.
Considering k − squared − error − distribution (k -SED)
clustring:

Input: set of points x1, x2, ..., xn ∈ Rl .
Output: k centers c1, c2, ..., ck with minimum cost.
The cost: costx (c1, c2, ..., ck ) = 1

n

∑n
i=1 minj ‖ xi − cj ‖2

2

Need to compute distance for sensitivity framework.
L2 norm is not good. two permutations of the centers
might be far apart.

Wesserstein Distance (earthmover metric):

dW ({c1, ..., ck} , {ĉ1, ..., ĉk}) =

min
π∈Sk

k∑
j=1

‖ cj − ĉπ(j) ‖22

 1
2
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min
π∈Sk

k∑
j=1

‖ cj − ĉπ(j) ‖22
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The output space of algorithmM is (Rl)k .

Computing the Wesserstein distance is efficient:
maximum matching in a bipartite graph.

Add noise with respect to Llk
2 norm. L2 distance is an

upper bound on the Wesserstein distance.

Compute sensitivity w.r.t. Wesserstein distance, but
add noise w.r.t. L2.
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Sensitivity of Clustering

Denote by fcc(x) the k -SED cluster centers. Assume
Diam(x) = Λ.
The cost function has global sensitivity of at most Λ

n .
The global sensitivity of fcc(x) is much higher: Ω(Λ).
See figure below.
Adding noise to fcc(x) according to global sensitivity
erases centers completely.
Intuition: Local sensitivity should be low since moving a
few data points should not change the centers
significantly.
Do not know how to smooth bound LSfcc .
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Basic Framework

The Settings:
M a metric space with distance function dM(·, ·) with
diameter Λ.

f is defined on databases with variable size.

For a particular input x ∈ Dn the function value f (x) can
be approximated well by evaluating f on o(n) random
sample.
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Basic Framework

The framework:
Randomly partition the database into m small
databases equal sized.
Let U1,U2, ...,Um be random subsets of size n

m selected
from 1,...,n with no replacement.
Denote by x |U the subset of x with indices in U.
Evaluate f (x |U1), ..., f (x |Un ) denote result as z1, ..., zn.

output f (x) = g(z1, ..., zn). Where g is the aggregation
function called center-of-attention.
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The Center of Attention

The Center of Attention:
Aggregation the results of approximation function on
the database.
Properties:

Smooth upper bounded.
Add little noise.
Give solution that close to the real function calculated.

Focus on small balls centered at point in the input set.
Even if we take out s points the majority of the points
will be inside of the ball.
Hence the solution will not change much after changing
some points.
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The main idea: Changing one point in the database will
change very few small databases.
f (x) should have the following properties:

if most of the zi ’s are close to some point, then f (x)
should be close to that point.
We can efficiently compute a smooth upper bound on
the local sensitivity of f (x).

But what is approximated well ?

Definition
A function f : D∗ →M is approximated to within accuracy r
on the input x using samples of size n

′
if

Pr
U⊂[n],|U|=n′

[dM(f (x |U), f (x)) ≤ r ] ≥ 3
4
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Theorem (Main)

Let f : D∗ → Rd be an efficient computable function with
range of diameter Λ and L1 metric on the output space. Set
ε > 2d√

m and m = w(log2 n). The sample-aggregate
mechanism A is an ε-indistinguishable efficient mechanism.
Moreover. if f is approximated within accuracy r on the
database x = (x1, ..., xn) using sample size n

m , then each
coordinate of the random variable A(x)− f (x) has expected

magnitude of O( r
ε) + Λ

ε e−Ω( ε
√

m
d ).



Title

Introduction

Instance
Based
Additive Noise

Computing
Smooth
Sensitivity

Sample
Aggregate
Framework

Conclusions

Corollary
Suppose that ε is constant. If f is approximated within
accuracy r on input x using sample of size o( n

d2 log2 n), then
A releases f (x) with expected error O(r) + Λ · neg( n

d ) in
each coordinate.
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Aggregation for General Metric Spaces

Good Aggregation
No point has a probability of at least 1− 2−

√
m+log n

probability to effect more then
√

m small databases.
Therefore we will focus on generalization of the local
sensitivity:

Definition
For g : Dm →M and z ∈ Dm, the local sensitivity of g at x
with step s is:

LS(s)
g (z) = max

z′ :d(z,z′ )≤s
dM(g(z),g(z

′
))
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Aggregation for General Metric Spaces

The definition of β-smooth upper bound has to be
changed too:

Definition
For β > 0 a function S : Dm → R+ is a β-smooth upper
bound on the sensitivity of g with step size s if

∀z ∈ Dm: S(z) ≥ LS(s)
g (z)

∀z, z ′ ∈ Dm, d(z, z
′
) ≤ s: S(z) ≤ eβS(z

′
)
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Good Aggregation

Definition (Good Aggregation)
In a metric spaceM with diameter Λ, an
(m, β, s)-aggregation is a pair of functions, an aggregation
function g :Mm →M and a sensitivity function function
S :Mm → R+, such that

1 S is a β-smooth upper bound on LS(s)
g .

2 If at least 2m
3 entries in z are in some ball B(c, r) then

(a) g(z) ∈ B(c,O(r))

(b) S(z) = O(r) + Λ · e−Ω(βm/s)
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Good Aggregation

Definition (Good Aggregation)

Let g0(z) ∈M be a point with minimum t0-radius, where
t0 = (m+s

2 + 1), and let
S0(z) = 2 maxk≥0(r z(t0 + (k + 1)s)e−βk ). Then the pair
(g0,S0) is a good aggregation.
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What Did We Cover ?

The server adds noise f (x) + N(x)Z , where N(x)
scale-up factor (noise magnitude), Z ∼ NoiseDist(Dn)
with σ(Z ) = 1.
Noise magnitude is proportional to global sensitivity.
Independent of x .
Drawbacks:

Noise magnitude can be too large, effecting accuracy.
Does not use the properties of x .

Use Local Sensitivity. But can be sensitive too!



Title

Introduction

Instance
Based
Additive Noise

Computing
Smooth
Sensitivity

Sample
Aggregate
Framework

Conclusions

What Did We Cover ?

The server adds noise f (x) + N(x)Z , where N(x)
scale-up factor (noise magnitude), Z ∼ NoiseDist(Dn)
with σ(Z ) = 1.
Noise magnitude is proportional to global sensitivity.
Independent of x .
Drawbacks:

Noise magnitude can be too large, effecting accuracy.
Does not use the properties of x .

Use Local Sensitivity. But can be sensitive too!



Title

Introduction

Instance
Based
Additive Noise

Computing
Smooth
Sensitivity

Sample
Aggregate
Framework

Conclusions

What Did We Cover ?

The server adds noise f (x) + N(x)Z , where N(x)
scale-up factor (noise magnitude), Z ∼ NoiseDist(Dn)
with σ(Z ) = 1.
Noise magnitude is proportional to global sensitivity.
Independent of x .
Drawbacks:

Noise magnitude can be too large, effecting accuracy.
Does not use the properties of x .

Use Local Sensitivity. But can be sensitive too!



Title

Introduction

Instance
Based
Additive Noise

Computing
Smooth
Sensitivity

Sample
Aggregate
Framework

Conclusions

What Did We Cover ?

The server adds noise f (x) + N(x)Z , where N(x)
scale-up factor (noise magnitude), Z ∼ NoiseDist(Dn)
with σ(Z ) = 1.
Noise magnitude is proportional to global sensitivity.
Independent of x .
Drawbacks:

Noise magnitude can be too large, effecting accuracy.
Does not use the properties of x .

Use Local Sensitivity. But can be sensitive too!



Title

Introduction

Instance
Based
Additive Noise

Computing
Smooth
Sensitivity

Sample
Aggregate
Framework

Conclusions

What Did We Cover ?

The server adds noise f (x) + N(x)Z , where N(x)
scale-up factor (noise magnitude), Z ∼ NoiseDist(Dn)
with σ(Z ) = 1.
Noise magnitude is proportional to global sensitivity.
Independent of x .
Drawbacks:

Noise magnitude can be too large, effecting accuracy.
Does not use the properties of x .

Use Local Sensitivity. But can be sensitive too!



Title

Introduction

Instance
Based
Additive Noise

Computing
Smooth
Sensitivity

Sample
Aggregate
Framework

Conclusions

What Did We Cover ?

The server adds noise f (x) + N(x)Z , where N(x)
scale-up factor (noise magnitude), Z ∼ NoiseDist(Dn)
with σ(Z ) = 1.
Noise magnitude is proportional to global sensitivity.
Independent of x .
Drawbacks:

Noise magnitude can be too large, effecting accuracy.
Does not use the properties of x .

Use Local Sensitivity. But can be sensitive too!



Title

Introduction

Instance
Based
Additive Noise

Computing
Smooth
Sensitivity

Sample
Aggregate
Framework

Conclusions

What Did We Cover ?

Smooth Upper Bound

The class of smooth upper bounds Sf to LSf s.t.
adding noise proportional to Sf is safe.

Define special class S∗f that is optimal in the sense that
S∗f (x) ≤ Sf (x) for every other smooth Sf .
Will show how to calculate the smooth sensitivity for:

Median

Minimal spanning tree cost
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The Sample and Aggregate Framework:
Replacing f with f for which low sensitivity is low and
efficiently computable. f as smoothed version of f .
f is evaluated on a sublinear number of random
samples from database x .
Evaluations done several times.
Results combined with a novel aggregation function
called center of attention.
The output denoted as f released with the smooth
sensitivity framework.
If f (x) approximated well by evaluation on random
samples⇒ f (x) is close to f (x).
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