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Abstract. Password Authenticated Key Exchange (PAKE) protocols allow parties to establish a
shared key based only on the knowledge of a password, without leaking any information about it.
In this work, we propose a novel notion called “Identity-based PAKE” (iPAKE) that is resilient to
the compromise of one or more parties. iPAKE protocols protect all parties in a symmetric setting,
whereas in Asymmetric PAKE (aPAKE) only one party (a server) is protected. Binding each party to
its identity prevents impersonation between devices with different roles and allows the revocation of
compromised parties.

We further strengthen the notion by introducing “Strong iPAKE” (siPAKE), similar to “Strong
aPAKE” (saPAKE), which is additionally immune to pre-computation. To mount an (inevitable) offline
dictionary attack, an adversary must first compromise a device and only then start an exhaustive search
over the entire password dictionary. Rather than storing its password in the clear, each party derives
a password file using its identity and a secret random salt (“salted hash”). Although the random salts
are independently selected, any pair of parties is able to establish a cryptographically secure shared
key from these files.

We formalize iPAKE and siPAKE notions in the Universally Composable (UC) framework and propose
a compiler from PAKE to iPAKE using Identity-Based Key-Agreement. We then present CRISP: a
construction of siPAKE from any PAKE using bilinear groups with “Hash2Curve”. We prove CRISP’s
UC-security in the Generic Group Model (GGM) and show that each offline password guess requires
at least one pairing operation.

Keywords: Password authentication, Identity based key exchange, PAKE.

* Department of Computer Science and Applied Mathematics, Weizmann Institute of Science. Supported in part
by grant 950/16 from the Israel Science Foundation. Incumbent of the Judith Kleeman Professorial Chair. Email:
moni.naor@weizmann.ac.il

** School of Computer Science, Tel Aviv University. Email: shaharps@tau.ac.il
*** School of Computer Science, Tel Aviv University. Member of the Check Point Institute for Information Security.
Email: er@eyalro.net



1 Introduction

Establishing secure communication over insecure channels has been the goal of cryptography for
over two millennia. Following the birth of modern cryptography in Diffie and Hellman’s work, the
possibility of securely communicating without prearranged keys arose, but doing it in an authenti-
cated manner remained unresolved.

Password Authenticated Key Exchange (PAKE) protocols allow parties to negotiate a strong
secret key based only on the knowledge of a shared (and possibly low-entropy) password. To pre-
vent offline attacks, PAKE protocols do not leak any information about the password to passive
adversaries.

However, even in the ideal implementation, this is not entirely satisfactory since it does not deal
with the issue of password storage, leaving it open to compromise. Asymmetric PAKE (aPAKE)
protocols stipulated or introduced asymmetry in the setting, calling some participants “servers”
and other “clients”, assuming only servers store some function (hash) of the password. Only servers
are afforded protection from compromising. This asymmetry does not fit all settings, as in practice
it is quite common for passwords to be stored insecurely on devices/clients.!

Moreover, some use cases are explicitly required to be symmetric (e.g., by the Wi-Fi Alliance
consortium for the WPA3 protocol [Wi-18]). In those symmetric multi-party settings, we would like
to allow any pair of parties to create a secure channel, while still providing the following security
guarantees:

1. Compromise resilience. Protect password stored by all parties.

2. Impersonation prevention. Different parties can have different roles or permissions that depend
on their identity.

3. Revocation. Protect the network from compromised parties without changing the password.?

Our “Identity Based” solution: Combine the password with identities and “salt” when creating the
password file for a party from the actual password. As part of the protocol session, we verify both
the password and the declared identity of the peer (the other party).

Note that we also aim to prevent pre-computation attacks, where it is possible to perform most of
the computation before a device is compromised. After compromising a device, the pre-computation
is used to extract the password rather quickly. In saPAKE protocols such as OPAQUE [JKX18],
such protection was provided only to servers, leaving clients vulnerable. See Section 1 for summary
of the notions.

This work provides four main contributions: We introduce and formalize two novel notions:
iPAKE (“weak” Identity-based PAKE functionality, i.e., one involving the identity in addition to
the password) and siPAKE (Strong Identity-based PAKE functionality) that additionally protects
from pre-computation attacks against all parties. We suggest an instantiation of an iPAKE protocol,
and also a siPAKE protocol called CRISP (Compromise Resilient Identity-based Symmetric PAKE)
and prove its UC-security in the Generic Group Model (GGM).

! Many users allow their browsers to save their password. Those passwords are then accessible from any program
running under the same user [Wril6], which makes them an easy target for any malware. Critical flaws in password
managers expose user passwords even in a locked state, and there have been multiple breaches and security issues
in many popular password managers [Bed19].

2 The revocation is effective for a limited time. Even with compromise resilience, the time required by an attacker
to recover the password after a compromise is dependent on the entropy of the password and the computational
cost of each guess.



Protected Parties ‘ none server all

vulnerable]  PAKE [CHK ' 05] aPAKE [GMRO6 iPAKE [Section 3]
resilient - saPAKE [JKX18 siPAKE [Section 3]

Table 1: PAKE notions under party compromise attack.

Pre-computation

CRISP is actually a compiler that transforms any PAKE protocol into a compromise resilient,
identity-based, and symmetric PAKE protocol, realizing the ideal functionality of siPAKE. It is
based on a bilinear group with pairing and “Hash-to-Group”. A key property of this protocol is
that each offline password guess requires a computational cost equivalent to one pairing operation
and that pre-computation is of no avail (in an ideal model).

1.1 Passwords and PAKE

Passwords are arguably the most widely used authentication method today. They are used in a wide
range of applications from authentication on the internet (e.g., email and bank servers), wireless
network encryption (e.g., Wi-Fi), and enterprise network authentication (e.g., Kerberos [NYHRO5]
and EAP-pwd [HZ10]). Today, most of the widely adopted protocols are vulnerable to a wide range
of attacks and implementation errors that might leak the password. For example, transmitting the
plain password under some secure channel (e.g., TLS or SSH connection), which usually relies upon
some setup assumptions, such as Public Key Infrastructure (PKI), and may result in plaintext
passwords being logged by the server [Krel9].

In recent years, a significant effort has been made to try and standardize a more secure approach
for password authentication based on the use of Password Authenticated Key Exchange (PAKE)
protocols (e.g. Kerberos with SPAKE-2" [MSHH18], Wi-Fi with Dragonfly [Wi-18], and combining
TLS with PAKEs [BF18]).

1.2 Formalizations of PAKE

Canetti et al. [CHKT05] were the first to formalize PAKE in the Universal Composability framework
(UC) [Can01]. Their ideal functionality Fpaxg (denoted F,wkE) changes each party’s password with
a randomly chosen key (for the session), only allowing the adversary an online attack where a single
guess may be made to some party’s password.

Asymmetric PAKE (aPAKE) protocols, also called Augmented PAKE, address the problem
of password compromise from long term storage by introducing asymmetry, separating parties
into “clients” and “servers”. While clients supply their passwords on every session, servers use a
“password file” generated in a setup phase. The password should not be extractable from such a
file, ideally not permitting servers to impersonate clients. Since the password domain is generally
considered to be rather small, this requirement is impossible: one can try validating every possible
password against the password file until one is accepted. This is known as “offline dictionary
attack”.

The formulation of Strong Asymmetric PAKE Fgpake [JKX18] addresses an issue with the
original Fypakg of [GMRO6], that allowed a pre-computation attack: password guesses could have
been submitted before a server compromise. Most of the computational work could have been done
prior to the actual compromise of the password file, allowing “instantaneous” password recovery
upon compromise. For example, the attacker can pre-compute the hash value for all passwords in a
given dictionary in advance, then once a server is compromised, simply find the pre-image for the



compromised hash value to find the password immediately. However, in all previous solutions, the
clients (and all parties in the symmetric case) are not protected in case of compromise.

1.3 Owur Contributions

In this paper, we propose to protect all PAKE participants against compromise attacks by em-
bedding Fsapakre’s notion of security into the symmetric setting. We formalize an ideal symmetric
identity-based compromise-resilient PAKE functionality Fsipaks. We also formalize the weaker func-
tionality Fipakg that similarly to Fypakr allows pre-computation attacks. The notations of FgpAkE
and Fipakg are strictly stronger than Fy,paxe and F,apAkE, respectively.

When applying compromise resilience to both parties, a problem arises. FgapakE prevents im-
personation of clients by a compromised server, by using the clients’ knowledge of the password
itself. However, in the symmetric setting, all parties use password files. To prevent impersonation
of a non-compromised party we need to distinguish between password files of the different parties.
Our solution is to combine identities into the password files: in the setup phase, when creating
a password file for a party from the actual password, that party’s identity is integrated into the
file. When engaging in a protocol, the peer can verify the declared identity with respect to the
established key: if both parties output the same key, then both use the same passwords and declare
their true identity.

By binding the password file to a certain identity, one can revoke a compromised password file
by refusing interaction with the corresponding identity. Since we prevent identity impersonation,
the revoked password file is useless, except for the inevitable post-compromise offline dictionary
attack.

In addition to defining symmetric compromise resilience formally, we provide an instantiation
of an iPAKE protocol. Moreover, we present CRISP: a concrete realization of Fgpakg functionality
based on any symmetric PAKE protocol and a bilinear group with pairing and “Hash-to-Group”.
CRISP is the first PAKE protocol resilient to pre-computation attack protecting all parties (as
opposed to protecting against pre-computation attacks of servers only). We model pre-computation
resilience by binding bilinear pairing operations in the real world with offline-test queries in the
ideal world, therefore testing N passwords against a compromised CRISP password file costs at
least N bilinear pairing computations.

We define GGM as UC ideal functionality Fgce, GGM with pairing and hash-to-group as Fggp-
We prove CRISP’s UC-security in GGM in the (Fpakg,Faap)-hybrid world.

1.4 Structure of the Paper

We discuss various methods for compromise resilience in section 2. The ideal functionalities for the
extensions of PAKE (including the UC Modelling of Generic Groups) are described in section 3. An
iPAKE protocol appears in section 4 and the CRISP protocol is described in section 5. In section 6
we described the computational cost of running the CRISP protocol and of the brute-force attack.
We also propose several optimization to the protocol. Conclusions and open problems are presented
in section 7.

2 Compromise Resilience

The compromise resilience of PAKE protocols is determined by the information stored on the
device in the offline phase (i.e., in the password file), and information sent during the online phase
of the protocol. These determine the computational costs required from an adversary to recover the
original password from the password file and the possibility of performing a trade-off between the



offline pre-computation cost (performed before the compromise of the password file) and the online
computation cost (performed after the compromise). For simplicity, we assume that the adversary
has a password dictionary that contains the real password, and the brute-force computational cost
is proportional to the size of the dictionary. Our adversary might target multiple passwords used
by different users.

We survey known methods for achieving various levels of compromise resilience and also give

examples for systems using them:

1.

Plaintext password: The password is stored as-is in the password file. No computation is
required for password recovery. This is the case for the WPA3 protocol in Wi-Fi [Wi-18], and
the client-side for augmented PAKEs.

Hash of the password: A one-way function of the password is computed and stored in the
password file. The adversary can compute the resulting hash value of each password in the
dictionary and save it in a data structure that allows for password recovery with O(1) compu-
tation cost. This can be done once, amortizing the cost of the pre-computation over multiple
passwords recoveries. This option is only beneficial when using a high entropy password chosen
from a password dictionary that is too large to pre-compute.

Hash of the password and public identifiers: A one-way function of the password and some
public identifiers of the connection is computed and stored in the password file. For example,
the public identifiers can be derived from the SSID (network name) in Wi-Fi or a combination
of the server and user’s name. In this case, pre-computation is still possible, but it is not possible
to amortize the cost of recovering multiple passwords with different public identifiers.

Hash of the password and public “salt”: A one-way function of the password and a
randomly generated value (“salt”) is computed and stored in the password file. The “salt” is
sent as part of the PAKE protocol, and so the adversary can learn it before compromising
the device. Again pre-computation is possible. This is the case for the server side in aPAKE
protocols.

Hash of the password and random private “salt”: In this case, the random “salt” is never
revealed, and no pre-computation is possible. This level of protection is offered by saPAKE and
our novel siPAKE protocols. A brute-force attack is inevitably possible post-compromise, as
shown below.

2.1 Black Box Brute-force attack

Post-compromise brute-force dictionary attacks are inevitable for any PAKE protocol. In our attack,
we assume that the correct password is in the dictionary and that the PAKE protocol fails if two
different passwords are used by the two parties. The attack is straightforward:

1.
2.

Retrieve password file FILE. from compromised device.

For every password m; in the dictionary

(a) Derive password file FILE;.

(b) Use FILE. and FILE; to simulate both parties of the PAKE protocol.

(c) If the same key was negotiated by the simulated parties, 7; is the correct password.

The cost of each password guess in the black-box attack is the cost of deriving the password file
from a password, and running the protocol twice. Note that the password file derivation can be
done in pre-computation.



Functionality Fpaxe, with security parameter x, interacting with parties {P;};—; and an adversary S.

Upon (NEWSESSION, sid, Pj, ;) from P;:
o Send (NEWSESSION, sid, P;, P;) to S
o If there is no record (SESSION, P;, Pj, -, +):
> record (SESSION, P;, P;, ;) and mark it FRESH

Upon (TESTPWD, sid, P;, ') from S:
o Retrieve (SESSION, P;, P;, m;) marked FRESH
o If m; = 7’: mark the session COMPROMISED and return “correct guess” to S
o otherwise: mark the session INTERRUPTED and return “wrong guess” to S

Upon (NEWKEY, sid, P;, K') from S:
o Retrieve (SESSION, P;, P;, ;) not marked COMPLETED
o If it is marked COMPROMISED, or either P; or P; is corrupted: K« K’
o else if it is marked FRESH, m;=n; and there is a record (KEY, P;, 7, K;): Ki+K;
o otherwise: pick K; b {0,1}"
o If the session is marked FRESH: record (KEY, P;, m;, K;)
o Mark the session COMPLETED and send (ssid, K;) to P;

Fig. 1: Symmetric PAKE functionality Fpakg

3 Ideal Functionalities
3.1 Notation

Throughout this paper we use the following notations:
— Kk is a security parameter;
— 7 denotes a password;
— id denotes some party’s identifier;
— ¢ is a large prime number ¢ > 2~;
— Zq denotes the field of integers modulo g, Zy = Z,\{0};
x denotes an element of Zg;
F denotes a polynomial in Z,[X];
X denotes a formal variable in a polynomial (indeterminate);
— G denotes a cyclic group of order g¢;
— [z]g denotes a member of group G, identified by the exponent x of some public generator g€G:
[zle = 9%
— {0,1}" denotes the set of binary strings of length n;
— {0,1}* denotes the set of binary strings of any length;
— P denotes a party interacting in either real or ideal world;

— 2&8 denotes sampling z from uniform distribution over set S.
3.2 Symmetric PAKE Functionality

The (symmetric) PAKE functionality Fpakg, originated by [CHK™05] (denoted Fpwkg there), is
depicted in Fig. 1. For clarity, we rephrased it to explicitly record keys handed to parties using KEY
records.

3.3 (Strong) Identity-based PAKE Functionality

In Fig. 2 we present the Identity-based PAKE functionality Fipaxg and Strong Identity-based
PAKE functionality Fgpakg. Essentially, they preserve the symmetry of Fpaxg while adopting the



notion of password files and party compromise from the strong asymmetric PAKE functionality
Feapake of [JKX18] (found in Appendix A). Note that the symmetric functionality Fgpake is
strictly stronger than the asymmetric Fg,pakE: given a Fgpake functionality, it is trivial to realize
the Fiapakg functionality. The user party U simply computes its password file on each session,
when receiving USRSESSION query from the environment. However, we are not aware of any direct
extension of FypAKE t0 FsiPAKE-

The main addition relative to Fy,pake is the notion of identities (id;) assigned by the environ-
ment to parties. Without them, a single party compromise would allow the adversary to compromise
any sub-session by impersonating that party. Having Fgpaxg inform a party of its peer identity
prevents the attack. It is possible to revoke known compromised identities, or only permit commu-
nication with certain identities (e.g., a user will only allow connecting to servers and vice versa).

For symmetry, we restored the notation of parties as {P;}7_: All parties invoke STOREPWDFILE
before starting a session and all use the password file instead of providing a password when starting
a session; USRSESSION query was eliminated, and SVRSESSION was renamed NEWSESSION as in
Fpake. We also parametrized queries on P; and P; where Fgpaxe omitted them, since in the
symmetric setting those queries may be applied to several parties (e.g., STEALPWDFILE applying
to any party). On the other hand, we omit P; from STOREPWDFILE; in our setting a password file
is derived for each party independently, and is not bound to specific peers.

FsipakE introduces a new query OFFLINECOMPAREPWD, allowing the adversary to test whether
two stolen password files correspond to the same password. In the real world, such attack is always
possible by an adversary simulating the protocol for those parties, and comparing the resulting keys.
We argue that in most real-world settings, all parties of the same session use the same password
(e.g., devices connecting to the same WiFi network), thus such a query is both inevitable and
non-beneficial for the adversary.

Notice the four types of records used by Fgpake:

1. (FILE, P;, id;, m;) records represent password files created for each party P;, and are derived from
the actual password 7; of that party together with its identity id;. Similar type of records exist
in Foapake (without identities) only for the server.

2. (SESSION, ssid, P;, Pj, id;, m;) records represent party P;’s view of a sub-session with identifier
ssid between P; and P; . Similar type of records exist in Fpaxr and FsapakE, without identities.

3. (KEY, ssid, P;,m, K;) records represent sub-session keys K created for party P; participating
in sub-session ssid with password m;, and whose session was not compromised or interrupted.
These records were also implicitly created in Fpaxg and Fsapake, but appear here explicitly
for the sake of clarity.

4. (IMP, ssid, P;,id’) records represent permissions for the adversary to set the peer identity ob-
served by party P; in sub-session ssid to id’. When id’=x this record acts as a “wild card”,
permitting the adversary to select any identity.

Additionally, Fipakg uses the following record type:

5. (OFFLINE, P;, 7'} records represent an offline-guess 7’ for party P;’s password, submitted by
S before compromising P;. If P; is later compromised, S will instantly learn if the guess was
successful, i.e., 7’=m;.

Identities verification is implicit. When no attack is carried out by the adversary, both parties
report each other’s real identities. However, when the adversary succeeds in an online attack,



Functionality Fsipake, with security parameter s, interacting with parties {P;}i—; and adversary S.

Upon (STOREPWDFILE, sid, id;, m;) from P;:
o If there is no record (FILE, P;, -, -):
> record (FILE, P;,id;, m;) and mark it UNCOMPROMISED

Upon (STEALPWDFILE, sid, P;) from S:
o If there is a record (FILE, P;, id;, 7;):

. m; if there isa record (OFFLINE, P;, ') with 7'=m;
T
1 otherwise

> mark the file COMPROMISED and return (“password file stolen”,id;,7) to S
o otherwise: return “no password file” to S

Upon (OFFLINETESTPWD, sid, P;, ') from S:
o Retrieve (FILE, P;,id;, ;)
o If it is marked COMPROMISED:
> return “correct guess” to S if m; = 7', and “wrong guess” otherwise
o otherwise: Record (OFFLINE, P;, ')

Upon (OFFLINECOMPAREPWD, sid, P;, P;) from S:
o Retrieve (FILE, P;,id;, m;) and (FILE, P;,id;, ;) both marked COMPROMISED
o Return “passwords match” to S if m; = 7;, and “passwords differ” otherwise

Upon (NEWSESSION, sid, ssid, P;) from P;:
o Retrieve (FILE, P;,id;, m;) and Send (NEWSESSION, ssid, P;, P;,id;) to S
o If there is no record (SESSION, ssid, P;, P;,-):
> record (SESSION, ssid, P;, Pj, ;) and mark it FRESH

Upon (ONLINETESTPWD, sid, ssid, P;, ') from S:
o Retrieve (SESSION, ssid, P;, P;, m;) marked FRESH or COMPROMISED
o Record (1MP, ssid, P;, *)
o If m; = 7’: mark the session COMPROMISED and return “correct guess” to S
o otherwise: mark the session INTERRUPTED and return “wrong guess” to S

Upon (IMPERSONATE, sid, ssid, P;, Px) from S:

o Retrieve (SESSION, ssid, P;, P;, m;) marked FRESH or COMPROMISED

o Retrieve (FILE, Py, id, m,) marked COMPROMISED

o Record (1MP, ssid, P;,idk)

o If m; = mk: mark the session COMPROMISED and return “correct guess” to S
o otherwise: mark the session INTERRUPTED and return “wrong guess” to S

Upon (NEWKEY, sid, ssid, P;,id’, K') from S:
o Retrieve (SESSION, ssid, P;, P;, ;) not marked COMPLETED and (FILE, P;, id;, 7;)
o If P; is honest: ignore the query if either the session is marked FRESH and id'#id;, or it is COMPROMISED and
(IMP, ssid, P;, id) is not recorded for both ide{id’, x}
o If the session is marked COMPROMISED, or either P; or P; is corrupted: K« K'
o else if it is marked FRESH, m;=7; and there is a record (KEY, ssid, P;, K;): Ki+ K
o otherwise: pick Kj; il {0,1}"
o If the session is marked FRESH: record (KEY, ssid, P;, K;)
o Mark the session COMPLETED and send (ssid, id’, K;) to P;

Fig. 2: Functionalities Fipaxp (full text) and Fspake (grey text omitted)




it is allowed to change the reported identities. A successful ONLINETESTPWD query allows the
adversary to specify any identity, while a successful IMPERSONATE query limits the choice to the
impersonated party’s real identity only. If any of the attacks fails, we still allow the adversary to
control the reported identity, at the cost of causing each party to output an independent random
key. Therefore, in the absence of a successful online attack, matching session keys indicate the
reported identities are correct.

We additionally allow multiple ONLINETESTPWD and IMPERSONATE queries against the same
session, as long as they succeed. This is achieved by accepting them on COMPROMISED sessions,
not only FRESH. Note that this permits at most one failed attempt per session, which has minor
impact on security.

The Fipakg functionality is weaker than Fgpakg in the sense that it permits pre-computation
of OFFLINETESTPWD queries prior to party compromise. It is therefore only of interest when
permitting more efficient constructions than its Strong counterpart. Indeed, we present a more
efficient iPAKE protocol (4) realizing Fipaxg in ROM using any cyclic group, while CRISP (5)
requires bilinear groups for realizing Fgpakg in GGM.

3.4 UC Modelling of Generic Group

The necessity of some non-black-box assumptions for proving compromise resilience in the UC
framework has been previously observed (see [GMRO06], [JKX18] and [BJX19]). In Hesse[Hes19]
UC-realization of aPAKE is proved to be impossible under non-programmable ROM. In this work
we rely on Generic Group Model assumption for proving CRISP.

The Generic Group Model (GGM) introduced by [Sho97] allows proving properties of algo-
rithms, assuming the only permitted operations on group elements are the group operation and
comparison. Hence a “generic group element” has no meaningful representation. Algorithms in
GGM operate on encodings of elements, and may consult a group oracle which computes the group
operation for two valid encodings, returning the encoded result. The group oracle declines queries
for encodings not returned by some previous query.

Any cyclic group G of prime-order ¢ with generator g can be viewed as {[z]g | v€Z,} with group
operations [z]g ® [ylc = [z + y]e and [z]g @ [y]c = [* — y]g, unit element [0]g and generator [1]g,
using some encoding function [-]g: = — ¢*. In GGM we consider encoding functions carrying no
further information about the group, e.g., encodings using random bit-strings or numbers in the
range {0,...,g—1}. This is in contrast to concrete groups which might have a meaningful encoding.

In order to prove CRISP’s security under Universal Composition, we need to formalize GGM
in terms of an ideal functionality Fgg, similarly to using Fro (depicted in Fig. 3) for proving
protocols in ROM. Fig. 4 shows the basic GGM functionality Fgg, which answers group operation
queries (multiply/divide) on encoded elements.

Functionality Fro, parametrized by range F, interacting with parties {P;}i—; and adversary S. (P € {P;}i=1U{A})
Upon (HASH, sid, s) from P:

o If there is no record (HASH, s, h):

> Pick h & E and record (HASH, s, h)
o Return h to P.

Fig. 3: Random Oracle functionality Fro



Functionality Fca, parametrized by group order g, encoding set E (|E|>¢) and generator g€E, interacting with
parties {P;}i_; and adversary S. (P € {P;}i; U{A})
Initially, S={1}, [1Jc=g and [z]¢ is undefined for any other £€Z,. Whenever Fgg references an undefined [z]g, set

[z]e R E\S and insert [z]g to S.
Upon (MuLD1yv, sid, [z1]g, [z2]c, s) from P:

o <+ x1+ (—1)°x2 mod ¢
o Return [z]g to P

Fig. 4: Generic Group functionality Fcg

For simplicity one can think of the set of encoding E=Z,, so each exponent x€Z, is encoded

as [z]g=¢ for some ¢ ng, resulting in the encoding function being a random permutation over Z,,
ensuring no information about oracle usage is disclosed between parties.

Note that although the group order ¢ might be (exponentially) large, Fog maps at most one
new element per query. Also note the mapping is injective.

A bilinear group is a triplet of cyclic groups Gi, Go, Gy of prime order ¢, with an efficiently
computable bilinear map é:G xGo—Gr satisfying the following requirements:

— Bilinearity: é(g7, gy) = é(g1, g2)™ for all z, y€Z,.

— Non-degeneracy: é(g1,92) # 1.
where g1, 9o are generators for Gi,Go respectively. We also consider an efficiently computable
isomorphism ¢:G;—Gy satisfying ¥ (g1)=go.

A hash to group (also referred to as Hash2Curve) is an efficiently computable hash function,
modelled as random oracle, whose range is a group. For the bilinear setting, we consider the range
Gi.

In order to represent groups with pairing and hash into group, we suggest a modified func-
tionality Fggp, depicted in Fig. 5, similar to the extension of GGM to bilinear groups by [BB04].
Faap can be queried MULD1V for each of Gy, G2 and G, and maintains separate encoding maps
for each group. It introduces three new queries: (a) PAIRING to compute the bilinear pairing é:
([x1)G,, [T2)G,) = [T1-72]G,; (b) ISOMORPHISM to compute an isomorphism v, 1~ ! between G1 and
Go: [z]g,—[2]e,, [*]g,—[2]e,; and (¢) HASH which is a random oracle into Gy: for each freshly
queried string s€{0, 1}* it picks a random exponent x&ZZ, then returns its encoding [z]g,

We note that in some real-world scenarios, there is no efficiently computable isomorphism, in
which case this query can be omitted (it is not required by CRISP). We still allow for ISOMORPHISM
queries by the adversary to guarantee security even when such isomorphism exists.
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Functionality Foap, parametrized by group order ¢, encoding sets E1, Ea, Er (|E;|>q for j€{1,2,T}) and generators
g1EE1, g2€E,, interacting with parties {P;};—; and adversary S. (P € {P;}i—; U{A})
Initially, S1=S2={1}, Sr=9, [1]¢,=g1, [l]e,=9g2 and [z]g, is undefined for any other z€Z, jc{1,2,T}. Whenever

Faap references an undefined [z]g;, set [z]g; b E\S; and insert [z]g; to Sj.
Upon (MULD1Y, sid, je(1,2,r}, [z1]c;, [#2]c;, s) from P:
o Return [z < 21 + (—1)"z2 mod glg; to P
Upon (PAIRING, sid, [z1]g,, [T2]c,) from P:
o Return [z < 21 - 2 mod ¢]g, to P
Upon (ISOMORPHISM, sid, je 1,2}, [#]¢,) from S:
o Return [z]g;_; to P
Upon (HASH, sid, s) from P:
o If there is no record (HASH, s, [z]g, ):
> pick x bl Zy and record (HASH, s, [z]g,)
o Return [z]g, to P

Fig. 5: Generic Group with Pairing and Hash-to-Group functionality Faap

4 iPAKE from IB-KA

Identity-Based Key-Agreement (IB-KA) protocols (also called Identity-Based Key-Exchange, IB-
KE) allow any two parties in a multi-party setting to establish a shared key, while verifying each
other’s identity. They achieve this by relying upon a trusted third party called a Key Distribution
Centre (KDC). During the Setup Phase, the KDC generates keys for each party, based on that
party’s identity. In the Online Phase, a pair of parties may communicate to derive a shared session
key.

An important property of IB-KA protocols is Key Compromise Impersonation (KCI) resistance:
the adversary can never impersonate an identity that does not belong to a compromised party. This
is despite the fact that the adversary can inevitably impersonate any compromised party. Since KCI
resistance is also mandated by iPAKE, we rely upon IB-KA to provide it.

We remark that non-interactive protocols, such as Identity-Based Non-Interactive Key-Exchange
(IB-NIKE), cannot satisfy KCI resistance. This is since the adversary, having compromised some
party P, can follow P’s steps in the protocol to derive a shared key with any other party. Hence,
without interaction, an adversary can impersonate any party towards P.

Fig. 6 depicts the IB-KA based iPAKE protocol. Note that the data flows and inputs to FpakE
can be transmitted simultaneously, resulting in a single round of communication.

The construction is nearly identical to the IB-KA protocol from [FG10], with the following
modifications:

— KDC Simulation: Instead of using a real KDC, each party P; simulates the KDC’s setup
phase during its password file generation. This is achieved by taking the KDC private value y;
from P;’s password hash H;(m;), where originally the KDC picked this value at random, and
reused it for all parties.

— PAKE Integration: Another value, p;, also taken from the password hash, is stored and used
as input to a PAKE instance that runs in parallel. PAKE’s output key «; and the IB-KA
transcript tr; are appended to the hash invocation for generating the final key K.

Theorem 1. If the Strong CDH assumption holds in G, then the protocol in Fig. 6 UC realizes
FipAKE i the (FpakE, Fro)-hybrid world.
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Public Parameters: Cyclic group G of prime order ¢>2" with generator g€G, hash functions
H;:{0,1}*—{0,1}"xZy;, H2:{0,1}*xG—Z; and H3:{0,1}*xGxG—{0,1}", and & a security parameter.

Password File Generation:

‘P; upon (STOREPWDFILE, sid, id;, 7;): ‘P; upon (STOREPWDFILE, sid, id;, 7;):
Pick random z; & Zy Pick random z; ﬁ Zy
Pi, i <+ Hi(m;) p;»Y; < Hi(m))
Xit=g™ Yie—g” Xjeg™  Yjeg¥
hi (—Hz(ldl,Xz) h; <_H2(idj7Xj)
Zﬁi (*.’L'lﬁ*ylhl C%j (*{L’j+yj'hj
Record (FILE, id;, pi, X, Y, Zs) Record (FILE, id;, p;, X, Y;, &;)
Key Exchange:
‘P; upon (NEWSESSION, sid, ssid, P;): ‘P; upon (NEWSESSION, sid, ssid, P;):
Retrieve <FILE7 idi, pi, X3, Y3, §31> Retrieve <FILE7 idj,p]', X]', }/j, i‘3>
Pick r; & 7 Pick r; & 7
Rﬁ*g” Rj%grj

fi = (FLow, id;, X;, R;)
fi = (FLow,id;, X;, R;)

Di Pj
—) %
FPAKE

Q) Qa
h]‘ %Hg(idj,Xj) hz (*HQ(IdZ,XZ)
B (R X,Y.9) B (RiXiYh) o
Vi = Ry Vi = R
tri < (min(f;, f;), max(fi, f;)) trj < (min(f;, fi), max(f;, fi))
K; < H3 (as, Bi,vi, trs) Kj + Hs (aj, 8,7, tr))
Output (sid, ssid, id;, K;) Output (sid, ssid, id;, K;)

Fig. 6: IB-KA based iPAKE protocol

The proof can be found in the extended version of this paper. Note that H; corresponds to
OFFLINETESTPWD, so it is advised to choose a computationally costly hash (see Section 6.1),
and include sid (representing common parameters, e.g. user and service names) in Hi’s input. We
omitted sid for clarity.

5 CRISP

5.1 Protocol Description

CRISP is a compiler that transforms any PAKE into a compromise resilient, identity-based, and
symmetric PAKE protocol. CRISP (defined in Fig. 7) is composed of the following phases:

1. Public Parameters Generation: In this phase, public parameters common to all parties are
generated from a security parameter x. These parameters include the bilinear groups Gi, Go,
G with hash to group functions H;?, Ho*, and the PAKE protocol to be used.

2. Password File Derivation: In this phase, the user enters a password m; and an identifier id;
for a party P; (e.g., some device such as a personal computer, smartphone, server or access

3 Since H; is invoked on the password, the note from Section 4 applies to it.
4 hash-to-group functions (Hy and H») can be realized by Fcegp’s HASH queries using domain separation with
different prefixes: Hy () will query HASH using s = 1||m, and H(id) will use s = 2|id.
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Public Parameters: Cyclic groups G1, Gz, Gr of prime order ¢>2" with generator go€Gs, bilinear pairing
é:G1xG2—Gr, hash functions Hi, H2:{0,1}*—G; and & a security parameter.

Password File Derivation (offline)

‘P; upon (STOREPWDFILE, sid, id;, 7;): ‘P; upon (STOREPWDFILE, sid, id;, 7;):
Pick random salt xﬁEZ; Pick random salt x; &Z;
Ai(*g;i, Bi(*H1(7T¢)Ii, CZFHQ(ICIZ)II Aj<—g;j, Bj(—H1(7Tj)xj, Cj<_H2(idj)95j
Record (FILE, id;, As, B;, C;) Record (FILE, id;, A;, B, C;)
Key Exchange
‘P; upon (NEWSESSION, sid, ssid, P;): ‘P; upon (NEWSESSION, sid, ssid, P;):
Retrieve (FILE, id;, Ai, B;, C;) Retrieve (FILE, id;, A;, B;j, C;)
Pick random exponent n-(EZ; Pick random exponent r; &Z;
A=Al BB, Ci<CJ Aj AT, Bj«B, Cj«CJ’

Ignore if ;ljzlgz or /ij ¢Go Ignore if 141-21@2 or A~i§éGg
or é(Cy, g2) # €(Ha(id;), 4;) or &(Ci, g2) # €(Ha(idi), Ai)
Si — é(.él, A]) Sj < é(éj, Az)
S S;
FPAKE
K, K,
Output (sid, ssid,id;, K;) Output (sid, ssid,id;, K;)

Fig. 7: CRISP protocol

point). A random salt is uniformly selected, and a password file is generated and stored by the
party.
3. Key Exchange: In this phase, two parties, P; and P; engage in a sub-session to derive a shared

key. This phase consists of three stages:

(a) Blinding. Values from the password file are raised to the power of a randomly selected expo-
nent. This stage can be performed once and re-used across sub-sessions (see subsection 6.3).

(b) Secret Exchange. Using a single communication round (two messages), each party computes
a secret value. These values depend on the generating party’s password, and both parties’
salt and blinding exponents.

(¢) PAKE. Both parties engage in a PAKE where they input their secret values as passwords
to receive secure cryptographic keys.

5.2 Correctness
Honest parties P;, Pj compute a shared secret S;=S5; if and only if their password hashes match:

Si = &(By, Aj) = e(Hi(m)™™, g3
Sj = é(Bj, A;) = é(H1(mj)™",g5")

e(Hy(m;), go)*imiirs
e(Hi(mj), gg)*amioiri

which reduces to the passwords themselves matching, given H; is injective on the password domain.
Each party inputs its S; as a password to Fpakg, which hands back the keys K;, K; satisfying
(omitting collisions in Hj):

KZ‘ZKJ‘ <~ SZ':S]' < H1<7TZ‘):H1(7T]‘) < =T

13



5.3 Intuition
Let us provide some intuition for the protocol by explaining the necessity of several components.

Blinding. The blinding stage perfectly hides the salt z; (information theoretically) in the flow
transmitted from P;, since </~1i, C’Z> = <g§i,Hg(idi)ii> for Z;=x;r; which is a random element of
Zy. Blinding is required because transmitting the raw A; value allows A to mount the following
pre-computation attack:

A may compute the inverse map B,+—7’ for any password guess 7’:

BW/ = é(Hl(ﬂ'/),Ai) = é(Hl(ﬂ'/),gg)xi
Then after once compromising P;, use the map to lookup:
é(Bi, g2) = e(H1(m)"™, g2) = e(H1(mi), g2)™

Finding the correct 7m'=m; instantly. A similar attack would have also been possible if the value
B;=B]" (or r;) was disclosed to A upon compromise.

Symmetric PAKE. The key K; should be derived from the secret S; using Fpaxg and not some
deterministic key derivation function. QOnsider the following attack:

Adversary A selects values fl;-:g;j, CN'j{:Hg(idj)a;' using some private exponent aj. A can
now guess a password 7’ and use A; (sent by an honest party P;) to compute the value S’ =
é(Hy(n')%, A;). Using S', A can derive a guess for the resulting key K’ and test this key and pass-
word guess on encrypted messages sent by P;. This can be repeated for multiple password guess
without engaging in additional exchanges.

5.4 UC Security

Theorem 2. Protocol CRISP as depicted in Fig. 7 UC-realizes Fspakg in the (Fpake,FGGP)-
hybrid world.

We prove CRISP’s UC-security by providing an ideal-world adversary S, that simulates a real-
world adversary A against CRISP, while only having access to the ideal functionality Fgpaxge. The
real and ideal world are shown in Fig. 8. The simulator S is detailed in Fig. 9, Fig. 10, Fig. 11 and
Algorithm 1, but we first describe the strategy in high-level.

=1
12

?] & [P

*’{ FSiPAKE [

(a) real world (b) simulated world

Fig. 8: Depiction of real world running protocol CRISP with adversary A versus simulated world
running the ideal protocol for Fgpakg with adversary S.
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Simulator S proceeds as follows, interacting with environment Z and ideal functionality Fsipaks.
Initially, matrix M is empty, S1=S2={1}, St=9, [1]¢, =91, [l]s,=g2 and [F]g; is undefined for any other polynomial

F and je{1,2,T}. Whenever S references an undefined [Flg;, set [Flg, & E;\S; and insert [Flg; to S;.

Upon (STEALPWDFILE, sid) from Z towards P;:
o Send (STEALPWDFILE, sid, P;) to FsiPAKE
o If Fspake returned “no password file”:
> Return this to Z
Otherwise, Fsipake returned (“password file stolen”, id;)
Record (COMPROMISED, P;, id;)
Create variables X;, Z;, Lig, if necessary
For each (COMPROMISED, P;,id;) with P;#P;:
> Send (OFFLINECOMPAREPWD, sid, P;, P;) t0 FsiPAKE
> If Fspakge returned “passwords match”:
¢ Merge variables Z; and Z;
o Return <id¢, [Xi}(@y [Xizi]([}17 [XiIid,i]G1> to Z

O O O O

Upon (NEWSESSION, sid, ssid, P;, Pj,id;) from Fsipaxg:
o Create variables X;, Z;, Lig; , Ri,ssid as necessary
fi « (FLOW, id;, [XiRi,ssid]Go s [XiLid; Ri,ssid]c )
Send f; to Z as P; towards P; , and receive f; from Z towards P;
Parse f; as (FLow,id’, [a]g,, [c]c,)
Ignore if a'=0 or ¢’ # a' Ly
Record (SENT, ssid, P;, P;,id’,a’, ")

O O O O O

Fig.9: § simulating party compromise and session.

Upon (TESTPWD, sid||ssid, P;, [Fle,) from Z towards Fpake:
o Retrieve (SENT, ssid, P;, P;,id ,a’,c’)
o For each (COMPROMISED, Py, idx) with idx=id’:
> If Z appears in F':
¢ Send (IMPERSONATE, sid, ssid, Pi, Px) t0 FsipAKE
o If Fupake returned “correct guess”: replace all Z, with Z; in F'
o For each password 7’ queried by H(r'):
> If Y, appears in F:
o Send (ONLINETESTPWD, sid, ssid, P;, ') to FsiPAKE
o If Fsipakg returned “correct guess”: replace all Y,» with Z; in F'
o If I = a'XiZiRi’ssid:
> Return “correct guess” to Z
o Otherwise:
> Send (ONLINETESTPWD, sid, ssid, P;, L) to FsipaAkE
> Return “wrong guess” to Z

Upon (NEWKEY, sid||ssid, P;, K') from Z towards Fpake:
o Retrieve (SENT, ssid, Ps, P;,id;, aj, c;) and (SENT, ssid, P;, Ps,id}, a};, c;)
o If Ba€Z! s.t. aj=aXRi ssia and ai=aX;Ry, ssid:
> Send (ONLINETESTPWD, sid, ssid, P;, L) to FsipAkE
o Send (NEWKEY, sid, ssid, P;,id}, K') to Fspake

Fig. 10: § simulating PAKE functionality FpakE

The main challenge S faces is the unknown passwords assigned to parties by the environment
Z. To overcome this, S simulates the real-world H;(m;) = [yr,]|c, using a formal variable (indeter-
minate) Z; in the ideal-world: Hj(m;) = [Zi]g,. Wherever the real world uses group encodings of
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Upon (MULDIV, sid, jeq1,2,1y, [File;, [F2le, s) from Z towards Fgcp:
o Return [F1 + (=1)° - Fx]g; to Z
Upon (PAIRING, sid, [Fi]g,, [F2]e,) from Z towards Faap:
e} FT «— F1 . F2
o Execute INSERTROW(v) on the coefficient vector v of Fr
o Return [Frlg, to Z

Upon (ISOMORPHISI\Lsid7je{1’2}, [F]G].) from Z towards Fccp:
o Return [Flg,_; to Z

Upon (HASH, sid, s) from Z towards Fcap:

Yoo, 5= 1|

o to 2
[Iid]Gl s = 2||Id

o Return {

Fig.11: § simulating generic group functionality Fgap

exponents, S simulates them using encodings of polynomials with these formal variables: [F ]Gj for
polynomial F'.

This simulation technique, using formal variables for unknown values, is very common in GGM
proofs. It “works” because Z is only able to detect equality of group elements, and group operations
produce only linear combinations of the exponents. Two formally distinct polynomials Fj#F5 in
the ideal world would only represent the same value in the real world in the case of a collision on
some unknown value: Fi(x) = Fy(x). Since these unknown values are uniformly selected over a
large domain and the polynomials have low degrees, the probability of collisions is negligible.

We apply the technique for simulating several unknown values using these variables:

X; represents party P;’s salt x;.

Y, represents the unknown logarithm y, of Hy(m)=g}".

Iiq represents the unknown logarithm g of Ha(id) = gj.

R; ssid Tepresents party P;’s blinding value 7; in sub-session ssid.
Z; is an alias for Y, for party P;’s password ;.

Ol W=

Note that some variables are created “on the fly” during the simulation. For example, upon
every fresh Hj(m) query S creates a new variable Y.

Using these variables, S simulates the following:

— Hash queries: Hy(7)=[Yx]g, and Hy(id)=[Id]g,-

— Group operations: [Fl]GjQ[FQ]Gj:[F1+F2]Gj7 [Fl]Gj@[FQ]Gj:[Fl—FQ]Gj, é([Fl]Gla [FQ]GQ):[Fl'FQ]GT,
W([Fle,)=[Fls, and ¥4 ([Flg,)=[Flg,

— P;’s password file: (id;, [Xi|c,, [XiZilc,, [XiLid,|c,)-

— Flow from P;: (FLOW, id;, [Xz‘Ri,ssid]Gg7 [XiRi,ssidIidi]Gl)-

Variable Aliasing. Note that S uses both Y, and Z; variables: Y, are used for simulating an
evaluation of Hy(7), while Z; are used for simulating P;’s password file. Since Y, and Z; are distinct
variables that might represent the same value in the real world, the simulation seems flawed. For
instance, Z might ask A to compromise a party P; and then evaluate é(B;, g2) = é(H1(m;)"*, g2) and
é(Hy(n"), A;) = é(Hy(7"), g5"). These encodings will be equal if and only if Z chose m;==" (or it is a
collision in Hj, which is found with negligible probability). Yet because of using the alias Z;, S would
generate €(B;, g2) = e([XiZi], [l]g,) = [XiZe, and e(Hi(n'), 4;) = é([Yrle,, [Xile,) = Ki¥rlor
which are always different encodings.
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Nevertheless, S is able to detect possible aliasing collisions: when two distinct polynomials,
whose group encodings were sent to the environment Z, become equal under substitution of Z;
with Y,/ (for some previously evaluated H;(7')), S knows there will be a collision if m;=n'. This
condition can be tested by S using OFFLINETESTPWD queries, for a compromised party P;. When
FsiPAKE replies “correct guess” to such query, S substitutes Y, for Z; in all its data sets.

While we could have identified collisions across all Fogp queries, we chose to limit OFFLINETEST-
PwD to only bilinear pairing evaluations (PAIRING simulation), for better modelling of pre-computation
resilience (see subsection 5.5). This implies that S needs to predict possible future collisions when
simulating a pairing. This prediction is achieved by the polynomial matrix explained below.

1: function INSERTROW(v)
2 for all row w with pivot column j in M do
3 v v —v[jlw

4: j < SELECTPIVOT(v)
5: if v = 0 then return
6: v < v/v[j]

7 for all row w in M do
8 w4+ w—wlj]v

9

Insert row v with pivot column j to M

10: function SELECTPIVOT(v)
11: for all compromised party P; with identifier id; do

12: for all passwords 7’ that were queried by H;(7') do
13: j1 « index of monomial X;Y
14: Jj2 < index of monomial X;Y, Ly,
15: if v[j1]#0 or v[j2]#0 then
16: Send (OFFLINETESTPWD, sid, P;, 7') to FsiPAKE
17: if Fsipake returned “wrong guess” then
18: return {jl if v[j1]#0
j2 otherwise
19: Substitute variable Z; with Y,/ in all polynomials
20: Merge corresponding columns of M, v
21: if some party P; has been compromised then
22: Send (OFFLINETESTPWD, sid, P;, L) to FsipaKE

23: if v# 0 then return arbitrary column j having v[j] # 0

Algorithm 1: §’s row reduction algorithm, using OFFLINETESTPWD queries

Polynomial Matrix. Throughout the simulation § maintains a matrix M whose rows correspond
to polynomials in G, and its columns to possible terms. A polynomial is represented in M by its
coefficients stored in the appropriate columns. For example, if columns 1 to 3 correspond to terms
X;, X;Z; and X;Y, (respectively) then polynomial F' = 2X;Z; — 3X;Y,» will be represented in M by a
row (0,2, —3).

Matrix M is extended during the simulation: when a new variable is introduced (e.g., when 4
issues a HASH query) new columns are added; and when a new polynomial is created in Gy by a
PAIRING query, another row is added to M, but using a row-reduction algorithm (see Algorithm 1)
so the matrix is always kept in reduced row-echelon form. Note that when polynomials are created
due to MuULD1V operations in Gp, & does not extend the table, as the created polynomial is by
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definition a linear combination of others, so it would have been eliminated by the row-reduction
algorithm. It is therefore clear that all polynomials created by S in G are linear combinations of
the matrix rows (seen as polynomials).

When invoked by A to compute a pairing é([Fi]g,, [F2]g,), S first computes the product poly-
nomial Fr = Fy-F5, converts it to a coeflicient vector V' then applies the first step of row-reduction;
that is, a linear combination of M’s rows is added to V' so to zero V’s entries already selected as piv-
ots for these rows. S then scans V' for a non-zero entry corresponding to a term X;Y.s (or X;Iig,Y,)
for some compromised party P; and a password guess 7’ (password guesses are taken from A’s
Hy(7") queries). If such non-zero entry exists in V, S sends OFFLINETESTPWD query to FspAKE
testing whether party P; was assigned password 7’ (e.g., m;="). If the guess failed, S chooses this
as the pivot antry. Otherwise, S merges the variable Z; with Y., and repeats the process until some
test fails or no more entries of the specified form are non-zero in V. If V£0 and no pivot is selected,
arbitrary non-zero entry is selected. S then applies the second step of row-reduction; that is S uses
V' to zero the entries of the selected pivot entry in other rows, and insert V' as a new row to M.
Finally, S proceeds as usual for group operations, choosing the encoding [Fr|g, using the original
Fr (possibly having some variables merged).

Lemma 1. The probability of collisions is negligible.
Using the above lemma , we now prove CRISP’s UC-security with respect to FspaKE:

Proof (Theorem 2). For simplicity let us call the (Fpakg,Fcecp)-hybrid world real world. For any
real-world adversary A we describe an ideal world simulator S such that no environment Z can
distinguish between real-world execution of CRISP and a simulation in the ideal-world. As shown
in [Can01], it suffices to prove this for a “dummy” adversary who merely passes all inputs to the
environment and acts according to its instructions.

We remark that the depiction of CRISP ignored the impact of an active adversary. That is, the
flow f; transmitted by P; might be received differently on P;. Here we denote incoming flows as f/
(and values they carry as id;, fi;, C’Z’) to account for adversarial modifications.

fi = (FLow, id;, 4;, ;) f; = (FLow,id;, 4;, C)

7 <

;= (Frow.id;. &,C)) | A | fl = (Frow.idi, 4.0

Consider the simulator S as depicted in Fig. 9, Fig. 10 and Fig. 11. First we exclude collisions
in the simulation, since by Lemma 1 those appear with negligible probability. Let us analyse Z’s
view in both the real world and the simulated world:

From Table 2 we can see that group elements observed by Z are encodings of polynomials in
the simulated world and encodings of assignments to those polynomials in the real world. Since
Z only observes encoded group elements, distinguishing between the worlds can only be achieved
by polynomial collisions, i.e. the encodings of two polynomials differ [Fi]g, # [F]g; while con-
crete values assigned to them in the real world (variable assignment 7) have the same encodings
[F1(Z)]c, = [F2(2)]g,- Since the encoding function is injective, this implies collisions F17F, while
F1(Z)=Fy(7). By Lemma 1 the probability for collisions in the simulation is negligible, so Z has
negligible advantage in distinguishing between the encodings.

5 We remark that Z does not observe S; directly in TESTPWD query, but rather the result of comparing its guess
S’ against S;.
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Query Value Real Simulated
MuLD1v SEOLS [a1+az]g, [Fi+Fe,
51 ®£2 [al_CLQ]GJ [FI_FQ]Gj
PAIRING é(&1,8&2) [a1-a2)e, [F1-Fb)e.p
Filg.
ISOMORPHISM lﬁ(l&) [a1]c, [Fi]e,
7‘/} (62) [CLQ]Gl [FQ]Gl
H ! ’ Y
HasH 1(7_T ) [yx'c: [Yrrle,
H>(id) [tid]e, [Tid]e,
STEALPWDFILE Ai =g, - [ile, [Xilc,
Bi = Hy (Trl) ‘ [-Tiyrw}(}l [Xizi](@l
C; = HQ(Idi)TL [miLidi]Gl [XiIi]Gl
id; id; id;
Frow A= A [zi73]e, [XiRi,ssid)Ga
s = i [zitia;ile, [XiTiRi,ssid) Gy
TesTPWD S’L - é(él’ A;) ° [(‘riyﬂ'iri)'a;]GT [(XiZiRi,ssid)'FﬂGT

Table 2: Comparison of values viewed by Z in the real world versus the simulated world.

TestPwd answer. Although Table 2 refers to TESTPWD query, it does not compare the responses
of this query to A/Z. In the real world, this response is consistent with the state of the session:
when the guess is correct (S” = S;) the session becomes COMPROMISED and the response is “correct
guess”, while a wrong guess makes the session INTERRUPTED and causes “wrong guess” to be
returned. However, when S simulates TESTPWD there seems to be a path allowing the session to
remain FREH, when neither IMPERSONATE nor ONLINETESTPWD queries are sent by S to FgipaKE,
but the condition F' = a'X;Z;R; ssiq holds.

When § responds “correct guess” to a TESTPWD query, Z provided a polynomial satisfying
F:a;XiZiRmsid. Recall that Z; might only alias another variable Z (when m;=7y) or by Y,# (when
m=n'). If F contains Y, then § issued an ONLINETESTPASSWORD query, making the session
COMPROMISED. Similar argument applies for Z;, where P, has been compromised and having id;=id’.
Since Z only obtains polynomials with Z; by compromising Py, we are left with the case that Py has
been compromised, but id,#id’. However, in this case a;- must contain X; and therefore c; :a;.-Iid/
contains Xj-I;y, which is a term Z cannot produce in G;. Thus, if S replies “correct guess” then
the session becomes COMPROMISED in the simulated world, as well as in the real world.

If S answers “wrong guess” then either no queries were submitted by S, or some query has
failed and thus F' contains a variable (Y, or Zj) that is not aliased by Z;. In both cases S’#£S; in
the real world and the session becomes INTERRUPTED. We conclude that after a TESTPWD query
the sessions of both the real and simulated worlds are in the same state, and the responses to A4/S
are equal.

It is left to compare the outputs of parties in each world. In both worlds, the output consists
of an identity and a session key: (sid, ssid, id, K;), which we will analyse separately.

Identity. The identity output by party P; in the real world is id" taken from the incoming flow fjf
controlled by the adversary. In the real world, the identity is taken from the simulator’s input to
NEWKEY query. Since S uses the same id’ in its query, we only need to show that this query is not
ignored by Fgpakg (i.e. that id" is allowed by the check in NEWKEY).
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When the session is INTERRUPTED, no restriction is placed on the identity selected by S. The
same applies when the session is COMPROMISED due to a successful ONLINETESTPWD query. When
an IMPERSONATE query caused the session to become COMPROMISED, only the impersonated iden-
tity is allowed, and indeed S verifies that id;,=id’ before impersonating party Pj. When the session
is FRESH, only the true identity of the peer party is permitted, but S uses id’ as in the real world.
Nevertheless, if id'#id; and a; = aXjRjssia (€Zy) then the condition

/
C; =

!
;= a5 Ligw = aXjRjssia-Tigr

could not have been fulfilled and the modified flow should have been ignored in both worlds.

Session Key. In the real world, K; is party P;’s output of Fpaxg. If the peer P; is corrupted or P;’s
session was COMPROMISED then A’s input key K’ to NEWKEY is selected. Otherwise, both parties
receive the same randomly chosen key K;=K; if they had the same input S;=S5; to NEWSESSION
with FRESH sessions, or independent random keys otherwise.

In the simulated world, the key K; selected by Fspakg for party P; is S’s input key K’ to
NEWKEY (decided by Z) if the session is COMPROMISED or either party in the sub-session is
corrupted. Otherwise, FiipakE generates the same random key for parties using a common password
with FRESH sessions, or independent random keys otherwise.

If a session is COMPROMISED in the simulated world, then a TESTPWD query succeeded, and
as shown above the session is COMPROMISED in the real-world as well.

If a session is FRESH in the simulated world then no TESTPWD query was sent, so it is also
FRESH in the real world. Additionally, a,=aX;R; ssiq and a;:anRjﬁsid (S will interrupt a session
with modified flows, even if A would not send TESTPWD queries in the real world), so if the parties’
passwords were identical m;=m;, then in the real world the inputs to Fpaxr must also be equal
(Si=Sj).

However, if a session is INTERRUPTED in the simulated world, it might be from a failing TEST-
PwD query, which caused the session to be INTERRUPTED in the real world as well, or because S
sent ONLINETESTPWD with m7=_1 when handling NEWKEY query. This happens when the modified
flows f! and f]’ are not using a,=a;X;R; ssiq and a‘/]-:(XJXjRjysSid with a;=c;. If the flows have this
form with a;#a;, then

Si = [XiZiRi ssid - 0;X;Rj ssidlcr 7 [XjZjRj ssid - 0iXiRi ssid)Gr = S

in the simulated world, regardless of Z;=Z;. Thus, in the real world S;#5}, since assignment col-
lisions are negligible. If the modifications (a; and a;) do not take this form, then since there are
no other polynomials with R; ssiq and R;gsiqd, Si7#S; in both real and ideal world (again due to
assignment collisions being negligible).

We proceed to prove the lemmas:
Proof (Lemma 1). There are three types of possible collisions:

1. Hash queries. Since HASH responses are taken from the uniform distribution over Zy, the prob-
ability of such collisions is bound by q{—ﬂ, where qp is the number of HASH queries (polynomial
in k) and ¢ > 2.

2. Variable Aliasing. By Lemma 2, there are no aliasing collisions in the simulation.
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3. Variable Assignment. Polynomials created by S for elements in G; and Gy have maximal
degree 3. MULD1vV and ISOMORPHISM queries cannot increase the degree, and PAIRING allows
creating polynomials in Gp adding the input degrees. Therefore, the maximal degree of any
polynomial whose encoding is observed by Z is 3+3=6.

Since in the real world the exponents (corresponding to variables in the simulated world) are
taken from the uniform distribution over Z7, the probability of assignment collisions FZ(Y) =

F](Y) for some variable assignment 3(), is bound by:

e ﬂ(?c’):fy(i’)] <Y pr [(E—iji’):o}

Y&Z; i#j i’f—‘z*

- |Z* —\2/q-1
i#]

which is negligible in x, where N denotes the number of distinct polynomials created in the
simulation.

Lemma 2. There are no aliasing collisions in the simulation.

Proof. Variable aliasing collisions take the form Z;=Y,,, where m; is the password assigned by
the environment to party P;. They arise from defining separate formal variables to represent the
logarithm of Hj(w) for (a) each party P;’s password m; (unknown to the simulator) and (b) each
adversary invocation of H; on some password guess 7.

Note that this implies possible aliasing between parties: Z;=Z; when both parties are assigned
the same password: m;=m;.

Since the proof for Theorem 2 has already dealt with aliasing in TESTPWD queries, it remains
to show no collisions are possible for group encoding of elements. The following basic polynomials
are accessible to the adversary after the corresponding queries:

1 public generator

X;

X;-Tid, FPAKE’'S STEALPWDFILE query
Xi-Z;

XiRi,ssid FLOW message from P;

X R'z ssid” Ild

Y, Facp’s HASH query for Hy ()
Iy Faap’s HAsH query for Ha(id)

Recall that polynomials in G, Go are simply linear combinations of these basic polynomials, and
polynomials in G are linear combinations of their pairwise products. The only basic polynomial in
which Z; appears is X;-Z;, which cannot collide (under aliases) with anything but X;-Yr, or X;-Z;. Since
such polynomials are not given, no aliasing collisions are possible in G1, Gs. Since G polynomials
are combinations of products, only only linear combinations of the following basic collisions are
possible under aliasing (Z;=Y,):

1. (XZ"ZZ’) . (1) = (Xz) . (Yﬂ./) where Z;=Y (7’[‘1':71'/)
2. (Xi-zi) . (Iid’) = (Xi'Iidi) . (Yw’) where Z;=Y,, and id/:idi
3. (Xi‘zi) . (Xj) = (Xj‘Zj) . (Xz) where Z;=1; (7'('1':71']')
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4. (X,"Zi) . (Xj'Iidj) = (Xj-Zj) . (Xz”Iidi) where Z;=1Z; and idi:id]’

Recall that the simulator S issues OFFLINECOMPAREPWD queries comparing the password of
freshly compromised party P; with those of previously compromised parties, therefore eliminating
collisions of the form Z;=Z; altogether. It is left to prove only for type 1 and 2 aliasing collisions.

Since every polynomial in Gp is a linear combination of F polynomials created in PAIRING
query, it is also a linear combination of matrix M’s rows.

Matrix M created by S in PAIRING queries is kept in row echelon form (see Algorithm 1),
therefore each row r is represented by a pivot monomial P,, corresponding to the pivot column
holding 1. Consider a collision (under aliases):

0= ZCKTFT (Fra #0)

where F, is the polynomial corresponding to the r’th row. For every row r whose pivot P, is non-
collidable, the coefficient «, must be 0, since by the row echelon form, pivots are unique. Therefore
if o, #0 for some row r, then the pivot P, is collidable.

Recall that monomials containing X;Y,+ are only selected by S as pivots after an OFFLINETEST-
PwD query failed, implying that m; %7’ and hence such monomials are not collidable. Therefore, for
a row r with a,7#0 the pivot P, must either be X;Z; or X;Z;I;q, which collides with X;Y,, or X;Y, Iiq,
(respectively).

However, if there is a row r/ that has non-zero coefficient for X;Yr, or X;Y,Ijg,, then S must
have queried OFFLINETESTPWD for P; with m;, and this test must have succeeded, causing S to
merge Z; with Y,v. In this case «,,=0 since the pivot P, is not collidable after the merge.

5.5 Pre-Computation Resilience

We resume by considering pre-computation resilience. As discussed earlier, the original UC frame-
work does not limit the ideal-world adversary S from testing every possible password via OF-
FLINETESTPWD queries once compromising a party. This allows a very strong simulator who can
instantly reconstruct the party’s password once compromised with STEALPWDFILE. The solution is
to bind offline tests with some real-world work, by keeping the environment aware of OFFLINETEST-
PwD queries in the ideal world and of the corresponding real-world computation. For instance,
[JKX18] requires OPRF query for each tested password, while [BJX19] shows linear relation be-
tween number of offline tests and Generic Group operations.

In this work we will bind each ideal-world OFFLINETESTPWD query with a bilinear pairing
computed (after a compromise) in the real-world using PAIRING query to Fggp. We stress that
it suffices to prove this for failed offline tests, since successful tests may happen at most once per
compromised party’s password. In real-life scenarios, where all parties share a single password,
there might only be one successful offline test.

It can be easily observed that S never sends OFFLINETESTPWD queries, except when simulating
Faap’s PAIRING query, where a sequence of such offline tests is sent to Fgspakg. It is also easy to
see that this sequence ends when Fgpakg replies with “Correct guess”. If all tests are answered on
the affirmative and some party P; has been compromised, then & sends a final query with 7=_1
resulting in “Wrong guess” from FgpaKE.

Therefore there is a one-to-one mapping between bilinear pairings computed by the real-world
adversary after a compromise, and OFFLINETESTPWD queries sent by the ideal-world adversary
S when simulating those computations. As a result, an environment Z equipped with awareness
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of failed offline tests (in the ideal-world) and of pairings (in the real-world) gains no advantage
distinguishing these executions.

6 Computational Cost

The computational cost for our iPAKE compiler and CRISP are summarized in the following table:

iPAKE CRISP
Password File Derivation 2H + 2E 2H + 3E
Blinding 2E 3E
Key Exchange Identity check 1H + 2P
Key generation 2E + PAKE 1P + PAKE
. Pre-Compromise 1H 1H
Offfine Test Post-Compromise 0 1P

Here H, E, and P denote Hash (or Hash-to-Group), Exponentiation, and Pairing costs, respec-
tively, and PAKE denotes the additional cost of the underlying PAKE used. We ignore the cost of
group multiplications and the difference between Hash and Hash-to-Group.

6.1 Password Hardening for Pre-Compromise

Common password hardening techniques (e.g., PBKDF2 [MKR17], Argon2 [BDK16], and scrypt [PJ16])
are used in the process of deriving a key from a password to increase the cost of brute-force at-
tacks. As mentioned in Section 2 both our iPAKE and CRISP protocols can use those techniques

to increase the cost of the pre-compromise computation phase of the attack (pre-computation). In
iPAKE we can use any of those hardening techniques to implement the hash function denoted as
H;. Similarly, in the CRISP protocol, we can use those techniques as the first step in implementing
the Hash-to-Group function denoted as Hi. As those functions are only called once in the password
file derivation phase, we can increase their cost without increasing the cost of the online phase of
the protocol.

6.2 Password Hardening for Post-Compromise

In addition to the cost of the pre-compromise phase, the CRISP protocol also requires the attacker
to perform a post-compromise phase. The offline test post-compromise cost above is taken from
the lower bound proved in Section 5.5. This is also an upper bound for CRISP, since having
compromised a password file, an adversary can check for any password guess 7’ if:

2

é(Bi, g2) = e(Hy(n'), A;)
The left-hand side can be computed once and re-used for different guesses. The right-hand side
must be computed per-password, but the invocation of H; can be done prior to the compromise.

We stress that a pairing operation is preferred over exponentiation when considering the cost
of an offline test. While the latter can be amortized, e.g., by using a window implementation, to
the best of our knowledge, optimization for pairing with a fixed point only speed the computation
by 37% [CS10]. Moreover, pairing requires more memory than simple point multiplication and is
harder to accelerate using GPUs [PL13].

In order to increase the difficulty of offline tests (password hardening), we cannot use a method
such as iterative hashing, as was done in [JKX18]. However, by using larger group size, we can
increase the cost of each pairing, and hence of offline tests. Although coarse-grained, this allows
some trade-off between resilience to compromise and computational complexity of CRISP.
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6.3 CRISP Optimization

We can optimize the CRISP protocol in several ways to reduce the added computational cost and
latency.

Blinding operation The blinding of the group elements from the password file requires three ex-
ponentiation. However, we can amortize this cost across multiple runs of the protocol. The blinding
can be calculated once every period (e.g., every reboot of the devices or once an hour), and the
same blinding value can be reused multiple times. The PAKE protocol will still return a fresh key
for each run and provide forward secrecy. Moreover, we can calculate those blinding values offline,
in preparation for a protocol. This does not reduce the overall computational cost but reduces the
protocol’s latency.

Identity Verification A substantial part of the added computational cost of the protocol is the
identity verification that requires two pairing operations. There are two main options to optimize
this cost:

1. Reducing latency — The verification does not affect the derived key or the subsequent messages.
This implies we can continue with the protocol by sending the next message and postpone the
verification for later, while we wait for the other party to respond. The total computational cost
remains the same, but the latency (or running time) of the protocol is reduced.

2. Verification delegation — Any party that receives the protocol messages, can verify the identity
appearing in it (verification is only based on the identity and blinded values). We consider the
following scenario, where we have a broadcast network with many low-end devices (e.g., IoT
devices) and one or more high-end devices (a controller or bridge). The bridge can perform the
identity verification for all protocols in the network, and alert the user if any verification fails.

Number of Messages CRISP requires two additional messages compared to the underlying
PAKE. We can trivially reduce this to one additional message. The first message remains the same.
However, once receiving it, the other party can already derive the shared secret S; and prepare
the first PAKE message. Consequently, CRISP’s second message can be combined with the first
PAKE message, resulting in a single additional message, and again reducing the total latency of
the protocol. As any PAKE protocol requires at least two (simultaneous) messages [KV11], we can
implement a siPAKE protocol using only three (albeit sequential) messages.

7 Conclusions and Open Problems

In this paper, we have formalized the novel notions of iPAKE and siPAKE. We also introduced
and proved the security of CRIPS protocol which realizes Fgpaky. Moreover, we have shown that
for CRISP each offline password guess requires a computational cost equivalent to one pairing
operation.

The following open problems arise:

Two message siPAKE protocol. In subsection 6.3, we showed how CRISP requires only
three messages. As shown in section 4, iPAKE can be realized with only two messages. It is an
open problem to either prove a lower bound of three messages or to implement a two message
siPAKE.

Optimal bound on the cost of brute-force attack. In subsection 2.1 we have shown a
black-box post-compromise brute-force attack on any PAKE protocol. The computational cost of
the attack is two runs of the PAKE protocol for each offline password guess. However, brute-forcing
currently known PAKE implementations requires a computational cost equivalent to only one run
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of the protocol. It remains an open problem to either find a more efficient black-box attack or to
implement a more resilient PAKE.

Fine grained password hardening. CRISP allows for a coarse-grained password hardening
by changing the pairing group (e.g., using curves of larger size). How to allow for a fine-grained
password hardening (e.g., such as iterative hashing) secure against pre-comptuation remains an
open problem.
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A  Asymmetric PAKE Functionality

Fig. 12 shows the Strong Asymmetric PAKE functionality from [JKX18], in which only two par-
ties engage: a server S and a user U. It introduces the concept of a password file, created for
S upon STOREPWDFILE query and disclosed to the adversary upon adaptive corruption query
STEALPWDFILE modelling a server compromise attack. Once a server’s password file is obtained,
the ideal-world adversary is able to mount an offline guessing attack using OFFLINETESTPWD
queries, and an online impersonation attack using IMPERSONATE query.

FsaPAKE encompasses the concept of sub-sessions: a single session corresponds to a single user
account on the server, allowing many sub-sessions (identified by ssid) where the user and server
reuse the same password file to establish independent random keys.

The asymmetry between user and server in this functionality is prominent: only ONLINETEST-
PwbD and NEWKEY queries consider a general party P, while other queries explicitly mention either
U or S. Even Fpakg’s NEWSESSION query is split in Fg,pakg into USRSESSION and SVRSESSION,
since the user supplies a password for each session, while the server uses its password file.
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Functionality Fsapake, with security parameter k, interacting with parties {U, S} and an adversary S.

Upon (STOREPWDFILE, sid, U, 7s) from S:
o If there is no record (FILE, U, S, -):
> record (FILE, U, S, 7s) and mark it UNCOMPROMISED

Upon (STEALPWDFILE, sid, S) from S:
o If there is a record (FILE, U, S, 7;):
> mark it COMPROMISED
> return “password file stolen” to &
o else: return “no password file” to S

Upon (OFFLINETESTPWD, sid, S, 7’") from S:
o Retrieve (FILE, U, S, 7s) marked COMPROMISED
o if ms = 7: return “correct guess” to S
o else: return “wrong guess” to S

Upon (USRSESSION, sid, ssid, S, 7y) from U:
o Send (USRSESSION, sid, ssid, U, S) to S
o If there is no record (SESSION, ssid, U, S, -):
> record (SESSION, ssid, U, S, my) and mark it FRESH

Upon (SVRSESSION, sid, ssid,U) from S:
o Retrieve (SEssION, U, S, 7s)
o Send (SVRSESSION, sid, ssid, S,U) to S
o If there is no record (SESSION, ssid, S, U, -):
> record (SESSION, ssid, S, U, ws) and mark it FRESH

Upon (ONLINETESTPWD, sid, ssid, P, ') from S:
o Retrieve (SESSION, ssid, P, P', mp) marked FRESH
o if 7p = 7’: mark the session COMPROMISED and return “correct guess” to S
o else: mark the session INTERRUPTED and return “wrong guess” to S

Upon (IMPERSONATE, sid, ssid) from S:
o Retrieve (SESSION, ssid, U, S, my) marked FRESH
o Retrieve (FILE, U, S, 7s) marked COMPROMISED
o If my = ws: mark the session COMPROMISED and return “correct guess” to S
o else: mark the session INTERRUPTED and return “wrong guess” to S

Upon (NEWKEY, sid, ssid, P, K') from S:
o Retrieve (SESSION, ssid, P, P’, 7p) not marked COMPLETED
o if it is marked COMPROMISED, or either P; or P; is corrupted: Kp + K’
o else if it is marked FRESH and there is a record (KEY, ssid, P', wp/, Kp/) with mp = 7pr: Kp < Kp/

o else: pick Kp & {0,1}~
o if the session is marked FRESH:
> record (KEY, ssid, P, 7wp, Kp)
o mark the session COMPLETED
o send (ssid, Kp) to P

Fig. 12: Strong Asymmetric PAKE functionality FsapAKE

27




	CRISP: Compromise Resilient Identity-based Symmetric PAKE

