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Abstract

We initiate the study of compression that preserves the solution to an instance of a problem rather
than preserving the instance itself. Our focus is on the compressibility of NP decision problems. We
consider NP problems that have long instances but relatively short witnesses. The question is, can
one efficiently compress an instance and store a shorter representation that maintains the information of
whether the original input is in the language or not. We want the length of the compressed instance to be
polynomial in the length of the witness rather than the length of original input. Such compression enables
to succinctly store instances until a future setting will allow solving them, either via a technological or
algorithmic breakthrough or simply until enough time has elapsed.

We give a new classification of NP with respect to compression. This classification forms a strati-
fication of NP that we call the VC hierarchy. The hierarchy is based on a new type of reduction called
W-reduction and there are compression-complete problems for each class.

Our motivation for studying this issue stems from the vast cryptographic implications compressibility
has. For example, we say that SAT is compressible if there exists a polynomial p(·, ·) so that given a
formula consisting of m clauses over n variables it is possible to come up with an equivalent (w.r.t
satisfiability) formula of size at most p(n, log m). Then given a compression algorithm for SAT we
provide a construction of collision resistant hash functions from any one-way function. This task was
shown to be impossible via black-box reductions [57], and indeed the construction presented is inherently
non-black-box. Another application of SAT compressibility is a cryptanalytic result concerning the
limitation of everlasting security in the bounded storage model when mixed with (time) complexity
based cryptography. In addition, we study an approach to constructing an Oblivious Transfer Protocol
from any one-way function. This approach is based on compression for SAT that also has a property that
we call witness retrievability. However, we mange to prove severe limitations on the ability to achieve
witness retrievable compression of SAT.

1 Introduction

In order to deal with difficult computational problems several well established options were developed,
including: approximation algorithms, subexponential algorithms, parametric complexity and average-case
complexity. In this paper we explore our favorite approach for dealing with problems: postpone them (hope-
fully, without cluttering our desk or disk). We initiate the study of the compressibility of NP problems for
their resolution in some future setting. Rather than solving a given instance, we ask whether a shorter
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instance with the same solution can be found efficiently. We emphasize that we are not interested in main-
taining the information about the original instance (as is the case in typical notions of compression), but
rather maintain the solution only. The solution can possibly be much shorter than the input (as short as a
yes/no answer), thus the potential of such a compression is high.

Specifically, we consider NP problems that have long instances but relatively short witnesses. An NP
language L is defined by an efficiently computable relation RL such that an input (or instance) x is in L
if and only if there exists a witness w such that RL(x,w) = 1. Throughout the paper, an NP instance is
characterized by two parameters m and n: The length of the instance x is denoted by m and the length of
the witness w is denoted by n. The problems of interest are those having short witnesses, i.e. n << m.
Traditionally, the study of NP languages evolves around the ability or inability to efficiently decide if an
instance is in the language or not, or to find a witness w for an instance x within polynomial time. We
introduce the question of compressibility of such instances.

Compressing SAT Instances: To illustrate the relevant setting, we use the well known example of SAT.
An instance Φ for SAT consists of a CNF formula over n variables and we define that Φ ∈ SAT if there
exists an assignment to the n variables that satisfies all the clauses of Φ. We begin with compressibility
with respect to decision, and discuss compressibility of the search variant later in the paper. The question of
compressibility of SAT is the following:

Example 1.1 (Compression of SAT instances)
Does there exist an efficient algorithm and a polynomial p(·, ·) with the following input and output:
Input: A CNF formula Φ with m clauses over n variables (we are interested in m >> n).
Output: A formula Ψ of size p(n, log m) such that Ψ is satisfiable if and only if Φ is satisfiable.

The idea is that the length of Ψ should be essentially unrelated to the original length m, but rather to the
number of variables (or in other words, to the size of the witness). Typically, we think of the parameters m
and n as related by some function, and it is instructive (but not essential) to think of m as larger than any
polynomial in n. So potentially, the length of Ψ can be significantly shorter than that of Φ.1

In general, one cannot expect to compress all the formulas, or else we would have an efficient algorithm
for all NP problems.2 However, once we introduce the setting of a shorter witness, then compression
becomes plausible. Note that if P = NP and we actually know the algorithm for SAT then clearly
compression is trivial, simply by solving the satisfiability of Φ and outputting 1 if Φ ∈ SAT and 0 otherwise.

Motivation for Compression: Compressing for the future is an appealing notion for various settings.
There are numerous plausible scenarios that will give us more power to solve problems in the future. We
could potentially find out that P = NP and solve all ourNP problems then. We may have faster computers
or better means of computing such as quantum computers or any other physical method for solving problems
(see Aaronson [1] for a list of suggestions). Above all, the future entails lots and lots of time, a resource
that the present is usually short of. Saving the problems of today as they are presented is wasteful, and
compression of problems will allow us to store a far greater number of problems for better days.

Our interest in studying the issue of compression stems from the vast cryptographic implications of
compressibility. We demonstrate three questions in cryptography that compression algorithms would resolve

1Note, that since our requirement for compression is only relevant for problems where m >> n, then anNP-complete problem
such as 3-SAT (where all clauses have exactly 3 literals) is irrelevant for compression as in such formulas m is already at most
O(n3).

2Suppose that every formula can be compressed by a single bit, then sequentially reapplying compression to the input will result
in a very short formula that may be solved by brute enumeration.
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(see Section 1.3). We are confident that the compression of problems implies further applications both within
and outside of cryptography. For example, in subsequent works, Dubrov and Ishai [19] show the relevance
of the notion of compression to derandomization and Dziembowski [21] shows that compression is related
to the study of forward-secure storage (see Section 1.4 on related work). The concept of compression of
problems is also interesting beyond the confines of NP problems, and makes sense in any setting where the
compression requires much less resources than the actual solution of the problem.

1.1 Compression of NP instances

We define the notion of compression with respect to an NP language. For simplicity, we assume that an
input to an NP language L includes an encoding of the parameter n that upper bounds the length of a
potential witness.3 We also associate with L a specificNP relation RL that defines it (as mentioned above).
We note that once the parameters m and n are explicit, it is in most cases immaterial what specific relation
defines the language and the properties we discuss (such as compressibility) are properties of the language
at hand (unless stated otherwise). In essence, a compression algorithm is a specialized Karp-reduction that
also reduces the length of the instance.

Definition 1.2 (Compression Algorithm for NP Instances) Let L be an NP language where m and n
denote the instance length and the witness length respectively. A compression algorithm for L is a proba-
bilistic polynomial time machine Z along with a language L′ inNP (or more accurately inNP(poly(m)))4

and a polynomial p(·, ·) such that for all large enough m:

1. For all x ∈ {0, 1}m with parameter n the length of Z(x) is at most p(n, log m).

2. Z(x) ∈ L′ if and only if x ∈ L

The above definition is of an errorless compression. We also consider a probabilistic variant called ε-
compression for some real function ε : N → [0, 1]. The probabilistic definition is identical to the errorless
one except for the second property that is augmented to:

2’. For large enough n, for all x ∈ {0, 1}m with parameter n it holds that:

Pr[(Z(x) ∈ L′) ⇔ (x ∈ L)] > 1− ε(n)

where probability is over the internal randomness of Z. Typically we require ε(·) to be negligible.

The paper consists of two parts: Part I is a study of the concept of compression of NP instances from a
complexity point of view. Part II introduces the cryptographic applications of compression algorithms.

How much to compress: Definition 1.2 (of compression algorithms) requires a very strong compression,
asking that the length of the compression is polynomial in n and log m. For the purposes of part I of the paper
(the complexity study), it is essential that the compression is at least sub-polynomial in m in order to ensure
that the reductions defined with respect to compressibility (See Section 2.2) do compose.5 Furthermore,
for part II (the applications) this definition may be strongly relaxed, where even a compression to m1−ε for
some constant ε suffices for some applications.

3Typically, the parameter n is indeed part of the description of the problem (e.g. for Clique, SAT, Long-path and others).
4By NP(poly(m)) we mean in nondeterministic-time poly(m) (that is, verifiable in time poly(m) when given a non-

deterministic hint).
5For clarity we choose a polynomial in log m, although this may be replaced by any sub-polynomial function m′(.) (a function

such that for large enough m for any polynomial q(·) we have m′(m) < q(m)).
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The Complexity of L′: Another requirement of Definition 1.2 is that the language L′ be inNP(poly(m)).
In general, this requirement may also be relaxed and the result still be meaningful for some applications.
In particular, we do not need to put a bound on the complexity of L′, but only require that there is enough
information in Z(x) to determine whether x ∈ L or not. One case where we use a definition with unbounded
extraction is the compression of search problems in Section 2.7. It should be noted however that in some
settings the requirement for L′ to be in NP(poly(m)) is essential, such as when defining the witness re-
trievability property (Definition 1.5). Moreover, in some cases it is natural to further restrict L′ to actually
be in NP (that is in NP(poly(n, log m)). For instance, this is the case in the definition of compression
of SAT (Example 1.1). Finally, note that if the compression is errorless, then L′ must be in NP(poly(m))
simply by the definition of compression.6

Paper organization: In the rest of the introduction we survey the results of this paper, including part I
(the complexity study) and part II (the cryptographic applications). In section 1.4 we discuss related and
subsequent works. The main complexity study of the compressibility of NP problems appears in Section
2. The Cryptographic applications are in Sections 3,5 and 4. In Section 3 we describe the application
of compression to constructing CRH from any one-way function. Section 4 presents the implication to the
hybrid bounded storage model, while Section 5 discusses witness retrievable compression and its application
to the construction of OT from any one-way function. We conclude with a discussion and some open
problems (Section 6).

1.2 Part I: Classifying NP Problems with Respect to Compression.

We are interested in figuring out which NP languages are compressible and, in particular, whether impor-
tant languages such as SAT and Clique are compressible. For starters, we demonstrate some non-trivial lan-
guages that do admit compression (Section 2.1): we show compression for the well known NP-complete
problem of vertex-cover and for another NP-complete language known as minimum-fill-in. We show a
generic compression of sparse languages (languages containing relatively few words from all possible in-
stances). As a specific example we mention the language consisting of strings that are the output of a
cryptographic pseudorandom generator and also consider the sparse subset sum problem. In addition we
show compression for the promise problem GapSAT.7 However, these examples are limited and do not shed
light on the general compression of other NP problems. Moreover, it becomes clear that the traditional no-
tions of reductions and completeness in NP do not apply for the case of compression (i.e., the compression
of an NP-complete language does not immediately imply compression for all of NP). This is not surpris-
ing since this is also the case with other approaches for dealing with NP-hardness such as approximation
algorithms or subexponential algorithms (see for example [54]) and parameterized complexity (see [18] and
further discussion in Section 1.4 on related work). For each of these approaches, appropriate new reductions
where developed, none of which is directly relevant to our notion of compression.

We introduce W-reductions in order to study the possibility of compressing various problems in NP .
These are reductions that address the length of the witness in addition to membership in an NP language.
W-reductions have the desired property that if L W-reduces to L′, then any compression algorithm for L′

yields a compression algorithm for L. Following the definition of W-reductions we define also the matching
notion of compression-complete and compression-hard languages for a class.

6Suppose that there exists a compression algorithm Z for L then define L′ to be the language of all Z(x) such that x ∈ L. Then,
for every y ∈ L′ a verification algorithm takes as a nondeterministic witness a value x, a witness to x ∈ L along with randomness
for the compression algorithm and verifies that indeed y = Z(x). Thus if Z never introduces an error then L′ is in NP(poly(m)).

7I.e. a promise problem were either the formula is satisfiable or every assignment does not satisfy a relatively large number of
clauses.
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The VC classification: We introduce a classification of NP problems with respect to compression. The
classification presents a structured hierarchy of NP problems, that is surprisingly different from the tradi-
tional view and closer in nature to the W hierarchy of parameterized complexity (see [18]). We call our
hierarchy VC, short for “verification classes”, since the classification is closely related to the verification
algorithm of NP languages when allowed a preprocessing stage. We give here a very loose description
of the classes, just in order to convey the flavor of the classification. Formal definitions appear in Section
2.3. In the following definition, when we use the term “verification” we actually mean “verification with
preprocessing”:

• For k ≥ 2, the class VCk is the class of languages that have verification which can be presented
as a depth k polynomial size circuit (polynomial in n and m). For example, the language SAT is
compression-complete for the class VC2. Other examples include Integer-Programming that resides
in VClog n and Dominating-Set that is in VC3. Both of which are shown to be compression-hard for
VC2.

• VC1 is the class of languages that have local verification. That is, languages which can be verified
by testing only a small part (of size poly(n, log m)) of the instance. This class contains many natural
examples such as the Clique language or Long-path.

• VCOR is the class of languages that have verification which can be presented as the OR of m small
instances of SAT (each of size n). This class contains the languages that are relevant for the crypto-
graphic applications. The Clique language is compression-hard for this class (Claim 2.22).

• VC0 is the class of compressible languages. In particular it includes vertex cover, sparse languages
and GapSAT.

We show that the classes described form a hierarchy (see Lemma 2.17 and Claim 2.23). That is:

VC0 ⊆ VCOR ⊆ VC1 ⊆ VC2 ⊆ VC3 . . .

We discuss some of the more interesting classes in the VC hierarchy, classify some centralNP problems and
mention compression-complete problems for the classes. Note that the existence of a compression algorithm
for a complete problem for some class entails the collapse of the hierarchy up to that class into VC0.

In addition, we study the compression of NP search problems. That is, compressing an instance in a
way that maintains all the information about a witness for the problem. We show that the compression of a
class of decision problems also implies compression for the corresponding search problems. Formally:

Theorem 1.3 If a class VCk has a compression algorithm, then there is a compression algorithm for the
search problem of a relation RL of L ∈ VCk.

This theorem turns out to be useful for the cryptanalysis result regarding the bounded storage model we
present in Section 4.

1.3 Part II: Implications to Cryptography

As the main motivation for the study of compression, we provide some strong implications of compress-
ibility to cryptography. The implications described are of contrasting flavors. On the one hand we show
constructions of cryptographic primitives using compression algorithms, while on the other hand we show
a cryptanalysis using compression algorithms (or alternatively, this can be considered as an application of
incompressibility of languages). For simplicity we provide the implication with respect to the compression
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of SAT. We note however, that the same statements can actually be made with compression of languages
from the class VCOR (see Definition 2.20). This class is the lowest class in our VC hierarchy, and potentially
easier to compress than SAT. Moreover, the instances that we need to compress for our applications are
further limited in the sense that (i) the instances are in NP∩ Co-NP and (ii) the (positive and negative)
instances have a unique witness.

Basing Collision Resistant Hash Functions on Any One-Way Function: Collision Resistant Hash func-
tions (CRH) are important cryptographic primitives with a wide range of applications, e.g. [51, 12, 40, 13,
46, 6]. Loosely speaking, a CRH is a familyH of length reducing functions, such that no efficient algorithm
can find collisions induced by a random hash from the family. Currently there is no known construction of
CRH from general one-way functions or one-way permutations, and moreover, Simon [57] showed that bas-
ing CRH on one-way permutations cannot be achieved using black-box reductions. We show how a general
compression algorithm may be used to bridge this gap.

Theorem 1.4 If there exists an errorless8 compression algorithm for SAT then there exists a construction of
collision resistant hash functions based on any one-way function.

The construction of the CRH in Theorem 1.4 is inherently non-black-box and uses the program of the one-
way function via Cook’s Theorem [11]. This is essential to the validity of this approach, in light of the
black-box impossibility result [57].

An interesting corollary of this result is a construction of statistically hiding bit commitment from any
one-way function, which is currently an open problem. Moreover, the construction would require only a
single round of interaction ([50, 28] show constructions of statistically hiding bit commitment based on
one-way functions with a specific structure and also require a large number of rounds of interaction).

On Everlasting Security and the Hybrid Bounded Storage Model: The bounded storage model (BSM)
of Maurer [44] provides the setting for the appealing notion of everlasting security [4, 16]. Loosely speaking,
two parties, Alice and Bob, that share a secret key in advance, may use the BSM to encrypt messages in
a way that the messages remain secure against a computationally unbounded adversary, even if the shared
secret key is eventually revealed.

However, if the parties do not meet in advance to agree on a secret key then everlasting security requires
high storage requirements from Alice and Bob [22], rendering encryption in this model less appealing.
Hoping to overcome this, it was suggested to combine the BSM with computational assumptions (what is
called here the hybrid BSM). In particular, to run a computational key agreement protocol in order to agree
on a shared secret key, and then run one of the existing BSM schemes. Dziembowski and Maurer [22]
showed that this idea does not necessarily work in all cases, by showing an attack on a protocol consisting
of the combination of a specific (artificial) computational key agreement protocol with a specific BSM
encryption scheme.

We show that compression of NP instances can be used to attack all hybrid BSM schemes. Or in
other words, if a compression of SAT exists, then the hybrid BSM is no more powerful than the standard
BSM. One interpretation of this result is that in order to prove everlasting security for a hybrid BSM scheme,
without further conditions, one must prove that there exists no compression algorithm for SAT. Alternatively,
as a relaxation, one should come up with a reasonable incompressibility assumption regarding the resulting
formulae. Note however that a straightforward assumption of the form “this distribution on SAT formulae

8The construction of CRH requires that the error probability of compression algorithm will be zero. This can be slightly relaxed
to an error that is exponentially small in m (rather than n).
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is incompressible” is not efficiently falsifiable, in the sense of Naor [49], that is, it is not clear how to set up
a challenge that can be solved in case the assumption is false.
ON RANDOM ORACLES: The authors of this paper show in [29] that if all parties are given access to a
random oracle, then there actually exists everlasting security in the hybrid BSM without an initial key and
with low storage requirements from Alice and Bob9. Therefore, finding a compression algorithm for SAT
would show an example of a task that is simple with random oracles but altogether impossible without them.
This would constitute an argument against relying (blindly) on random oracles to determine whether a task
is feasible at all. This is different than previous results such as [10, 27, 45, 7] that show a specific protocol
that becomes insecure if the random oracle is replaced by a function with a small representation. Model
separation results (such as the implication of compression) were discussed by Nielsen [52, 53] (for non-
interactive non-committing encryption) and Wee [62] (for obfuscating point functions), but the separation
there is between the programmable and non-programmable random oracle models (in contrast, the hybrid
BSM result in [29] holds also if the oracle is non-programmable).

The actual model and results: The bounded storage model bounds the storage space of an adversary
rather than its running time. It utilizes the public transmission of a long random string R of length m
(sometimes referred to as the broadcast string), and relies on the assumption that an eavesdropper cannot
possibly store all of this string. The everlasting security achieved by encryption schemes in this model
means that an encrypted message remains secure even if the adversary eventually gains more storage or
gains knowledge of (original) secret keys that may have been used. However, if the honest parties do not
share any private information in advance, then achieving everlasting security requires storage capacity of
Ω(
√

m) from the honest parties (as shown in [22]).
The hybrid bounded storage model (see [29] for formal definitions and notions of security) assumes

computational limitations on the eavesdropper up until the time that the transmission of R has ended. Com-
putational assumptions with such a strict time limit are generally very reasonable. For instance, in the key
agreement example, all that we require is that the computational protocol is not broken in the short time
period between its execution and the transmission of R. An assumption such as the Diffie Hellman key
agreement [15] cannot be broken within half an hour, can be made with far greater degree of trust than actu-
ally assuming the long term security of a computational key agreement protocol. We consider two models,
and give a cryptanalysis result for each of them:

• The Basic BSM Scheme: The honest parties may only interact before the broadcast of R (except for
actually sending the encrypted message). Thus the encryption key is fully determined at the end of
the broadcast of R. Such a scheme is fully breakable in the standard BSM (without initial keys). We
show that compression of SAT allows to break any basic hybrid scheme (Theorem 4.2).10

• The General BSM Scheme: Alice and Bob can interact both before and after the broadcast of R. In
the standard BSM (without initial keys) such a scheme is breakable unless Alice and Bob use storage
of size Ω(

√
m). In the hybrid BSM, we show (Theorem 4.4) that if a compression of SAT exists then

such a scheme is breakable unless Alice and Bob use storage of size Ω(
√

m/p(n, log m)), where n is
the security parameter of the computational protocol and p is a polynomial (related to the polynomial
of the compression algorithm and the running time of the protocol that Alice and Bob use).

9This does not contradict the compressibility of SAT, since the cryptanalytic result is not black-box and assumes access to the
full description of the programs of Alice and Bob. Thus this result is not preserved in the presence of a random oracle.

10Basic schemes are very relevant to the hybrid BSM as they include a combination of a key agreement protocol with a private
key scheme (such as the scheme described by [22]).
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Witness retrievable compression and the existence of Minicrypt: The next application is an attempt to
use compression in order to prove, in the terminology of [33], that Minicrypt=Cryptomania. Impagli-
azzo [33] summarizes five possibilities for how the world may look like based on different computational
assumptions. The two top worlds are Minicrypt, where one-way functions exist but oblivious transfer
protocols do not exist (in this world some interesting cryptographic applications are possible, and in partic-
ular shared key cryptography exists) and Cryptomania where Oblivious Transfer protocols do exist (and
hence also a wide range of cryptographic applications like secure computation and public key cryptogra-
phy). Whether OT can be constructed from any one-way function is a major open problem in cryptography.
Impagliazzo and Rudich [35] addressed this problem and proved that key agreement protocols (and hence
also OT) cannot be constructed from any one-way function using black-box reductions.

We explore an approach of using compression in order to bridge the gap between the two worlds. In
order to do so we introduce an additional requirement of a compression algorithm.

Definition 1.5 (Witness Retrievable Compression) Let Z,L and L′ define a compression algorithm as in
Definition 1.2 and let RL be an NP relation for L. The compression is said to be witness retrievable with
respect to RL if there exists a probabilistic polynomial time machine W such that if input x ∈ L then for
every witness wx for RL it holds that wy = W (wx, Z(x)) is a witness for Z(x) ∈ L′. We allow a negligible
error in the success of W (where probability is over the internal randomness of Z and W ).

Theorem 1.6 If there exists a witness retrievable compression algorithm for a certain type of SAT formulas,
then there exists an Oblivious Transfer protocol based on any one-way function.

As in the CRH construction (Theorem 1.4), the construction of OT in Theorem 1.6 is inherently non-black-
box. Unfortunately we show that this approach cannot work with a compression algorithm for the general
SAT problem, due to the following theorem:11

Theorem 1.7 If one-way functions exist then there is no witness retrievable compression of SAT.

Furthermore, we also rule out the possibility of other types of witness retrievable compression that may be
sufficient for Theorem 1.6. More precisely, the inability of witness retrievable compression does not change
when allowing an error in the retrieval, or when dealing with a case where there is a unique witness (see
Corollary 5.7). These developments rule out basing the approach of Theorem 1.6 on the compression of
a general and standard language. The approach may still work out with a witness retrievable compression
algorithm for the specific CNF formulas as stated in Theorem 1.6.

Finally, we point out that almost all of the examples of compression algorithms in this paper (in Sections
2.1 and 2.9) are in fact witness retrievable. This demonstrates that these examples fall short of the general
compression that we are seeking. In fact a major obstacle in achieving compression for problems such as
SAT seems to be that most ideas are witness retrievable.

1.4 Related Work

The relationship between compression and complexity in general is a topic that has been investigated since
the early days of Complexity Theory (i.e. Kolmogorov Complexity [42]). However, the feature that we are
introducing in this work is compressibility with respect to the solution (witness) rather than the instance.
The goal of maintaining the solution differs our work from a line of seemingly related works about notions

11The first version of this paper [30] (dated Feb 17, 2006) did not contain this theorem and was hence more optimistic on the
possibility of finding a witness preserving compression algorithm for SAT.
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of compression ([20, 58, 61] to name a few), all of which aim at eventually retrieving the input of the
compression algorithm.

There are several examples of other relaxations to solving NP problems in polynomial time. Each of
these relaxations yields a corresponding classifications of NP . These classifications, like ours, are sub-
tle and usually turn out to be different than the traditional NP classification. For example, Papadimitriou
and Yannakakis [55] introduce L-reductions and the classes MAX NP and MAX SNP, with respect to ap-
proximation algorithms. Impagliazzo, Paturi and Zane [34] define reductions with respect to solution in
sub-exponential time.

Perhaps the most relevant classification to ours is that of parameterized complexity (see the monograph
on this subject by Downey and Fellows [18]). Parameterized complexity studies the tractability of problems
when one of the parameters is considered to be fixed or very small. This is relevant to compression since
typically this parameter is related to the length of the witness. On the one hand, some (but not all) parame-
terized complexity algorithms yield natural compression algorithms (see examples and discussion in Section
2.1). In addition, some (but certainly not all) compression algorithms may imply a parameterized complex-
ity algorithm. Also the W -hierarchy of parameterized complexity is reminiscent of the VC-hierarchy (they
are both defined by reduction to circuits of bounded depth). However, our study of compression yields quite
a different classification. This is mainly because in parameterized complexity the witness length is taken to
be very small and as such, there is no restriction on running in time that is exponential (or higher) in this
parameter. In compression, on the other hand, the parameter (witness length) is usually of substantial size
(even if much smaller than the instance length).

A related notion to parameterized complexity that is reminiscent of our work is limited non-determinism,
which started with the work of Kintala and Fischer [41], see survey by Goldsmith, Levy and Mundheck [26].
This was further studied by Papadimitriou and Yannakakis [56] who defined a few syntactic classes within
the class of polylog non-determinism (LOGNP and LOGSNP ). The interesting point is that several
natural problems are complete for these classes. The notion of reduction used is the usual polynomial
reduction and hence the classifications arising from this study are very different from our VC hierarchy.

Subsequent Works: Dubrov and Ishai [19] discussed the compression of problems and showed that a
certain incompressibility assumption has an application to derandomization. Specifically they construct a
generator that fools procedures that use more randomness than their output length. Their work was mostly
conducted independently of ours, following conversations regarding an early phase of our work. In addition,
inspired by our CRH construction, they prove that any one-way permutation can either be used for the above
mentioned derandomization, or else can be used to construct a weak version of CRH.12

In a recent paper, Dziembowski [21] shows the relevance of our notion of witness retrievable compres-
sion to a method for achieving forward-secure storage. He shows a cryptanalytic result of such compression.
Furthermore, following our approach for construction of OT from one-way functions, he shows that for ev-
ery one-way function either a specific storage scheme is forward-secure, or there exists an OT protocol based
on this one-way function.

2 Part I: On the Compression of NP Instances

Attempting to compressNP instances requires a different approach than solvingNP problems. Intuitively,
a solution for compression might arise while trying to solve the problem. While a full solution of an NP
problem may take exponential time, it is plausible that the first polynomial number of steps leaves us without

12This weak version of CRH (like the stronger common version) cannot be constructed from any one-way permutation by black-
box reductions. (in [57]).
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an explicit solution but with a smaller instance. Indeed, some algorithms in the parameterized complexity
world work like this (see some examples in the next section). On the other hand, we allow the possibility
that the compressed version is actually harder to solve (computational time-wise) than the original one (and
may require a somewhat longer witness altogether).

2.1 Examples of Compression Algorithms for some Hard Problems

We start by showing three examples of compression algorithms for problems that are conjectured not to be
in P . Two of these example are NP-complete problems, while the third is taken from cryptography.

Vertex Cover: The well studied NP-complete problem of Vertex-Cover receives as input a graph G =
(V,E) and asks whether there exists a subset of vertices S ⊆ V of size at most k such that for every edge
(u, v) ∈ E either u or v are in S. The parameters are the instance length m, which is at most O(|E| log |V |),
and the witness length n = k log |V |

Claim 2.1 There exists a witness retrievable compression algorithm for Vertex-Cover.

Proof: We are following the parameterized complexity algorithm for vertex-cover (presented in [18] and
attributed to Buss). If a vertex-cover S of size k exists, then any vertex of degree greater than k must be
inside the set S. The compression algorithm simply identifies all such vertices and lists them in the cover,
while removing all their outgoing edges (that do not need to be covered by other vertices). The graph left
after this process has maximal degree k, and furthermore all edges have at least one end in the cover. Thus,
if the original graph has a k vertex cover then the total number of edges left is at most k2 (at most k vertices
in the cover with at most k edges each). If there are more then k2 edges then the answer to the problem
is NO, otherwise, such a graph can be represented by the list of all edges, which takes k2 log k bits. The
compression can be made witness retrievable since if we use the original labels of vertices to store the new
graph, then the original cover is also a cover for the new compressed graph. 2

It is interesting to note that we do not know of a compression algorithm for the Clique problem or the
Dominating Set problem, which are strongly linked to the vertex-cover problem in the traditional study of
NP , and in fact, in Theorems 5.1, 3.1 and 4.2 we show strong implications of a compression algorithm for
these languages.

Sparse Languages: We call a language sparse if the language contains only of a small fraction of the
words under consideration. More precisely:

Definition 2.2 [Sparse Language] Let L be an NP language with instance length m and parameter n and
denote Lm = {x ∈ {0, 1}m | x ∈ L}, then L is sparse if there exists a polynomial p(·) such that for all
m,n it holds that |Lm| ≤ 2p(n).

We show that all sparse languages can be compressed to a size that is dominated by the number of words
that are actually in the language. In other words, a language is compressible as it is sparse. This is shown
by a generic compression algorithm for any sparse language. The idea is to apply a random hash function
to the instance where the output of the hash is of length 2p(n) and thus substantially smaller than m. The
new language contains all words that are hashed values of a word in the original language. We note that
the compressed language L′ lies in NP(poly(m)) (recall that NP(poly(m)) stands for nondeterministic-
time(poly(m))). In particular, it is not necessarily witness retrievable.

Rather than formally presenting the method for a general sparse language, we describe the method via a
sparse language that we call PRG-output. Note that for this language the method is witness retrievable.
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Example 2.3 (PRG-Output) Let G be a pseudorandom generator stretching an n bit seed to an m bit
output (with m >> n). Define the language PRG-output over inputs y ∈ {0, 1}m as

LG = {y| there exists an x s.t. G(x) = y}

The language PRG-output is hard to solve for random instances as long as the underlying PRG is secure.
Yet it has a simple compression algorithm. Note that simply saving, say, the first 2n bits of the instance y is
insufficient because if y only differs from G(x) in one bit, then this bit may be anywhere in the m bits.

Claim 2.4 There exists a witness retrievable compression algorithm for PRG-output.

Proof: Let H be a family of almost pairwise independent hash functions from m bits to 2n bits. The
compression algorithm simply chooses a random h ∈ H and outputs (h(y), h). The new language is L′

G =
{(z, h)| there exists an x s.t. h(G(x)) = z}.

Naturally, if y ∈ LG then also (h(y), h) ∈ L′
G with the same witness (and thus the witness retrievability).

On the other hand, if y /∈ LG then by the properties of H, for every seed x we have that Prh[h(G(x)) =
h(y)] < O(2−2n), and by a union bound over all x ∈ {0, 1}n, we get Prh[h(y) ∈ L′

G] < O(2−n). Finally,
since there are almost pairwise independent hash functions whose description is of length O(n)+log m (for
example see [47]), then the algorithm is indeed compressing. 2

Sparse subset sum: We show another example of a compressible language called sparse subset sum that
is sparse in a different sense than that of Definition 2.2. While the generic compression for sparse languages
does not work for this language, it is compressible in its own right. Moreover, the compression algorithm
for sparse subset sum is better than the generic algorithm in the sense that the compressed language in the
specialized algorithm is in NP(poly(n, log m)) (or actually in NP) rather than in NP(poly(m)).

Example 2.5 (Sparse Subset Sum) The language sparse subset sum takes as input n values x1, . . . xn each
in {0, 1}m (with m >> n) and a target value T ∈ {0, 1}m. An input is in the language if there is a subset
S ⊆ [n] where

∑
i∈S xi = T (the sum is taken modulo 2m).

Claim 2.6 There exists a witness retrievable compression algorithm for sparse subset sum.

Proof: To compress an instance of sparse subset sum simply pick a large random prime 2n < P <
22n+log m and store the numbers yi = xi mod P (for every i ∈ [n]), the target TP = T mod P and
P (the idea of picking a prime P and working modulo P has been useful various applications, e.g. in the
Karp-Rabin string matching algorithm [39]). The compressed instance is of length O(n(n+log m)) and the
compress language is also subset sum (modulo P ). If there exists a set S for which

∑
i∈S xi = T then also∑

i∈S yi = TP (hence the witness retrievability). On the other hand, we want that if the original instance
was not in the language then for any subset S it will hold that

∑
i∈S yi 6= TP . In order to get

∑
i∈S yi = TP

it is required that P is a divisor of D =
∑

i∈S xi − T . However D has at most m/n prime divisors that
are greater than 2n, while the prime P is taken from a range containing O(22nm/n) primes. Therefore, for
every S it holds that PrP [

∑
i∈S yi = TP ] ≤ 2−2n and by a union bound over all sets S, the probability of

an error is bounded by 2−n. 2

Minimum Fill-In: The minimum fill-in problem is anNP-hard problem that takes as input a graph G and
a parameter k, and asks whether there exist at most k edges that can be added to the graph that would turn it
into a chordal graph, i.e. one with no induced cycles of length more than 3. This problem has applications
in ordering a Gaussian elimination of a matrix.

11



Claim 2.7 The minimum fill-in problem with parameter k has witness retrievable compression.

Proof: Kaplan, Shamir and Tarjan [37] prove that this problem is fixed-parameter tractable (this notion
of tractability in parameterized complexity means that the problem is polynomial-time solvable when k is
sufficiently small, and in particular for all fixed k). Their algorithm partitions the graph into two sets of
nodes A and B where A is of size k3 and there are no chordless cycles (i.e. an induced cycle of length
greater than 3) in G that contain vertices in B. The complexity of this partition is O(k2|V ||E|). They then
prove that G has a k edge fill-in if and only if the graph induced by A has a k edge fill-in.

Thus the compression algorithm follows the same partitioning and stores only the graph induced by
the small set A. The new graph has at most k3 vertices and thus can be presented by only poly(k) log |k|
bits. The fill-in for the new instance is exactly that of the original instance and thus the compression can be
witness retrievable if the original labels of the vertices are used for the compressed graph as well. 2

This use of an algorithm from parameterized complexity is not a coincidence. The “problem kernel”
method (see [18], chapter 3) is to first reduce the problem to a small sub-instance that, like compression,
contains the answer to the original problem. Then the algorithm runs in exponential time algorithm on this
small instance. As was discussed in Section 1.4, if the running time of the first reduction happens to be only
polynomial in the parameter, then the first phase of the algorithm is a compression algorithm.

In this context, it is important to note that a compression algorithm for a language does not necessarily
give a parameterized complexity algorithm for the same language. At first glance it seems that one can
first run the compression algorithm, and then solve the compressed problem by brute force and thus get a
fixed parameter algorithm. However, such a strategy does not work since in the compression algorithm the
witness is allowed to grow by a factor of poly(n, log m), and thus solving the compressed problem by brute
force may require a super-polynomial time in m. Moreover, even if the witness does not grow, in many cases
the witness size depends on the instance size and not on the parameter alone (e.g. in the Clique problem if
the parameter is the clique size k then the witness length is n = k log m) thus making the above strategy
altogether irrelevant.

2.2 W-Reductions and Compression-Completeness

The few examples of compression that we have showed clearly indicate that the study ofNP problems with
respect to compression gives a distinct perspective, different from the traditional study of NP . The reason
is that the typical Karp-reduction between NP problems does not distinguish between the length of the
witness and the length of the instance. For example, when reducing SAT to the Clique problem, one builds
a large graph from a CNF formula and asks whether or not it has a Clique of size k. However, in this new
instance, the witness size13 is a polynomial in m (the length of the SAT formula) rather than n (the number
of variables in the formula). Thus, it is not clear how to use a compression algorithm for Clique to get a
compression algorithm for SAT.

W-reductions and compression-completeness: In order to show that a compression algorithm for L′

implies a compression algorithm for L, a more restricted type of reduction is needed. We call this a W-
reduction and it is similar to a Karp-reduction but asks an extra property on the length of the witness.

Definition 2.8 (W-Reduction) For two NP languages L and L′ we say that L W-reduces to L′ if there
exist polynomials p1 and p2 and a polynomial time computable function f that takes an instance x for L
and outputs an instance f(x) for L′ such that:

13The witness for Clique is a choice of k vertices from the graph
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1. f(x) ∈ L′ if an only if x ∈ L.

2. If x is of length m with witness length n, then f(x) is of length p1(n, m) with witness length only
p2(n, log m).

We first note that this reduction composes, that is:

Claim 2.9 If L W-reduces to L′ and L′ W-reduces to L′′ then L W-reduces to L′′.

We next claim that W-reduction indeed fulfills its goal with respect to compression:

Claim 2.10 Let L and L′ be NP languages such that L′ W-reduces to L. Then given a compression
algorithm for L, one can obtain a compression algorithm for L′.

Proof: Suppose that x is an instance for language L′ of length m with witness length n. The compression
algorithm for L′ runs as follows: First use the W-reduction to L and get an instance f(x) for L, and then
run the compression algorithm for L on f(x). By the properties of the reduction f(x) is of length m′ =
p1(n, m) with witness length n′ = p2(n, log m). The outcome of the compression is therefore of length
poly(n′, log m′) = poly(n, log m). Furthermore, this outcome is in some NP language L′′ if and only if
f(x) ∈ L which in turn happens if and only if x ∈ L′. Thus the combined process gives a compression
algorithm for instances of L′. 2

We remark that in the complexity discussion of compression we choose to ignore the issue of witness
retrievability. Nevertheless, in order for the W-reduction to relay this property, the reduction itself must also
have a witness retrievability property. That is, given a witness w for x ∈ L then one can efficiently compute
w′ for f(x) ∈ L′ (without the knowledge of x). We define complete problems with respect to compression:
these are defined similarly to the standard notion, but with respect to W-reductions.

Definition 2.11 (Compression-Complete) A problem L is compression-complete for class C if:

1. L ∈ C
2. For every L′ ∈ C the language L′ W-reduces to L.

A language is called compression-hard for class C if only requirement 2 holds.

The relevance of compression-complete problem is stated in the following simple claim.

Claim 2.12 Let L be compression-complete for class C, then given a compression algorithm for L, one can
obtain a compression algorithm for any L′ ∈ C.

The proof follows directly from the definition of completeness and Claim 2.10.

2.3 The VC Classification

We now introduce the new classification arising from the study of compressibility ofNP problems. For this
we define a series of NP languages. Some notation: by a circuit of depth k we mean a depth k alternating
AND-OR circuit where the fan-in of the gates is bounded only by the size of the circuit and negations are
only on the input variables (no NOT gates).

Definition 2.13 (DepthkCircuitSAT)
For any k ≥ 2 consider the NP problem called DepthkCircuitSAT:
Input: a circuit C of size m and depth at most k over n variables.
Membership: C ∈ DepthkCircuitSAT if there exists a satisfying assignment to C.
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The next language, LocalCircuitSAT, is a less natural one. It is designed to capture computations that
do not need to access the whole input, but can rather check only a sub-linear fraction of the input (a good
example is verifying that a set of vertices in a graph is indeed a Clique). Let x be a string of length m, if
I = (i1, . . . , in) is a list of n locations in x then we denote by x(I) the values of x at these locations.

Definition 2.14 (LocalCircuitSAT)
Input: A string x of length m and a circuit C over n + n · log m variables and of size (n + n · log m).14

Membership: If there exists a list I of n locations in x such that C(x(I), I) = 1.

We can now introduce our classification of NP problems:

Definition 2.15 (The VC classification of NP problems) Consider NP problems where m denotes the
instance size and n denotes the witness size. We define the class VCk for every k ≥ 0. The definition is
divided into three cases:

• k = 0: The class VC0 is the class of all languages that admit compression algorithms.

• k = 1: The class VC1 is the class of all languages that W-reduce to LocalCircuitSAT.

• k ≥ 2: The class VCk is the class of all languages that W-reduce to DepthkCircuitSAT.

For any function k(m,n) (where k(m,n) ≤ m) also define VCk(m,n) as the class of all languages that
W-reduce to Depthk(m,n)CircuitSAT. Finally, define VC = VCm (the class for k(m,n) = m).

A first observation is that simply by definition, the languages LocalCircuitSAT and DepthkCircuitSAT are
compression-complete for their respective classes. The most notable example is for the class VC = NP
where the complete problem is CircuitSAT (satisfiability of a polynomial size circuit).

When discussing a W-reduction to a depth k circuit, we can actually assume without loss of generality
that the top gate of this circuit is an AND gate. An immediate corollary is that SAT (that is, satisfiability of
CNF formulas) is compression complete for the class VC2. Formally, let DepthkCircuitSATAND denote the
language DepthkCircuitSAT when restricted to circuits where the top gate is an AND gate.

Claim 2.16 For any k ≥ 2, we have that a language L ∈ VCk if and only if L W-reduces to the language
DepthkCircuitSATAND.

Proof: We show that any instance that contains a circuit where the top gate is an OR W-reduces to an
instance with top gate AND. We prove this first for k ≥ 3. Denote the input circuit by C =

∨
j

∧
t Cj,t

where each Cj,t is a top OR depth (k−2) circuit. If C is satisfiable then
∧

t Cj,t is satisfiable for at least one
choice of j. Add to the witness the index i of this satisfiable sub-circuit (i is given by the boolean variables
i1, ..., i` where ` is logarithmic in poly(m,n)). For each j, denote C ′

j,t = Cj,t ∨ ij̄11 ∨ ... ∨ ij̄`
` , where ij̄

denotes i ⊕ j. Notice that C ′
j,t is always satisfied for j 6= i, and for j = i is satisfied if and only if Ci,t is

satisfied. Thus the circuit can now be written as C ′ =
∧

j,t C ′
j,t that is satisfiable if and only if the original

circuit was. The top OR gate of C is therefore removed in the new instance C ′ while adding only a small
number of variables, thus the input to the circuit witness remains of order poly(n, log m) as required.

In the case k ≥ 3, the depth of the new instance becomes k− 1. In the case that k = 2, the bottom level
that included only variables is transformed into an OR of variables, thus the new circuit is simply a CNF
formula (and the depth remains k = 2). 2

14The choice of the circuit to be of size n′ (over n′ variables) is arbitrary and other polynomial functions suffice as well.
Furthermore, such a circuit of small size may be meaningful since not all the variables have to be used and some might be just
dummy variables.
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The VC Hierarchy: The VC classification indeed defines a hierarchical structure. That is:

VC0 ⊆ VC1 ⊆ VC2 ⊆ VC3 · · · ⊆ VC.

And in general, for every two polynomially bounded functions k(n, m), `(n, m) such that for all n, m we
have k(n, m) ≤ `(n, m) then VCk(m,n) ⊆ VC`(m, n). Furthermore, VC = NP by the definition of
NP . These observations follow trivially by the definitions, the only non-trivial part being the fact that
VC1 ⊆ VC2, that is proved next.

Lemma 2.17 VC1 ⊆ VC2

Proof: We need to show a W-reduction from LocalCircuitSAT to SAT. The input is therefore a long string
x and small circuit C on n + n log m variables. Let i1, ...in denote the potential locations in the string
that the circuit C receives as inputs. Also define the variables y1, ..., yn to indicate the values of x in the
corresponding locations (that is yt = xit for t ∈ [n]). Thus the circuit C runs on the variables y1, ..., yn and
the bits of i1, ...in.

We first note that C is of size p(n, log m) = (n + n log m) and may be reduced (via Cook’s Theorem
[11]) to a CNF formula ΦC over O(p(n, log m)) variables and of size O(p(n, log m)) that is satisfiable if
and only if C is satisfiable.

Thus we have a CNF formula over the variables y1, ..., yn, i1, ...in and some extra variables. This for-
mula’s satisfiability will be equivalent to the membership of the LocalCircuitSAT instance if we manage to
force the variables of y to take the values yt = xit . This is done by adding additional clauses to the CNF
in the following manner: For simplicity we describe this only for y1, where the same is repeated for every
other yt for t ∈ [n]. Define for each j ∈ [m] a formula Φj = (y1 = xj) ∨ (i1 6= j). Notice that Φi1 = 1 if
and only if y1 = xi1 . Denote the bits of i1 by i1,1, ..., i1,d where d = dlog me. An alternative way to write
Φj is as the following CNF (recall that ij̄ denotes i⊕ j):

Φj = (yi ∨ xj ∨ ij̄11,1 ∨ ... ∨ ij̄d
1,d) ∧ (yi ∨ xj ∨ ij̄11,1 ∨ ... ∨ ij̄d

1,d)

Finally, to force y1 = xi1 we simply take the new CNF to be ΦC ∧
∧

j∈[m] Φj . The same is repeated to force
yt = xit for all t ∈ [n]. 2

2.4 The VC Classification and Verification with Preprocessing

We now discuss the VC hierarchy from a different angle, that of the verification complexity of a language.
This approach, though slightly more cumbersome than the definition via W-reductions, gives more intuition
as to what it means to be in a class VCk. The new view defines the VC hierarchy with respect to the
verification algorithm for L, that is, the efficient procedure that takes a witness w for x ∈ L and verifies that
it is indeed a true witness. We point out that the nature of verification algorithms may vary when discussing
different NP problems. For example, in the k-Clique problem the verification algorithm needs to check
only O(k2) edges in the graph, and thus can read only a sub-linear part of the instance. In SAT, on the other
hand, all the clauses in the formula must be checked when verifying a witness.

Simply looking at the verification algorithm of a language is not sufficient. For starters, classification
according to verification does not distinguish between problems in P that are trivially compressible and
NP-complete languages. Instead, we consider the notion of verification with preprocessing. This is the
process for verifying that x ∈ L when given a witness, that also allows a preprocessing stage to the instance.
Formally:
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Definition 2.18 (Verification with Preprocessing) Let L be an NP language with instances of length m
and witness length n. A pair of polynomial time algorithms (P, V ) are called a verification with prepro-
cessing for L if the following two step verification holds:

1. Preprocessing: P gets an instance x and outputs a new instance P (x).

2. Verification: There exists a polynomial p(·, ·) such that x ∈ L if and only if there exists a witness w
of length at most p(n, log m) such that V (P (x), w) = 1.

Notice that when allowing for preprocessing, then all problems in P have a pair (P, V ) where P solves the
problem and stores the answer while V simply relays this answer. Thus when considering the complexity
of V in this definition, then easy problems indeed have very low complexity.

The VC Classification via Verification with Preprocessing: An alternative and equivalent way to view
the classes in the VC hierarchy is based on the verification algorithm V in a verification with preprocessing
pair (P, V ). The problems are divided into two families:

• The class VC1 is the set of the languages that have very efficient verification (i.e. poly(n, log m) rather
than poly(n, m)). We assume random access to the instance, thus such a verification algorithm only
accesses a sub-linear fraction of the instance.

• The languages whose verification is not very efficient (run in time poly(n, m)). This family is further
classified into sub categories. The class VCk is the class of languages where the verification algorithm
V has a representation as a depth k polynomial size circuit (polynomial in n and m).

This definition is equivalent to the definition via W-reductions since the W-reduction to the complete
problem can simply be viewed as the a preprocessing stage. In the other direction, every preprocessing
stage is actually a W-reduction to the language defined by V .

2.5 Within VC1 - The class VCOR

Arguably, the most interesting class in the hierarchy is the bottom class VC1. It contains many natural
problems such as Clique or small subset-sum15 that only test local properties of the input. Furthermore, it is
presumably the easiest to find compression algorithms for. We further refine our hierarchy within the class
VC1 by introducing another class, the class VCOR. Consider the language OR(L) that take a large OR of
small instances of a language L. Formally:

Definition 2.19 (OR(L))
Let L be an NP language. Define the language OR(L) as follows:
Input: m instances x1, ..., xm to the language L, each of size n.
Membership: If there exists i ∈ [m] such that xi ∈ L.
Specifically the language OR(CircuitSAT) is defined as:
Input: m different circuits where each circuit is of size n.
Membership: If one of the m circuits is satisfiable.

This language is used to define the following class:

Definition 2.20 The class VCOR is the class of all languages that W-reduce to OR(CircuitSAT).
15This problem takes m values and a target value and asks if there is a small (size n) subset of the values that adds up to the

target.
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We first note that in each of the m small instances, the instance length and witness length are polyno-
mially related. So unlike the general case where we focused only on short witness languages, when talking
about OR(L), any language L ∈ NP\P is interesting. For example, the language OR(3-SAT) is not trivially
compressible. Moreover, it is compression-complete for VCOR.

Claim 2.21 Let L be any NP-complete language, then OR(L) is compression-complete for VCOR.

Proof: The W-reduction from OR(CircuitSAT) to OR(L) simply runs the standard Karp reduction from
CircuitSAT to L for each of the m circuits independently. The witness for each circuit was of at most n and
is now of size p(n) for some polynomial p. In addition the witness contains an index of the instance of L
that is satisfied, thus the total witness length is p(n) + log m. 2

For example, the problem OR(Clique) that gets m small graphs (over n vertices) and asks whether
at least one of the graphs has k sized clique (where k = O(n)) is also compression-complete for VCOR.
Moreover, we note the following claim that is relevant to our cryptographic applications (in Sections 5 and
4):

Claim 2.22 Clique is compression-hard for VCOR.

Proof: The language OR(Clique) W-reduces to Clique simply by taking one graph that is the union of all
the small graphs in the OR(Clique) instance. Clearly there is a clique in the union if and only if there is a
clique in at least one sub-graph. 2

A similar claim is true for all problems involving searching for a connected subgraph of size n in a
graph of size m as long as the problem of deciding whether a graph of size p(n) contains such a subgraph
is NP-Hard for some polynomial p(·). This is true, for instance, for the problem of whether there is a path
of length n.16 On the other hand we have that:

Claim 2.23 VCOR ⊆ VC1

Proof: This is best seen by W-reducing OR(Clique) to LocalCircuitSAT. Given graphs G1, ..., Gm for
OR(Clique), generate the instance x = G1, ..., Gm and a circuit C that receives the locations of a clique in
one of the graphs and checks whether they are indeed the edges in these locations form a clique (all belong
to the same graph and are the edges induced by k vertices etc...). The size of the circuit is p(n, log m) for
some polynomial p since it checks only locations in x that belong to one graph (of size n). Finally, add
p(n, log m) dummy variables to the circuit so that the circuit C has size becomes equal to the number of
input variables (as is required in LocalCircuitSAT). 2

Furthermore, VC0 ⊆ VCOR, since any compressible language can be W-reduced by the compression
algorithm to a language with instance size p(n, log m) and this instance can reduced to CircuitSAT and
viewed as an OR of a single small circuit and hence is in VCOR. Note that here too, one may need to add
dummy variables to keep the Circuit quadratic in its input. Altogether we have that:

VC0 ⊆ VCOR ⊆ VC1.

16It is interesting to note that whereas the problem of finding a path of length n is fixed parameter tractable [3], Feige and Kilian
[24] give indications that the Clique problem is hard for small n (via subexponential simulations).
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2.6 The VC Classification and some NP Problems

In general, most of the VC classification focuses on W-reductions to depth k circuits. The reasoning for this
is that there is a certain tradeoff between depth and the number of variables. More precisely, we can reduce
the depth of a verification circuit, but only at the price of adding additional variables (this is done using
methods from Cook’s Theorem [11] and requires adding a variable for each gate in one intermediate level
of the circuit). Since the number of variables is the focal point when discussing compression (as it coincides
with the witness size), then depth turns out to be central in our classification.

Given our current state of knowledge, there are a few plausible views of the world. The two endpoint
scenarios are (i) there is compression for every language in NP (as would be implied by a compression
algorithm for CircuitSAT), (ii) there is only compression for a few select problems, such as the examples in
section 2.1. A third option is that there is a compression algorithm for some compression-complete problem
in the hierarchy (say for VCk), which would imply the collapse of all the classes below VCk to VC0.

We will briefly go over a few key classes in the hierarchy and a few examples of natural NP problems
and their classification (as we know it) within the VC hierarchy:

The class VC0: Currently we know that this class contains all the languages inP , languages that are already
compressed by definition (such as 3-SAT), and the languages that we showed compression algorithms
to (Vertex-cover, PRG-output and Minimum-fill-in).

The class VCOR: This class contains all languages OR(L) for an NP language L. One natural example is
the OR(SAT) problem which is actually a depth 3 circuit where the fan-in at the two bottom levels is
bounded by n and only the top gate is allowed to be of greater fan-in. Some important languages in
this class are those that need to be compressed in the cryptographic applications in Sections 5 and 4.

The class VC1: Since we are only interested in problems where the witness size n is much smaller than
the instance size m, then many natural problems with this restriction are in VC1. For example, graph
problems that ask whether a small graph can be embedded in a large graph are all in VC1. The Clique
problem (with a clique of size n), or Long-Path (a path of length n that does not hit any vertex twice)
are such small graph embedding problems. Small Subset-Sum is another natural language in VC1.
This language receives a set of m values and a target sum and asks whether there is a small (size n)
subset for which the values add up exactly to the target sum.

Dominating Set: The problem asks, given a graph, whether there is a set of k vertices such that all the
graph is in its neighbor set. Dominating set is in the class VC3 as implied by the following verification:
the witness is a set S and the algorithm tests that ∀ vertex v ∃ vertex u ∈ S such that (u, v) is in the
graph. The ∀ translates to and AND gate and the ∃ translates to an OR gate. Finally, testing that an
edge is in the graph requires an AND over the O(log m) bits representing this edge. In total, this is a
depth 3 circuit. Note that a straightforward verification of vertex cover will also yield a depth 3 circuit.
However, while vertex cover is compressible and in VC0, for dominating set we are unaware a better
method. In addition, dominating set is compression-hard for VC2. This is seen by a standard reduction
of SAT to dominating set in which a SAT formula with n variables and m clauses is transformed into
a graph with m + 3n vertices with the property that the graph has a dominating set of size n iff the
SAT formula is satisfiable.17

17In a nutshell, the reduction creates a triangle for each variable xi of the formula. One of the nodes of the triangle is identified
with the positive variable and another with its negation while the third is connected only to the other two. In addition, a vertex is
created for each clause in the formula. Now, each literal is connected with all of the clauses that it appears in. The generated graph
has a dominating set of size n iff the formula is satisfiable.
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Weighted-SAT: Given a CNF formula of length m the problem asks if it has a satisfying assignment of
weight at most k (at most k variables are assigned the value 1). Unlike our previous discussions of
SAT, the number of variables here is only bounded by m and the short witness simply consists of the
list of all variables that receive the value 1 (that is, the witness is of length n = k log m). This problem
serves as the basic complete problem for the parameterized complexity class W [1], which is at the
bottom of the W-hierarchy (see [18]). However, with regards to compressibility, we only know how
to place it in the class VC4. This is shown by the following verification procedure (using the same
logic as with Dominating-Set): For every witness (list) L, the algorithm tests that ∀ clauses C either
∃ a literal x ∈ C such that x ∈ L or ∃ a negated literal x̄ ∈ C such that x 6∈ L. The verification of
x ∈ L adds up to total depth 3 by testing that ∃y ∈ L such that x = y (where x = y is tested by an
AND over the bits of x and y). On the other hand, verifying that x 6∈ L requires total depth 4 as it
runs ∀y ∈ L we have x 6= y. The overall depth is thus dominated by the negated variables and is thus
4.

OR of (large) instances: Consider the Or of CNF formulas over few variables (unlike the language OR(SAT )
where the CNF formulas are considerably smaller than the fan-in of the OR gate). Such a language
thus contains depth three circuits, but is actually in VC2, as implied by Claim 2.16.

Integer Programming (IP): An instance of integer programming consists of a list of m linear constraints
on n integer variables with the goal of maximizing a linear target function over these n variables
(under the list of constraints). Unlike its counterpart of linear programming, where the variables may
take real values and is polynomial time solvable, integer programming is NP-hard even when the
variables are restricted to taking only the values 0 and 1 (one of Karp’s original problems [38]). Thus,
the decision variant of integer programming, where the number of constraints is much larger than the
number of variables, is interesting with respect to compression. First, compressing it is at least as hard
as compressing SAT: given a SAT instance with n variables and m constraints it is simple to come up
with a corresponding IP instance with 2n variables and m constraints, i.e. IP is VC2-hard. On the other
hand, a straightforward verification of a witness for this problem takes the proposed assignment for
the n variables and checks if it satisfies each of the constraints. The verification of a linear constraint
can be achieved in logarithmic depth (in n), placing IP in VCk(n) for k(n) = Ω(log n). We are
unaware of a (significantly) better classification (of lower depth) for integer programming.

2.7 On Compression of Search Problems

So far, the NP problems that we discussed were all decision problems, that is, they ask if x ∈ L, and are
answered by YES or NO. When considering a specificNP relation RL associated with L, 18 then the above
decision problem has a natural search problem associated with it, which is to actually find a witness to x ∈ L
with respect to the relation RL. A solution to such a problem is an n bit string rather than just a single bit.

Loosely speaking, a compression algorithm for the search instance should produce a shorter output that
contains enough information about some witness for the original problem.

Definition 2.24 (Compression for search problem) A compression algorithm for an NP search problem
L (with respect to RL) is a pair of algorithms (Z,E) with a polynomial p(·, ·), where Z is a polynomial
time compression algorithm and E is an unbounded extraction algorithm. Given an instance x with witness
parameter n we should have that:

18Let L be an NP language with parameters m and n. A relation RL associated with L is a polynomial time function RL :
{0, 1}m × {0, 1}n → {0, 1}, such that for every x ∈ {0, 1}m it holds that x ∈ L iff there exists a w ∈ {0, 1}n such that
RL(x, w) = 1.
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1. Z(x) is of length at most p(n, log m).

2. If x ∈ L and there is a witness of length n, then E(Z(x)) = w where w is a witness to x ∈ L with
respect to RL.

It is natural to consider the relationship between the difficulty of decision and search for a given problem, as
was done in other settings such as average-case complexity by Ben-David et al. [8]. We show that for any
problem a compression for the decision variant also yields a compression for the search variant, without an
increase in the hierarchy.

Theorem 2.25 If a class VCk has a compression algorithm, then there is a compression algorithm for the
search problem of a relation RL of L ∈ VCk.

The technique of the proof below also comes in handy in proving Theorem 4.4, regarding the application of
the ability to compress, say SAT, to cryptanalysis in hybrid bounded storage model. In the following proof,
a witness to x ∈ L refers to a witness according to the specific relation RL associate with L.

Proof: Given an instance x to a language L, for any i ∈ [n], consider the NP problem Li that asks whether
there exist an n bit witness w to x ∈ L such that wi = 1 (the ith bit of w is 1). The language Li is also in
VCk since its verification circuit is the same as the one for L with an additional AND to the variable wi (this
AND gate is incorporated into the top level AND of the circuit thus the depth remains k).

Our first attempt is to compress the instance x for every i ∈ [n] with respect to the language Li (denote
such a compression by ZLi(x)). Thus we store ZLi(x) for all i ∈ [n], which amounts to n · p(n, log m) bits,
for some polynomial p(n, log m), which is also in poly(n, log m). Now suppose that there is only a single
witness w to x; then one can extract w bit by bit, by solving the compressed instance of each bit. However,
this idea fails when w is not the only witness, and we may inconsistent answers for the different bits.

The second attempt is to use the reduction of Valiant and Vazirani [60] to a unique witness, as was
done by Ben-David et al. [8] for showing that average NP being in BPP implies also a randomized search
algorithm for average NP. The idea is to choose a pairwise-independent hash function h that is appropriately
shrinking, and add to the language the requirement that h(w) = 0. We use the following lemma:

Lemma 2.26 ([60]) Let L be an NP language and for every x denote by Wx the set of all witnesses to
x ∈ L. Let ` be such that 2` ≤ |W | ≤ 2`+1. Let H`+2 be a family of pairwise independent hash functions
with h : {0, 1}n → {0, 1}`+2 for all h ∈ H`+2. Then

Prh∈H`+2
[|{w : w ∈ Wx and h(w) = 0}| = 1] ≥ 1

8

Consider the NP language Lh where x ∈ Lh if it has a witness w for x ∈ L and h(w) = 0. We note that
this language is also in VCk since the additional requirement can be computed efficiently over n variables
(the hash is efficient) and by Cook’s theorem this may be represented as a CNF formula over these variables
plus only poly(n) additional variables. Thus adding the requirement of the hash does not add to the depth
of the verification circuit for L.

Now, if we enumerate on all values of ` then with probability at least 1
8 , for the correct ` we will get that

Lh has a unique witness and storing ZLh
i
(x) for all i suffices to maintain the information about this witness.

This can be repeated sufficiently many times (say O(n) times) so that with overwhelming probability, one
of the attempts will indeed give a unique witness. However, this solution is also insufficient, since we have
stored a list of O(n2) compressed values (O(n) repetitions for each value of ` ∈ [n]) and we are guaranteed
that with overwhelming probability one of them is a witness for x but we do not known which one (recall
that we cannot store the original instance and thus cannot verify that a witness is correct).
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Our final attempt succeeds in reducing the list of potential witnesses into a unique and true witness. This
compression is as follows: Denote by Lī the language that asks whether there exist an n bit witness w to
x ∈ L such that wi = 0 (similar to Li but with wi negated). The compression of an instance x to the search
problem L goes as follows:
For every ` ∈ [n] repeat the following n times:

• Choose h ∈R H`+2.
• For all i ∈ [n] store ZLh

i
(x) and ZLh

ī
(x).

The extraction procedure is as follows: For all ` and h ∈ H`+2, solve all the compressed instance pairs.
For every pair ZLh

i
(x) and ZLh

ī
, if they both are negative or both are positive then ignore all values that are

compressed with this h. Only if for all i we have exactly one of the instances being correct then output the
ith bit of w according to the result.

The above algorithm indeed compresses since it only adds a factor of n3 to the overall storage. With
probability at least 1− 2−O(n) at least one of the chosen h’s is successful in leaving exactly one witness to
x ∈ Lh, and this witness will be extracted. Finally, if h did not leave exactly one witness, then this will be
identified: If there are no witnesses then ZLh

i
(x) and ZLh

ī
will both be negative for all i. If there is more

than one witness, then for at least one choice of i both ZLh
i
(x) and ZLh

ī
will be positive. 2

2.8 On Maintaining Other Information

We have seen that compression may maintain much more than just a yes/no answer. A natural question to
ask what other types of information may be maintained through compression algorithms. The following are
some examples:

Number of witnesses: The compression described above actually maintains an approximation of the num-
ber of witnesses to x ∈ L (with respect to RL). Once the chosen k is too large, there will be a sharp
drop in the probability of having a witness and this can be observed when extracting the witnesses
and indicate what is the right k.

An almost random witness: The compression above also outputs a witness that is almost uniformly
distributed over Wx. Or more accurately, the probability of getting each witness is bounded by a
constant times 1/|Wx|.

On maintaining all witnesses: As opposed to maintaining a single witness or the number of witnesses,
a compressed instance cannot always maintain the information about all of the witnesses of an input
instance. This is shown by the following simple information theoretic argument: encode an m bit
string s with a DNF circuit C by constructing for each position j ∈ [m] a formula Cj on log m
variables. If s[j] = 1 then take Cj to be circuit that is satisfied iff the variables encode the index
j. If s[j] = 0 then Cj is the non-satisfiable circuit Cj = 0. The circuit C is formed by taking an
OR of all these circuits (C =

∨
j∈[m] Cj). The satisfying assignments of C correspond exactly to

the 1’s in s. Consider C as an input to the language as CircuitSAT19. Suppose that there exists a
compression algorithm that maintains all of the witnesses of a circuit C. In particular, this means that
the m bit string s may also be extracted from the compressed instance. But this is clearly impossible
information theoretically, since m random bits may not be represented by poly(n, log m) < m bits.
So we conclude that if our goal is come up with a compression algorithm for SAT then we must come
up with a way of losing information about the witnesses.

19The circuit C is actually an instance for the language OR(CircuitSAT ).
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In the examples of compression that we have seen in Section 2.1, the compression algorithms for
vertex cover, PRG-output and Minimum fill-in actually maintain all the witnesses. On the other hand,
the compression for GapSAT (which we will see in Section 2.9) does not necessarily maintain this
information, as it is based on sampling.

2.9 Speculation on Compression

We give two arguments that may be viewed as evidence to the existence and non-existence of compression
respectively.

An Optimistic View - Compression of a promise problem and the PCP Theorem: Consider the promise
problem GapSAT that takes as input a CNF formula Φ of size m over n variables and the guarantee that
either Φ is satisfiable or it is at most (1− 1

2n)-satisfiable (no assignment satisfies more than (1− 1
2n) of its

clauses). The task is to decide if Φ is satisfiable or far from satisfiable.
Such a problem has a simple and witness retrievable compression. The idea is to choose O(n2) random

clauses from Φ and take the AND of these clauses to be the compressed formula Ψ. This compression works
because if Φ is far from satisfiable then for every assignment the formula Ψ is satisfied with probability
at most 2−2n (Ψ does not contain one of the 1

2nm unsatisfied clauses). Taking a union bound over all
assignments, we get that with probability (1 − 2−n) the formula Ψ has no satisfying assignment. On the
other hand, if Φ is satisfiable then the same assignment also satisfies Ψ (and hence the witness retrievability).
Note that our definition of GapSAT is robust in the sense that GapSAT is compressible whenever the gap is
(1− 1

p(n)) for every choice of a polynomial p(·).
The above simple compression algorithm is especially interesting in light of the PCP Theorem. One way

to view the PCP Theorem is as an efficient reduction from an instance of SAT to an instance of GapSAT.
Thus one can hope to combine the PCP reduction with the above compression and get a compression for
general SAT. However, reducing general SAT to GapSAT via the PCP is not a W-reduction as the witness
size grows to the order of the instance size. For starters, the PCP Theorem is typically defined over 3-CNF
formulas, and the reduction of a general size m CNF to a 3-CNF adds O(m) variables. In order for this
approach to achieve compression for SAT, we require a new PCP Theorem that is actually a W-reduction.

GapSAT is just one example of a gap problem that admits compression. For instance, one can consider
the promise problem GapClique where a graph of size m either has a Clique of size m/n or contains no
Clique of size n. As in the case of GapSAT, GapClique is compressible by sampling a subset of its vertices.
Thus, coming up with a W-reduction from a general (n′,m′)-Clique problem (the graph of size m′ either
contains a clique of size n′ or not) to (n, m)-GapClique would enable the compression of Clique. We view
finding PCPs that are also W-reductions as a major research direction, especially in light of the recent new
proof to the PCP Theorem of Dinur [17].

A Pessimistic View - On Oblivious Compression: We have seen in Section 2.8 that it is impossible to
maintain all of the information in an instance when compressing it and some information is necessarily lost
(for example the list of all witnesses cannot be kept). On the other hand, we show that if compression exists
then it is not likely to lose too much information about the original instance. Such a result would entail the
collapse of the polynomial hierarchy to its second level. More formally:

Let Z be a compression algorithm for SAT. We consider it as a two input algorithm taking a formula
Φ and local randomness r ∈ {0, 1}`. Denote by Z(Φ, U`) the random variable taking the output of Z
with fixed input Φ and random r ∈R {0, 1}`. Let X be a distribution over formulas. The random variable
Z(X, U`) denotes the output of Z under a choice of random r and a random Φ from the distribution X.
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The compression Z is said to be oblivious if there exists a samplable distribution X over satisfiable
formulas, such that for every satisfiable instance Φ the distribution Z(Φ, U`) and the distribution Z(X, U`)
are statistically close (within statistical distance ε).

Claim 2.27 If there exists an oblivious compression for SAT, then the polynomial hierarchy collapses to its
second level.

One way to prove this result is by noticing that oblivious compression for SAT can be used for instance
hiding computation of SAT in the sense of [2], which in turn entails the collapse of the polynomial hierarchy.
Instead we give a direct proof:

Proof: We show that if oblivious compression of SAT instances exists then Co-SAT ∈ AM. Consider the
following interactive proof that an instance Φ 6∈ SAT . The verifier chooses a random satisfiable formula
Ψ ∈ X randomness r ∈ U` and flips a random coin c. If c = 0 then the verifier sends ξ = Z(Φ, r) to the
prover, if c = 1 he sends ξ = Z(Ψ, r). The prover then answers 1 if the compressed instance is satisfiable
and 0 otherwise. The verifier accepts if the provers answer equals his bit c and rejects otherwise.
Completeness: If indeed Φ 6∈ SAT , then the prover will be able to tell whether the verifier used a coin c = 0
or c = 1, simply by testing the satisfiability of ξ and replying correctly.
Soundness: Suppose that Φ ∈ SAT , then by the obliviousness property of Z the message ξ is from nearly
the same distribution whether c = 0 or c = 1 and the prover is bound to error with probability 1

2 + ε. 2

Thus, oblivious compression for SAT is not likely to exist. However, the languages we would like to
compress for the applications in Sections 3, 5 and 4 are actually in NP ∩ Co−NP , and thus for these
applications even oblivious compression is actually a valid possibility.
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Part II: Cryptographic Applications
3 Basing Collision Resistant Hash Functions on Any One-Way Function

Loosely speaking, a family of length reducing functionsH is called collision resistant hash functions (CRH)
if no efficient algorithm can find collisions induced by a random member of the family. That is, no PPTM
can find for a randomly chosen h ∈R H, a pair of input strings x and x′ such that x 6= x′ but h(x) = h(x′).
In addition we want (i) An efficient algorithm for sampling from H using (possibly secret) randomness (the
secret coins approach is potentially more powerful then when only public coins are used [32]) and (ii) An
efficient evaluation algorithm that given the description of h ∈ H and x produces h(x). As mentioned
in the introduction, CRHs have wide cryptographic applications, see discussion and formal definitions in,
for example, [36]. We are interested in basing CRH on as general assumption as possible. There is no
known construction of CRH from general one-way functions or one-way permutations. Moreover, Simon
[57] showed that basing CRH on one-way permutations cannot be achieved using black-box reductions. We
show that compression can be used to bridge this gap.

Theorem 3.1 If there exists an errorless compression algorithm for SAT, or for any problem that is compression-
hard for VCOR, then there exists a family of Collision Resistant Hash functions (CRH) based on any one-way
function.

Proof: Let (Commit, Verify) be a statistically binding computationally hiding commitment scheme based
on the one-way function f . Recall that the protocol Commit takes from the sender a string S and random-
ness r and after an interaction the receiver gets a commitment σ. The polynomial time algorithm Verify
takes the commitment σ and a possible opening to value S′ with randomness r′ and verifies that S′, r′ are
consistent with σ. One could take for example the commitment scheme of Naor [48] based on the one-way
function f .20 In our setting we can work under the assumption that the sender (in the commitment) is honest,
and in such a case, the commitment may be achieved without interaction at all.21

The CRH construction is inspired by the approach of Ishai, Kushilevitz and Ostrovsky [36] for construct-
ing collision resistant hash from Private Information Retrieval (PIR). A high level description is: choose a
hash function from a naive hash family with no computational hardness guarantees; in the construction
below we use the selection function, i.e. a random position i. The new hash function is defined by a com-
putationally hiding commitment to the naive hash function, and the output of the new hash function is a
compression maintaining the information of the committed naive hash function when applied to the input
(i.e. compression of the formula that checks that the value is what it claimed to be). Intuitively, finding a
collision would require guessing with non-negligible advantage the naive hash function (the position i). The
actual construction is given in Figure 1.

By the compressing properties of Z we get that hσ,rZ indeed shrinks its input (note that shrinkage by a
single bit allows further shrinking by composition). We also have that sampling hσ,rZ from H can be done
efficiently (with secret coins).

As for collisions, let x 6= x′ be two strings in {0, 1}m that form a collision, i.e., hσ,rZ (x) = hσ,rZ (x′).
This equality implies, by the property of the compression, that Φσ,x is satisfiable iff Φσ,x′ is satisfiable (here
we use the fact that the compression is errorless). Due to the binding property of the commitment we have

20To be more exact, the commitment of [48] can be based on the pseudorandom generator of Håstad et al. [31] which in turn can
be based on the function f .

21In the scheme of Naor [48], the receiver is required to provide the sender with a (public) random string. Certainly, an honest
sender can generate this string by himself without harming the properties of the commitment. Thus in such a setting, the sender can
generate the commitment without interaction.
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CRH family Hf :

Description of the hash function: Let Z be a compression algorithm for SAT. A function in the
CRH collection is denoted hσ,rZ and defined by a commitment σ to a value i ∈ [m], and
randomness rZ for Z. The commitment uses security parameter n (where n << m).

Input to hσ,rZ : a string x ∈ {0, 1}m

The CNF formula Φσ,x is defined as follows:

• Denote by Verifyσ the algorithm Verify with the input σ fixed. That is, Verifyσ

takes as inputs y and r and accepts if and only if they form a legal opening of the
commitment σ (and in particular this means that y = i).

• Translate Verifyσ into a CNF formula Φσ over the variables y1, ..., y` of y and the
bits of r (using Cook’s reduction).

• For every j ∈ [m] define the clause Cj,x = (yj̄1
1 ∨ yj̄2

2 ∨ ....∨ yj̄`
` ) if xj = 0 (where y0

denotes x̄ and y1 denotes x) and Cj,x = 1 if xj = 1.

• Set
Φσ,x = Φσ ∧

∧
j∈[m]

Cj,x

The hash function:
hσ,rZ (x) = Z(Φσ,x, rZ)

Figure 1: The construction of Collision Resistant Hash from any one-way function.

that any assignment satisfying Φσ must have y = i (recall that i is the index that σ is a commitment to).
Thus the first part of Φσ,x is only satisfied when y = i. But the second part is only satisfied if xy = 1,
thus Φσ,x is satisfied if and only if xi = 1. We get that Φσ,x is satisfiable if and only if xi = 1 and Φσ,x′ is
satisfiable if and only if x′i = 1. Therefore it must be the case that xi = x′i, since otherwise one of them is
0 and the other one is 1 and Φσ,x satisfiability is not that of Φσ,x′ . necessarily the strings x and x′ are such
that xi = x′i. But for some j we have xj 6= x′j and for that j we deduce that σ is not a commitment to j.

Suppose now that we have an efficient method of finding a collision x and x′ for a given (σ, rZ). Pick
any j such that xj 6= x′j . Then we know that σ is not a commitment to j. This procedure can be used to
break the hiding properties of the commitment scheme, since it yields an efficient method that distinguishes
the commitment value from random with advantage 1/m: given (the real) i and a random one i′ ∈ [m] in
a random order, run the above procedure to obtain j. If j equals one of the two values i or i′, then guess
this one as the random one and otherwise flip a coin. This contradicts our assumptions on building blocks
(namely, the one-way function).

To prove the result when using compression for any language that is compression-hard for VCOR, a
similar construction is defined based on the OR of small circuits rather than CNF formulas: For every
j ∈ [m] let Cσ,j be the circuit that outputs one if and only if there exists randomness r such that σ is
consistent with (j, r) (that is σ is a possible commitment to the value j using randomness r). Let Cσ,x be the
circuit that takes the OR of all Cσ,j such that xj = 1 and let Z be a compression algorithm for the language
OR(CircuitSAT). We define hσ,rZ (x) = Z(Cσ,x, rZ). The proof is identical to the case of SAT. 2
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Note that instead of an errorless compression we can do away with an error probability slightly smaller than
2−m. That is, for all x we want the probability that Z(Φσ,x, rZ) preserves the satisfiability of Φσ,x to be at
least 1 − 2−m+u where the probability is over σ and rZ and u ≈ log m. In this case we can argue (using a
union bound) that with probability at least 1− 2−u no x exists violating the preservation of satisfiability.

We also note that the construction is inherently non-black box as it uses the code of the one-way function
(via the commitment) in the application of Cook’s Theorem. This is essential for the validity of the whole
approach in light of the black-box impossibility of Simon [57]. Theorem 3.1 implies the following corollary:

Corollary 3.2 If there exists an errorless compression algorithm for SAT or for any problem that is compression-
hard for VCOR, then there exist statistically hiding, computationally binding commitment schemes based on
any one-way function.

The corollary follows since CRH imply statistically hiding bit commitment, see Naor and Yung [51] (and
Damgård, Pedereson and Pfitzman [13] for commitment to many bits). As mentioned in the introduction, the
currently known minimal assumptions for constructing statistically hiding bit commitments are the existence
of one-way permutations [50] and the more general one-way functions with known pre-image size [28].
Furthermore, the commitment schemes of [50, 28] require many rounds of interaction (at least linear in
the security parameter), while the commitments based on CRHs are non-interactive, at least after the initial
phase where the function h ∈ H is chosen.

4 On Everlasting Security and the Hybrid Bounded Storage Model

The bounded storage model, introduced by Maurer [44], bounds the space (memory size) of dishonest
players rather than their running time. The model is based on a long random string R of length m that is
publicly transmitted and accessible to all parties. Security relies on the assumption that an adversary cannot
possibly store all of the string R in his memory. The requirement is that the honest parties Alice and Bob
can interact using a small local storage (of size n where n << m) while security is guaranteed against an
eavesdropper Charlie with much larger, yet bounded storage space.

This model has enjoyed much success for the task of private key encryption. It has been shown that Alice
and Bob who share a short private key can exchange messages secretly using only very small storage22,
while an eavesdropper who can store up to a constant fraction of R (e.g. 1

2m bits) cannot learn anything
about the messages (this was shown initially by Aumann and Rabin [5] and improved in [4, 16, 23, 43]
and ultimately in Vadhan [59]). These encryption schemes have the important property called everlasting
security (put forward in [4, 16]), where once the broadcast is over and R is no longer accessible then the
message remains secure even if the private key is exposed and Charlie gains stronger storage capabilities.

In contrast, the situation is less desirable when Alice and Bob do not share any secret information in
advance. The solution of Cachin and Maurer [9] for this task requires Alice and Bob to use storage of size
at least n = Ω(

√
m), which is not so appealing in this setting. Dziembowski and Maurer [22] proved that

this is also the best one can do.

The Hybrid Bounded Storage Model: The inability to achieve secure encryption in the bounded storage
model with memory requirements smaller than n =

√
m has lead to the following suggestion that we call

the hybrid BSM: Let Alice and Bob agree on their secret key using a computationally secure key agreement
protocol (e.g. the Diffie-Hellman protocol [15]). The rationale being that while an unbounded eavesdropper
will eventually break the key, if this happens after the broadcast had already occurred, then the knowledge

22Requires n = O(` + log m + log 1
ε
) bits of memory for an ` bit message and error ε.
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of the shared key would be useless by then (this should be expected from the everlasting security property
where getting the shared key after the broadcast has ended is useless). This hybrid model is very appealing
as it attempts to achieve everlasting security by adding assumptions on the ability of an adversary that has a
strict time limit. Assumptions of this sort are generally very reasonable since all that we require is that the
computational protocol is not broken in the short time period between its execution and the transmission of
R. For instance, an assumption such as the Diffie Hellman key agreement [15] cannot be broken within half
an hour, can be made with far greater degree of trust than actually assuming the long term security of this
protocol.

Somewhat surprisingly, Dziembowski and Maurer [22] showed that this rationale may fail. They in-
troduce a specific computationally secure key agreement protocol (containing a non-natural modification
based on private information retrieval (PIR) protocols). If this key agreement protocol is used in the hybrid
BSM setting with a specific private key scheme, then the eavesdropper can completely decrypt the encrypted
message. However, their result does not rule out the possibility that the hybrid idea will work with some
other key agreement protocol. For instance, using the plain Diffie Hellman key agreement may still work.

In this work we show that if compression of SAT exists then there exists an attack on the everlasting
security of any hybrid BSM scheme.

4.1 Two Possible Models

We define the hybrid BSM23 as a setting where the running time of the eavesdropper Charlie is polynomially
bounded up until and during the broadcast of R, and unbounded after that. We discuss two variants of a
BSM scheme. We first discuss these in the standard BSM where the eavesdropper is unbounded over time,
and then compare them to the hybrid setting where computational restrictions are imposed:

• The Basic BSM Scheme: The basic scheme does allows interaction only up to the start of the broad-
cast of R (after that only the encrypted message is sent). Thus the key is fully determined by the time
the broadcast has ended. Such a scheme is fully breakable in the BSM (without an initial secret key)
since the unbounded adversary can find some randomness consistent with Alice’s view, and simulates
Alice’s actions and thus recover the encryption key24. Basic schemes in the hybrid BSM are inter-
esting as they include any combination of a key agreement protocol with a private key scheme (such
as the one described by [22]). We show that if sufficiently strong compression exists then there exist
attacks on any such scheme.

• The General BSM Scheme: Alice and Bob interact both before and after the broadcast ofR. Dziem-
bowski and Maurer [22] show that such a scheme is breakable unless n2 > Ω(m) (without initial se-
cret keys). For the hybrid BSM, we show that if compression exists then there exists an attack on any
such scheme as long as n2 > Ω(m/p(n, log m)), for some polynomial p (related to the polynomial
of the compression algorithm and to the running time of the protocol that Alice and Bob use).

Thus we prove that if compression of SAT (or of any VCOR-hard language) is feasible then the hybrid BSM
is essentially no more powerful than the standard BSM.

4.2 The Basic Hybrid BSM

Definition 4.1 (Basic hybrid BSM scheme) A basic hybrid BSM scheme consist of the following: Alice
and Bob run a protocol Π that is polynomial in n (this could be a key agreement scheme with security

23The hybrid BSM model and notions of everlasting security in this model are formally defined in [29].
24Since Alice must be able to decrypt the message then simulating Alice with any randomness that is consistent with the transcript

must output the same key.
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parameter n). Denote by T the transcript of this protocol. Alice and Bob use their respective views of the
protocol Π (i.e. the transcript T and their local randomness) to agree on n bits from the broadcast string
R that they should store. They store these bits and then use the stored bits to generate an encryption key K
(the scheme requires that they agree on the same key).

We show that sufficiently strong compression of SAT can be used to break any hybrid BSM scheme.
For the discussion here take K to be a one bit key. The general idea is that while the eavesdropper may not
figure out in time what locations to store, he can use this transcript to save a relatively short (compressed)
CNF formula whose satisfiability coincides with the value of the key K. Later, when he is given unbounded
computational power, he will be able to extract this bit from the compressed formula.

Theorem 4.2 If there exists a compression algorithm for SAT or for any compression-hard language for
VCOR, with polynomial p1, then any basic hybrid BSM scheme can be broken using memory p2(n, log m)
(where p2 is a polynomial related to p1 and the running time of the protocol Π).

Proof: Denote the locations of the bits that Alice and Bob store by i1, ..., in. Consider the algorithm V that
takes the transcript TΠ and the broadcast string R as inputs and Alice’s local randomness, and locations
i1, ..., in as a witness. The algorithm should check if the witness and inputs are indeed consistent with one
another (for example, V should verify that a key agreement with the randomness of Alice, the transcript T
indeed chooses the indices i1, ..., in to store) and output 1 if and only if they are consistent and generate an
encryption key K = 1. The main observation is that the NP language defined by this relation V is in VC1.
Thus, if SAT has a compression algorithm then there is also a compression algorithm for all of VC1 (from
Lemma 2.17) including the language defined by V .

The attack of the eavesdropper Charlie is as follows: Charlie generates the verification program V
and feeds the instance (T,R) to the compression algorithm for the language V . By the properties of the
compression, the output is a CNF formula that is satisfiable if and only if K = 1. The length of the output
is of some polynomial length p2(n, log m). If the polynomial p2 is sufficiently small then the compressed
instance is shorter than Charlie’s space bound 1

2m, and he stores this output. Finally, at a later stage, Charlie
can use his unbounded powers to solve the compressed problem and retrieve the bit K.

We note that a slightly more involved argument works also with compression for VCOR. The idea is to
use independent compression for the bit R(ij) for every j ∈ [n]. Every such R(ij) may be presented as the
OR of m circuits of size p(n) each, for some polynomial p. 2

4.3 The General Hybrid BSM

The general scheme is like the basic one but the encryption key K is not necessarily fully defined by the end
of the broadcast. In addition, the parties are allowed to interact after the broadcast is over. We note that the
bounded storage key exchange scheme of Cachin and Maurer [9] requires such late interaction.

Definition 4.3 (General hybrid BSM scheme) The general hybrid BSM scheme consist of the following:
Alice and Bob run a protocol Π1 that is polynomial in n. Denote by T1 the transcript of this protocol. Alice
and Bob use their respective views of the protocol Π1 to determine some n bits that each should store from
the broadcast string R. After the broadcast they interact in a second protocol Π2 (with transcript T2) at the
end of which, both agree on encryption key K.

Theorem 4.4 If there exists compression algorithm for SAT or for any compression-hard language for
VCOR with compression p1(n, log m), then there exists an attack on any general hybrid BSM scheme where
n2 > m/p2(n, log m) (where p2 is a polynomial related to p1 and the running time of the protocol Π1).
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Proof: Let K(T1,R, T2) denote the encryption key that is agreed on when the protocol is run with transcripts
T1, T2 and randomness R. Because agreement is guaranteed then this key must be well defined. Denote
by AT1 the set of all possible randomness rA of Alice that are consistent with the transcript T1. Let sA =
SA(T1,R, rA) denote the bits that Alice stores at the end of the broadcast when running with randomness
rA, transcript T1 and broadcast string R. Finally, denote by SA(T1,R) the random variable that takes the
value SA(T1,R, rA) for a uniform choice of rA ∈ AT1 . That is, SA(T1,R) is randomly chosen from all
possible sA that Alice might have stored when running with transcript T1 and broadcast string R.

We use the following key lemma of Dziembowski and Maurer [22].

Lemma 4.5 ([22]) Let SA(T1,R) and K(T1,R, T2) be defined as above. For any R and T1 let SC(T1,R)
denote the random variables that takes n independent samples of SA(T1,R). Then:

H(K(T1,R, T2)|SC(T1,R)) ≤ n2/m

.

In other words, a strategy for an eavesdropper is to store n independent samples of the random variable
SA(T1,R). This strategy guarantees that the eavesdropper will have stored (with high probability) enough
information on the encryption key K. Thus an eavesdropper with O(m) storage capacity may break the
scheme as long as n2 < O(m).

Lemma 4.5 was used in [22] in a setting where the eavesdropper is unbounded and can hence sample the
random variable SA(T1,R). However, in our setting the eavesdropper is computationally bounded and does
not have the power to generate this distribution. Instead, we use compression to store information about
samples of SA(T1,R) to be extracted after the broadcast is over (when the eavesdropper is unbounded).

The main idea is to use compression for search problems, as was demonstrated in Section 2.7. Define
the NP language LA as follows:

LA = {(T1,R)|∃ witness w = (rA, sA) such that rA ∈ AT1 and sA = SA(T1,R, rA)}

The first thing to notice is that LA is in VCOR. This is shown once more by the same argument as
in Theorems 4.2 or 3.1, and based on the fact that the protocol Π1 is polynomial time in n. Once this is
established, then given a compression algorithm for VCOR we invoke Theorem 2.25 to get a compression
algorithm to the search problem associated with LA. Running this compression once, allows us to extract
a witness to LA and in particular to get one sample sA of a consistent view of Alice. Running this n times
supposedly gives n samples of such a view, which supposedly suffices to break the scheme by Lemma 4.5.

However, in order to invoke Lemma 4.5, we need the samples to be taken according to the distribution
SA(T1,R), which is taken by a uniform distribution over rA ∈ AT1 . We will show that while sampling via
the compression of search problems does not give the desired distribution, it is still sufficient.

A closer inspection of our compression for search technique shows that we do not necessarily sample
uniformly on AT1 . However, we do sample close to uniformly, in the sense that no element in AT1 gets more
than double the probability of another element in AT1 . We then show that taking twice as many samples
as was originally needed guarantees that amongst the stored bits we have n random samples of the random
variable SA(T1,R), and thus we have stored enough bits from R to break the scheme.

Recall from Section 2.7 that the compression algorithm for search problems chooses a random pairwise-
independent hash function h and saves only a witness (rA, sA) that is uniquely hashed to the value 0 by h.
Since rA fully determines sA (when given T1 and R) then without loss of generality we view the witness
simply as rA, furthermore, assume w.l.o.g. that rA is of length n. Suppose that ` ∈ [n] is such that 2` <
|AT1 | ≤ 2`+1. Let H`+2 be a family of pairwise independent hash functions with h : {0, 1}n → {0, 1}`+2
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for all h ∈ H`+2. Then for every rA ∈ AT1 the probability that a random h ∈ H`+2 uniquely maps rA to
zero is at most 2−(`+2) (since Prh∈H`+2

[h(rA) = 0] = 2−(`+2)). By the pairwise independence ofH it holds
that for all other r′A ∈ AT1 with r′A 6= rA we have that Prh∈H`+2

[h(r′A) 6= 0|h(rA) = 0] = 1− 2−(`+2). By
a union bound over all r′A ∈ AT1 with r′A 6= rA, combined with the probability that h(rA) = 0, we get:

Prh∈H`+2
[h uniquely maps rA to 0] ≥ 2−(`+2) · 1

2
= 2−(`+3).

Altogether, for all rA ∈ AT1 it holds that

2−(`+2) ≥ Prh∈H`+2
[h uniquely maps rA to 0] ≥ 2−(`+3).

Thus whenever the hash used is indeed of length ` + 2, the probability of sampling rA ∈ AT1 is almost
uniform (up to a factor of 2 for each element). Since we repeat the compression for every choice of ` ∈ [n]
then in particular samples are stored for the correct `.

By Lemma 2.26 we know that at least 1
8 of the repeated compressions indeed store information about a

valid witness (a sample of rA ∈ AT1). Thus, choosing, say, 9n independent h ∈ H`+2 guarantees at least n
samples (by a Chernoff bound, as the choices are independent). But as mentioned above, these samples are
just close to uniform over AT1 rather than truly uniform. The solution is to simply run more compressions,
say, for 25n independent choices of h ∈ H`+2. This would guarantee that with overwhelming probability,
at least 3n samples actually are stored. We show that 3n samples via the unique hashing method contain n
truly uniform samples of witnesses.

This last argument follows by a hypothetical method for sampling uniformly from AT1 . At a first stage,
3n samples are taken using the unique hashing method. Now a diluting second stage is run: Suppose that the
least likely element to be sampled gets probability pmin. For any element rA that is sampled with probability
prA , keep the sample with probability pmin

prA
and delete it otherwise. Thus every element is eventually chosen

with the same probability pmin, and since pmin

prA
≥ 1

2 then at least n samples are eventually chosen (with
overwhelming probability). Note that the diluting stage is not necessarily efficiently computable, but this is
taken just as a mental experiment in order to show that among the 3n samples, there exist n independent
samples of the random variable SA(T1,R). Thus by storing 3n samples via the unique hash method, we
have stored enough bits from R to break the key K. 2

5 On Witness Retrievable Compression and Public Key Cryptography Based
on Any One-Way Function

5.1 On Oblivious Transfer from any One-Way Function

As mentioned in the introduction, whether one-way functions are sufficient for public key cryptography
is a long standing open problem. In fact, many researchers view the black-box impossibility result of
Impagliazzo and Rudich [35] as an indication that general one-way functions are insufficient for public
key cryptography. We now describe an approach to bridging this gap using witness retrievable compression
of a specific language.

Theorem 5.1 If there exists a witness retrievable compression algorithm for a specific type of SAT formulas,
then there exists an Oblivious Transfer (OT) protocol based on any one-way function.

Proof: The construction actually builds a Private Information Retrieval (PIR) protocol, and then uses the
construction of Di Crescenzo, Malkin and Ostrovsky [14] to build an OT protocol from the PIR protocol.
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Recall that a PIR protocol has a sender with a database of size m and a receiver that chooses to learn one
entry from the database. It is required that the receiver learns the bit of his choice, but a computationally
bounded sender learns essentially nothing about this choice. In addition, the total communication should be
strictly smaller than m.

Let f be a one-way function and take (Commit, Verify) to be a commitment based on the one-way
function f (as in Section 3). In this proof we work under the assumption that the parties are semi-honest
(that is, the parties follow the protocol as prescribed and are only allowed to try and infer extra information
from the transcript of the protocol). The semi-honest assumption is justified by the compiler of Goldreich,
Micali and Wigderson [25] that showed how to transform a semi-honest protocol into one against malicious
parties (again, the only needed cryptographic assumption is the existence of a one-way function). Consider
the protocol in Figure 2.

Protocol PIRf :
Alice’s input: database D of m bits. Let D[i] denote the ith bit in D.
Bob’s input: index i ∈ [m] denote the bits of i by i1, ..., i`

1. Bob commits to i: Bob commits to i with randomness rB , Alice receives σ =
Commit(i, rB).

2. Alice computes Φ: The CNF formula Φ is defined as follows:

• Denote by Verifyσ the algorithm Verify with the input σ fixed. That is, Verifyσ

takes as inputs x and r and accepts if and only if they form a legal opening of the
commitment σ (and in particular this means that x = i).

• Translate Verifyσ into a CNF formula Φσ over the variables x1, ..., x` of x and the
bits of r (using Cook’s reduction).

• For every j ∈ [m] define the clause Cj = (xj̄1
1 ∨ xj̄2

2 ∨ .... ∨ xj̄`
` ) if D[j] = 0 (where

x0 denotes x̄ and x1 denotes x) and Cj = 1 if D[j] = 1.

• Set
Φ = Φσ ∧

∧
j∈[m]

Cj

3. Alice Compresses Φ: Let (Z,W ) be a witness retrievable compression algorithm for CNF
formulas of the form of Φ. Alice runs Ψ = Z(Φ) and sends Ψ to Bob.

4. Bob checks witness: Note that Bob knows the witness to Verifyσ and can compute a
witness w for Φσ. Bob checks if W (w,Ψ) is a satisfying assignment for Ψ. If it is Bob
outputs 1, otherwise he outputs 0.

Figure 2: The construction of a PIR protocol from any one-way function.
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It remains to show that the protocol PIRf is indeed a PIR protocol. Due to the fact that the commitment
is binding (up to a negligible error), then an assignment satisfying Φσ must have x = i (recall that i is the
index that Bob committed to). Thus the first part of Φ is only satisfied when x = i. But the second
part is only satisfied if D[x] = 1, thus Φ is satisfied if and only if D[i] = 1. By the property of the
compression algorithm, also Ψ is satisfiable iff D[i] = 1. Hence, using the witness retrievable properties of
the compression, Bob figures out whether or not Ψ is satisfiable, and learns the bit D[i] (up to a negligible
error).

The second property is that the sender Alice learns no computational information about Bob’s choice.
This follows directly from the guarantees of the commitment scheme (note that Bob does not send any
information outside of the commitment). The third and final requirement regards the length of the commu-
nication. But the length of the communication is a fixed polynomial in p(n) (depending on the commitment
protocol and the parameter of the compression algorithm). So choosing a large enough databases with
m > p(n) guarantees a non trivial PIR protocol and hence an OT protocol. 2

Note that the OT protocol derived in Theorem 5.1 is a one-round protocol (that is, one message sent
from the receiver followed by one message from the sender). This follows from the construction of the PIR
protocol and the construction of [14] that preserves the number of rounds. One implication of this fact is that
such an OT protocol may be used to construct a two round key agreement scheme, that in turn maybe used
to construct a public key encryption. In general, this is achieved by fixing the first message of the protocol
to be as the public key. Formally:

Corollary 5.2 If there exists a witness retrievable compression algorithm for a specific type of SAT in-
stances, then based on any one-way function one can construct a public key encryption scheme (PKE) that
is semantically secure against chosen plaintext attacks.

5.2 On the Limitation of the Witness Retrievability Property

Witness retrievable compression is defined (Definition 1.5) as a compression with an additional algorithm
W such that for every witness wx for RL it holds that wy = W (wx, Z(x)) is a witness for Z(x) ∈ L′. Recall
that all of the examples of compression algorithms (in Sections 2.1 and 2.9) are in fact witness retrievable.
This property is essential to the success of the construction of the OT protocol in Theorem 5.1, (without it
the receiver would have to run in time that is super-polynomial). In this section we show that if one-way
functions exist then a compression algorithm for SAT cannot be witness retrievable (this regards the general
language SAT rather than a specific distribution of instances as generated in Theorem 5.1). Moreover, this
statement also holds for other general languages mentioned in Theorem 5.1 (that are potentially easier to
compress than SAT). In particular, there is no witness retrievable compression for the Clique language or
for the language OR(SAT ) (that is complete for VCOR). We give the formal statements below with respect
to the language OR(SAT ) and deduce the statements for SAT and Clique as corollaries.

We also rule out other natural definitions of witness retrievability that would have been sufficient for
the proof of Theorem 5.1 to go through. Suppose we relax the witness retrievability requirement to hold
only with some probability ε, then we show that if one-way functions exist then this probability ε has to be
very low, at most an inverse polynomial in m. Such a low probability of success is not sufficient for the
OT construction in Theorem 5.1 to follow (we note though, that witness retrievability with this low success
probability is still sufficient for the cryptanalytic result in [21]). We then show that the same situation also
holds for languages that are guaranteed to have unique witnesses (i.e. unique-SAT and unique-OR(SAT)).
This is of relevance since the instances being compressed in the proof of Theorem 5.1 all have at most a
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single witness.25

We emphasize that the OT construction may still be successful under the compression of formulas of
the specific type that are generated in the proof. However, we cannot generalize this method to work with
compression of a more standard language.

On the Impossibility of Perfect Witness Retrieval: Recall that the language OR(SAT ) takes as an input
a list of m CNF formulas (each of length n) and accepts if at least one of the formulas is satisfiable. Consider
the following way of generating an instance of OR(SAT ). Take m bit commitments σ1, . . . , σm, each with
security parameter n. For each commitment σi, generate using Cook’s Theorem a CNF formula φσi that is
satisfiable if and only if σi is a commitment to 1. As an instance of OR(SAT ) we take the OR of the m CNF
formulas φσ1 , ..., φσm . We denote this instance by φ(σ1, . . . , σm). Denote by wσi a satisfying assignment
for φσi (such an assignment can be generated by an opening σi to the value 1). The assignment wσi also
serves as a witness for φ(σ1, . . . , σm) ∈ OR(SAT ). Our first impossibility result is for compression of
OR(SAT ) with errorless witness retrievability.

Lemma 5.3 If one-way functions exist then there is no witness retrievable compression for OR(SAT ) with
perfect witness retrieval.

Proof: The proof follows by showing that a witness retrievable compression Z for OR(SAT ) can be
used to transmit an m bit string between two parties with sub-linear communication. As a setup stage, the
receiver generates m random commitments to 1 and m random commitments to 0 and sends them to the
sender. Denoted these by (σ1

1, . . . , σ
1
m) and (σ0

1, . . . , σ
0
m) respectively.

For every string x ∈ {0, 1}m denote φx = φ(σx1
1 , . . . , σxm

m ) (where xi denotes the ith bit of x). In order
to send string x ∈ {0, 1}m the sender sends Z(φx) to the receiver. We claim that the receiver can, with
overwhelming probability, learn the string x, thus contradicting the fact that the message sent is significantly
shorter than m. Note that the receiver knows witnesses wσ1

i
for all i and that a witness for φx ∈ OR(SAT )

consists of a witness wσ1
i

of a φσ1
i

that is included in φx. The receiver extracts x as follows:

Procedure Rec on input Z(φx):

• For every i ∈ [m]:

1. Run W = W (Z(φx), wσ1
i
)

2. If W is a witness for Z(φx) then set yi = 1, otherwise, set yi = 0.

• Output y = y1, ..., ym.

Denote by Xi the random variable of the ith bit of x and by Yi the random variable of the corresponding
output of Rec. We view the process as a channel between a sender who holds the random variables X =
X1, ..., Xm to a receiver who gets the random variables Y = Y1, ..., Ym and claim that with overwhelming
probability Y = X .

If Xi = 1 then the opening of σ1
i should yield a witness for Z(φx), from the perfect witness retrievability,

and thus Yi = 1. We should show that if Xi = 0, then indeed Yi = 0 (up to a negligible error). Note that
X is uniformly distributed over {0, 1}m, whereas Y is determined by the random choice of commitments
(σ1

1, . . . , σ
1
m) and (σ0

1, . . . , σ
0
m), the random coins of Z and W and the random variable X .

25The relevant instances in Theorem 5.1 actually have a unique witness only if there exists a commitment scheme that has only
a unique opening. As this is not necessarily the case when given any one-way function, we consider for simplicity the case of
one-way permutations (that guarantee a unique opening commitment scheme).

33



Claim 5.4 Let X and Y be the random variables described above. Then for every i ∈ [m] and every
polynomial q(·),

Pr[Yi = 1|Xi = 0] <
1

q(n)
.

Proof: Suppose that the claim is false, that is, for some q(·) and some i, Pr[Yi = 1|Xi = 0] ≥ 1/q(n). For
simplicity we first deal with the case that Pr[Yi = 1|Xi = 0] = 1. In other words, W (Z(φx), wσ1

i
) always

outputs a witness for Z(φx). Consider the two distributions L0 and L1 on lists of m− 1 commitments:

• Distribution L0 is defined by a random and independent choice of m− 1 commitments to 0.

• Distribution L1 is defined by first choosing at random a string V1, V2, . . . , Vm−1 ∈ {0, 1}m−1 and
then generating m− 1 independent commitments to V1, V2, . . . , Vm−1.

From the hiding property of commitment schemes it holds that these two distributions are indistinguishable,
i.e. given a list L of m − 1 commitments, no computationally bounded distinguisher can tell with non-
negligible bias whether L was generated by L0 or L1. We will show that if the premise of the claim is
false, it is possible to distinguish the two distributions (without knowledge of the openings to any of the
commitments in the list).

Given a list L of m − 1 commitments, the distinguisher generates σ0
i and σ1

i and the corresponding
witnesses. He then generates a formula φ by adding σ0

i to the ith position in the list L, and runs the
compression on φ. The distinguisher then runs W = W (Z(φ), wσ1

i
) and checks whether W is a witness to

Z(φ). By the assumption, W will indeed be a witness every time that φ is satisfiable. On the other hand, W
cannot be a witness if φ is not satisfiable, simply by the properties of the compression. Thus if W is indeed
a witness for Z(φ) then it must be that φ ∈ OR(SAT ) and there is some commitment to 1 in the list and
thus L was generated from L1. Otherwise, it means that φ 6∈ OR(SAT ) and the original list was from L0

(ignoring the negligible probability that L1 generates a list containing only commitments to 0).
Now if Pr[Yi = 1|Xi = 0] ≥ 1

q(n) for some polynomial q(·), then the distinguisher follows the same
procedure with the difference that:

• If W = W (Z(φ), wσ1
i
) is a witness for Z(φ) then output L1.

• If W is not a witness flip a coin and answer either L0 or L1 accordingly.

In case W was indeed a witness, the distinguisher is guaranteed to be correct. Therefore, the above procedure
gives an advantage 1

2q(n) in distinguishing between L0 and L1, contradicting the hiding properties of the
commitment scheme. 2

Note that the distributions L0 and L1 will be useful also in the discussion of the unique witnesses case
(Lemma 5.6). 2

On Non-Perfect Witness Retrievability: We now show that the witness retrieval procedure is possible
only if its success probability is sufficiently low (we denote the success probability by 1

q(n,m) ). We upper
bound the success probability by a function of the rate of compression that the algorithm Z achieves (we
denote by p(n, m) the polynomial that bounds the length of the output of Z, i.e. the compressed instance).

Lemma 5.5 If one-way functions exist and suppose that (Z,W ) is a witness retrievable compression for
OR(SAT ) such that for every φ with parameters m,n the following holds:

1. The compression parameter |Z(φ)| ≤ p(n, m)
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2. The success probability of W is at least 1
q(n,m) where probability is over the random coins of Z and

W as well as the choice of the witness.

Then q(n, m) ≥ Ω( m
p(n,m)).

Proof: The proof uses the same setting as in the proof of Lemma 5.3. Once more, the sender sends a
compressed value Z(φx) to the receiver that runs the procedure Rec and we view this process as a channel
between a sender who holds the random variables X = X1, ..., Xm to a receiver who gets the random
variables Y = Y1, ..., Ym. Only this time if Xi = 1 it is not guaranteed that also Yi = 1 (since the witness
retrievability is no longer perfect). Instead, our assumption on the success probability of W translates to
Pr[Yi = 1 | Xi = 1] ≥ 1

q(n,m) for a random i. Since Xi is a uniformly distributed bit then Pr[Yi = 1] ≥
1

2q(n,m) for a random i.
In addition, Claim 5.4 states that for every i it holds that Pr[Yi = 1 | Xi = 0] ∈ neg(n). Thus, if Yi = 1

then Xi = 1 with overwhelming probability and therefore H(Xi | Yi = 1) ∈ neg(n) for every i (where H
denotes the Shannon entropy). We use the above mentioned facts to provide an upper bound on the average
entropy of Xi (average over i) when given Y :

Ei[H(Xi | Y )] = Ei[Pr(Yi = 1)H(Xi | Yi = 1) + Pr(Yi = 0)H(Xi | Yi = 0)]

≤ 1
2q(n, m)

· neg(n) + (1− 1
2q(n, m)

) · 1

≤ 1− 1
2q(n, m)

+ neg(n)

The last inequality is true since H(Xi | Yi = 0) ≤ 1 for every i. We deduce an upper bound on the entropy
of X when given Y :

H(X|Y ) ≤
∑

i

H(Xi | Y ) = mEi[H(Xi | Y )] ≤ m(1− 1
2q(n, m)

+ neg(n))

Hence, when the receiver gets Z(φx) (and can generate Y ), the receiver’s entropy of X deteriorates by

H(X)−H(X | Y ) ≥ Ω(
m

q(n, m)
).

This can only happen if the sender sent at least Ω( m
q(n,m)) bits to the receiver, and thus p(n, m) ≥ Ω( m

q(n,m))
as required. 2

Note that the construction of OT protocols from one-way functions in Theorem 5.1 requires that the
compression rate p(n, m) ≤ O(m1−ε) for some constant ε > 0. Thus, when put in the context of construct-
ing OT protocols, the above lemma states that a useful compression algorithm for OR(SAT ) cannot have
witness retrievability with probability that is better than O( 1

mε ).

On Witness Retrieval with a Unique Witness: The limitations on witness retrievability hold also when
there is only a single witness, which is the case in our cryptographic applications. For this we consider
the promise problem OR(SAT )U that is OR(SAT ) with a guarantee that every instance has at most one
satisfying assignment. We generate the interesting instances of OR(SAT )U as above, from sets of commit-
ments. In this case the set of commitments should be such that at most one of the commitments is to the
value 1. For simplicity we also assume that each commitment has a unique opening (this may be achieved
using one-way permutation), so overall such instances have the unique witness property.
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Lemma 5.6 If one-way permutations exist and suppose that (Z,W ) is a witness retrievable compression
for OR(SAT )U such that for every input φ with parameters m,n the following holds:

1. The compression parameter |Z(φ)| ≤ p(n, m)

2. The success probability of W is at least 1
q(n,m) for a polynomial q(·, ·) where probability is over the

random coins of Z and W .

Then 1
q(n,m) −

p(n,m)
m ∈ neg(n).

Proof: Suppose that there is a witness retrievable compression (Z,W ) for OR(SAT )U that succeeds
with probability 1

q(n,m) . In similar fashion to the proof of Claim 5.4 we will show that in such a case
one can efficiently distinguish if a list of m − 1 commitments was generated by the distribution L0 or
by the distribution L1. Recall that the distribution L0 is a random choice of m − 1 commitments to 0
while the distribution L1 is a choice of m − 1 random commitments (commitments to either 0 or 1). The
distinguisher works without knowledge of the openings to any of the commitments, thus contradicting the
hiding properties of the commitment scheme.

The distinguisher generates a random commitment σ1 to 1 along with its witness wσ1 . Now, given a
list L of m − 1 commitments, the distinguisher creates an instance φ by adding σ1 in a random position in
the list L, and runs the compression on φ. The distinguisher then tries to retrieve a witness to Z(φ) using
the opening wσ1 . In the case that L ∈ L0 then φ is an instance of OR(SAT )U and thus by the assumption
the distinguisher will retrieve a witness with probability at least 1

q(n,m) . On the other hand, if L ∈ L1 then
the instance φ is a general instance of OR(SAT ) (without the promise of the unique witness). Lemma 5.5
states that there exists a φ for which the witness retrieval succeeds with probability at most p(n,m)

m . A more
careful inspection of the proof of Lemma 5.5 shows that this statement also holds for a randomly chosen
φ (generated by choosing m random commitments not all of which are to 0). Thus, if L ∈ L1 then the
witness retrieval succeeds on φ with probability at most p(n,m)

m (with probability taken over the choice of
L ∈ L1 and the randomness of the distinguisher). Overall, the distinguisher accepts with probability at
least 1

q(n,m) when L is from L0 and at most p(n,m)
m when L is from L1. So if 1

q(n,m) −
p(n,m)

m is larger
than a polynomial fraction in n, then this procedure has a distinguishing advantage between L0 and L1,
contradicting the security of the commitment scheme. 2

All our results have been stated for the language OR(SAT ). However, they may be applied for other
languages such as SAT and Clique. In particular, we get the statement with respect to SAT as a corollary
(since a compression for SAT can be used as a compression for OR(SAT ) via the reduction in Lemma 2.17).

Corollary 5.7 If one-way functions exist and let (Z,W ) be a witness retrievable compression for SAT (or
for Unique-SAT), such that for every input φ with parameters m,n the following holds:

1. The compression parameter |Z(φ)| ≤ p(n, m)

2. The success probability of W is at least 1
q(n,m) where probability is over the random coins of Z and

W as well as the choice of the witness.

Then q(n, m) ≥ Ω( m
p(n,m)).
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6 Discussion and Open Problems

The issue of compressibility and the corresponding classification introduced in this work raise many open
problems and directions. The obvious one is to come up with a compression algorithm for a problem
like SAT or Clique (or some VCOR complete or hard problem). Alternatively, show why such tasks are
infeasible (see discussion in Section 2.9). We have seen compressibility of some interesting NP languages
and hence the question is where exactly is boundary between compressibility and incompressibility. We
tend to conjecture that it is in the low levels of the VC hierarchy. We view PCP amplification methods
such as the recent result of Dinur [17] as potential leads towards achieving compression. This is since these
results show a natural amplification of properties on a graph, and could potentially be combined with a
simple compression of promise problems (such as the example for GapSAT in Section 2.9). The main issue
is doing the PCP amplification without introducing many new variables.

In particular, the following task would suffice for achieving non-trivial compression: given CNF formu-
lae φ1 and φ2 (not necessarily with short witnesses) come up with a formula φ that is (1) satisfiable if and
only if φ1 ∨ φ2 is satisfiable and (2) shorter than the combined lengths of φ1 and φ2. Moreover, due to the
impossibility results for general witness retrievable compression (Section 5.2), a witness for either φ1 or φ2

cannot efficiently yield a witness for φ.
Short of showing a compression for general complexity classes, it would be interesting to come up

with further interesting compression algorithms as well as to obtain more hardness results. For instance, is
Clique or any other embedding problem complete for VC1? Is there a natural and simple complete problem
for VC1? Also, the VC hierarchy is by no means the ultimate classification with respect to compressibility.
One can hope to further refine this classification, especially within the confines of VC1.

Since we currently do not have a general compressibility result for a significant class of languages, it
is important to understand what are the implications of incompressibility. The application to the bounded
storage model can be viewed as such a statement. Other examples are the previously mentioned works
of Dubrov and Ishai [19] regarding derandomization and Dziembowski [21] with respect to forward-secure
storage. In order to gain confidence in an incompressibility assumption when used in a cryptographic setting
it is important to come up with an efficiently falsifiable assumption of this nature (see [49]).

Finally we feel that we have just scratched the surface of an important topic and in the future there will
be other implications of compressibility or the impossibility of compression, whether in cryptography or in
other areas.
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