
De-identifying Facial Images using k-anonymity

Ori Brostovski

March 2, 2008

Outline

Introduction
General notions
Our Presentation
Basic terminology

Exploring popular de-identification algorithms
Examples
Eigenfaces
Attacking the popular de-identifications

The solution
Definitions
The notion of k-anonymity
Problems
Summary

Photographs reveal information

I From family pictures, to news broadcasts to security cameras
in a shop, we are photographed all the time, sometimes
without our agreement.

I While the photographer may not have an interest in knowing
our exact identity, his photos may reveal this information to
others.

I The existence of image processing software allows a hostile
side to automatically scan a picture for a specific person.

A solution

I The most commonly used physical feature for attach an
identity to a person is the face.

I We can use image processing to aid us in protecting the
anonymity of photographed people by hiding their faces, in
fact this is already being done today. This is called face
de-identification.

Why not blackout all faces?

I We wish to retain same facial information about the
photographed people, for example a fashion shop interested in
knowing how many of it’s visitors are male or female.

I Sometimes, the photograph may be used psychologically and
should therefore look more visually appealing (For a photo of
a war victim, a blurred face would be much more effective in
raising awareness then a black rectangle).

I Because we can achieve results as good as blackout but better
looking.

The contribution presented

This presentation’s contribution will be:

I Formalize the problem of face de-identification.

I Explore attacks against existing de-identification schemes.

I Devise a new de-identification scheme with stronger
guarantees behind it.

Assumptions

This presentation will concentrate on a setting with the following
assumptions:

I There is a canonical face representation.

I The canonical representations of the faces to be de-identified
are in some set H which is public.

I Personal info can’t be obtained from clothes or non-facial
body parts.

Images in general

For our purposes, we will define images to be N-dimensional
vectors whose coordinates are between 0 to 255.

Face Stills and Face Images

I A Face Still is an image which includes a single person’s face,
note that in most cases we can cut an image to a few small
Face Stills.

I A Face Image is generated from a Face Still by cropping out
the face, rotating it and normalizing it. A face image acts as
the canonical representation for a face.

Distance

In many cases we would like to measure the similarity between two
images I and J, to do this we will use the standard Euclidean
metric (note, we assume that the images agree on dimensions,
otherwise we can re-scale):

euclid(I , J) =

√∑
i

(I [i]− J[i])2

Face recognition software

I Let f be a function defined as:

f : all possible images → H

where

f (x) = the image in H that is closest to x

I f is called face recognition software.

I For convenience, we will sometimes think of f as accepting a
tuple of x-s and returning a tuple of faces in H.

Outline

Introduction
General notions
Our Presentation
Basic terminology

Exploring popular de-identification algorithms
Examples
Eigenfaces
Attacking the popular de-identifications

The solution
Definitions
The notion of k-anonymity
Problems
Summary

Popular De-identification algorithms

Here are a few examples for de-identification techniques used
today:

Most of the popular algorithms are ineffective

In the following picture, there are three pictures on which one of
the de-identification algorithms was used. One of those pictures is
a picture of the nice person who wrote this presentation, with
some effort many of you would be able to recognize him.

If a human can bypass the de-identification so easily, what about a
machine?

Principal component analysis

I PCA is a common technique used for identifying faces.

I The main problem with face images is that they are high
dimension vectors.

I PCA allows us to project these vectors to a lower dimension
space whose basis is composed of vectors which are more
variant between different faces.

Principal component analysis

I Let X = (x1, x2, . . .) be a matrix whose columns are the high
dimensional vectors we want to project. We will assume that∑

i xi = 0.

I We define a column vector w1 as

w1 := argmax
‖w‖=1

var(wTX) =

argmax
‖w‖=1

E ((wTX). ∗ (wTX))) =

argmax
‖w‖=1

∑
i

〈w , xi 〉2

One can think of w1 as the vector in whose direction the
variance of the xi -s is the highest.

Principal component analysis

I We now define X̂1 as

X̂1 = X − w1w
T
1 X =

X − w1

(
〈w1, x1〉 〈w1, x2〉 . . .

)
=

X −
(
〈w1, x1〉w1 〈w1, x2〉w1 . . .

)
=(

x1 − 〈w1, x1〉w1 x2 − 〈w1, x2〉w1 . . .
)

I X̂1 is the orthogonal complement of w1 since

∀i : 〈w1, xi − 〈w1, xi 〉w1〉 = 〈w1, xi 〉 − 〈w1, xi 〉〈w1,w1〉 = 0

I We can now repeat the process to extract a w2 for X̂1 and
create a X̂2 and so on... until we have enough wi -s.

I The wi -s are called Principal components.

The eigenfaces algorithm

The eigenfaces algorithm gets three parameters:

I training - This is the set of face images from which principal
components are extracted. Note that the mean of these faces
is not necessarily zero, in which case we will call the mean ψ
and reduce it from each face image in training.

I gallery - These are all the possible faces against which we can
find a match.

I probe - This is a set of face images that we want to match
against one of the faces in gallery. For simplicity purposes,
we will assume |probe| = 1.

The Eigenfaces algorithm

The algorithm works by as following:

1. To force the mean of the faces is zero, we define ψ to be the
mean of training and reduce it from every image in training.

2. We extract principal components from training, we call the
space created by the principal components the eigenfaces
space.

3. For each face image Ii in gallery, we create an image Ji by
reducing ψ from it and projecting it to the eigenfaces space.

4. We can now take the face image probe and reduce ψ from it
and project it as well. After this is done, we can say that the
closest face image to probe is the Ji whose distance from it is
the lowest, the 2nd closest face image to probe is the Ji

whose distance from it is the second lowest, and so on.

The Eigenfaces algorithm

The algorithm works by as following:

1. To force the mean of the faces is zero, we define ψ to be the
mean of training and reduce it from every image in training.

2. We extract principal components from training, we call the
space created by the principal components the eigenfaces
space.

3. For each face image Ii in gallery, we create an image Ji by
reducing ψ from it and projecting it to the eigenfaces space.

4. We can now take the face image probe and reduce ψ from it
and project it as well. After this is done, we can say that the
closest face image to probe is the Ji whose distance from it is
the lowest, the 2nd closest face image to probe is the Ji

whose distance from it is the second lowest, and so on.

Using Eigenfaces to attack the popular de-identification
algorithms

I We will define Hd to be a collection composed of de-identified
versions of the images in H.

I The challenge of the attacker is to find out which face image
corresponds to which de-identified face image.

Attacks using Eigenfaces against the popular
de-identification algorithms

I Naive recognition - The de-identified images are used as
probe and the original images are used as gallery.

I Reverse recognition - The de-identified images are used as
gallery and the original images are used as probe.

I Parrot recognition - The attacker is assumed to know the
de-identification function by himself. He can then use the
same technique as naive recognition but activate the
de-identification function on training and gallery first.

The power of Parrot recognition

I A test was made with H being composed of 200 random faces.

I Against pixelation, bar mask (hiding the eyes with a black
rectangle) and T mask (hiding the eyes and the nose with two
black rectangles), Parrot recognition gave 100% correct
results.

I Intuitively, this is because these de-identification functions are
1-1 for most H-s.

Outline

Introduction
General notions
Our Presentation
Basic terminology

Exploring popular de-identification algorithms
Examples
Eigenfaces
Attacking the popular de-identifications

The solution
Definitions
The notion of k-anonymity
Problems
Summary

Effective de-identification

I Let f be a de-identification function.

I Let C be some claim regarding the ability of f to hinder face
detection.

I A function f will be called effective with respect to C in the
case where given only a set of de-identified face images,
whatever is claimed in C is indeed true.

Effective de-identification - an example

I Define f such that f := blackout.

I We can define C to be the claim: Given a set of face images
H and a set of de-identified face images Hd , for any
de-identified face image in Hd , it is impossible to uniquely
determine it’s corresponding original face image.

I Since f sends all elements of H to zero, given an output of
f (x) it is impossible to guess x with probability higher than
1

|H| .

Preserved face de-identification

Let’s define a notion to tell us that a function doesn’t cause too
much information loss.

I Let loss be some distance metric (usually Euclidean, but not
necessarily).

I Let f be some function and g be another function.

I We define f to be preserved over g with respect to loss if

∀Γ ∈ H : loss(Γ, f (Γ)) < loss(Γ, g(Γ))

Preserved face de-identification - an example

I Define f1 := blackout.

I Define f2 as f2(x) =
∑

y∈H y

|H| . f2 is called the mean function.

I Let C be the same claim from the previous example.

I Let loss be Euclidean distance.

Preserved face de-identification - an example

If we assume that:

I All people have common facial organs (eyes, mouths etc.).

I The algorithm to generate a face image from a face still
manages to place these organs on top of each other

I The percent of facial organs in a face image is high enough.

We can say that:

I f2 is preserved over f1 with respect to loss.

Preserved face de-identification - an example

I The reason we need the assumptions is that in order to be
preserved, the distance dist(f2(Γ), Γ) must be less than
dist(f1(Γ), Γ) for all Γ-s.

I For this to happen, we need the images to be similar in a
subspace big enough to give f2 the advantage over f1.

A more relaxed claim - k-anonymity

I Let k be a positive integer.

I Let f be a de-identification function.

I Let C be the k-anonymity claim.

I We say that f is effective with respect to C if for every image
in y ∈ f (H), we have at least k sources in H.

An example of a de-identification effective with respect to
k-anonymity

I Let us define Γi -s such that

H = {Γ1, Γ2, . . . , Γn}

I Let f be the de-identification function defined as:

f (x) =

Γ1+Γ2

2 if x ∈ {Γ1, Γ2}
Γ3+Γ4

2 if x ∈ {Γ3, Γ4}
Γ5+Γ6

2 if x ∈ {Γ5, Γ6}
...

I f is effective with respect to 2-anonymity.

Order affects quality

I Let us look at an extension g of the previous function for
some arbitrary k.

I When defining g above, we assume some kind of an ordering
on the Γi -s within H. If a random ordering is used, we end up
with mean images that may not be similar to the sources.

I This will cause more data loss.

The k-Same-Pixel algorithm - initialization

For this algorithm, we will use the notion of a return table, which
specifies for each function input what should it’s output be. The
algorithm initializes as following

I Let k be a privacy constant.

I Train eigenfaces on H.

I Define S := H.

The k-Same-Pixel algorithm - loop

For each Γ ∈ S , we:
I Check if |S | ≥ 2k:

I If |S | ≥ 2k, use eigenfaces to find the k-closest projections to
Γ, call them K .

I If |S | < 2k use eigenfaces to find the |S |-closest projections to
Γ, call them K .

I Set m := mean of elements of K .

I Set our return table to say that ∀Γ′ ∈ K : f (Γ′) = m.

I Set S := S \ K .

k-Same-Pixel looks good

As shown in the following example, k-Same-Pixel gives good
looking results:

k-Same-Pixel is not perfect

In the description of the algorithm, one thing is left random, which
Γ is selected. This can affect in cases like the following:

k-Same-Pixel is not preserved over the mean function

k-Same-Pixel is not preserved over the mean function with respect
to Euclidean distance.

k-Same-Pixel is not preserved over the mean function

Here is an example of the previous claim:

I black dots - face images (equal to their projections).

I red dots (and dots marked as red) - k-Same-Pixel means.

I dot marked as blue - mean of all face images.

Summary

In this presentation we have:

I Defined a more formal model for image de-identification.

I Demonstrated problems with existing de-identification
algorithms since they are mostly 1-1.

I Showed a new method that gives stronger guarantees to face
image anonymity.

Biography

I E. Newton, L. Sweeney, and B. Malin. Preserving Privacy by
De-identifying Facial Images.

I Wikipedia’s “Principal Component Analysis” entry.

	Introduction
	General notions
	Our Presentation
	Basic terminology

	Exploring popular de-identification algorithms
	Examples
	Eigenfaces
	Attacking the popular de-identifications

	The solution
	Definitions
	The notion of k-anonymity
	Problems
	Summary

