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Abstra
t

We show how to 
onstru
t pseudo-random permutations that satisfy a 
ertain 
y
le restri
-

tion, for example that the permutation be 
y
li
 (
onsisting of one 
y
le 
ontaining all the

elements) or an involution (a self-inverse permutation) with no �xed points. The 
onstru
tion


an be based on any (unrestri
ted) pseudo-random permutation. The resulting permutations

are de�ned su

in
tly and their evaluation at a given point is eÆ
ient. Furthermore, they enjoy

a fast forward property, i.e. it is possible to iterate them at a very small 
ost.

1 Introdu
tion

A family of permutations P

`

= fP

k

: f0; 1g

n

7! f0; 1g

n

jk 2 f0; 1g

`

g is 
alled (
ryptographi
)

pseudo-random if it satis�es the following:

Su

in
t Representation: For a permutation P

k

2 P, k 
an be thought of as the key. The

length ` of k should be small i.e. polynomial in n.

EÆ
ient Computation: Given k 2 f0; 1g

`

and x 2 f0; 1g

n


omputing y = P

k

(x) 
an be done eÆ-


iently. Similarly, given y 2 f0; 1g

n


omputing x = P

�1

k

(x) 
an be done eÆ
iently. EÆ
iently

means in time polynomial in `.

Indistinguishability: It is 
omputationally infeasible to distinguish whether a given permutation

� is (i) a random member of the family P or (ii) a truly random permutation on n-bit strings.

The a

ess the distinguisher has to the permutation � is bla
k-box, i.e. it 
an give x and

obtain �(x) and give y and obtain �

�1

(y) for x's and y's of its 
hoi
e

1

.

We measure the advantage " of distinguishing 
ases (i) and (ii) as a fun
tion of m, the number

of times the distinguisher gets to 
all the bla
k-box for � (in either dire
tion) and t, the running

time of the distinguisher. Ideally " should be a negligible fun
tion in ` times a polynomial in

t and m.

Pseudo-random permutations were de�ned by Luby and Ra
ko� [5℄ as a formalization of blo
k-


iphers. They also showed how to 
onstru
t su
h families based on pseudo-random fun
tions,
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Sometimes a distin
tion is made as to whether the inverse permutation is available to the adversary or not, but

we always assume that it is available.

1



as de�ned by Goldrei
h Goldwasser and Mi
ali [2℄. These permutations and 
onstru
tions have

re
eived a lot of attention sin
e then (
f. [6℄).

Suppose now that we are interested in 
onstru
ting a pseudo-random 
y
li
 permutation, i.e.

a family C of 
y
li
 permutations (the 
y
le type of a 
y
li
 permutation 
onsists of a single 
y
le

that 
ontains all the elements) whose members 
annot be distinguished from a random 
y
li


permutation. Su
h a question arises, for instan
e, from the work of Shamir and Tsaban [8℄ who

wanted to su

in
tly de�ne and generate a non-repeating sequen
e of randomly looking n-bit values

X

1

;X

2

: : :. If one has a random looking 
y
li
 permutation � , then de�ning x

1

= �(1) and X

i+1

=

�(X

i

) yields su
h a sequen
e.

In this work we show that it is possible to solve this problem and in fa
t a more general one.

For any �xed 
y
le type, it is possible to 
onstru
t a family of permutations with the pres
ribed

type that is indistinguishable from a random permutation of this type.

1.1 De�nitions

We now formally de�ne the permutations we are trying to 
onstru
t. A 
y
le type of a permutation �

is a list stating how many 
y
les of ea
h size there are in � . E.g. if � = (164)(57)(238), then the 
y
le

type of � is \one 
y
le of size 2 and two 
y
les of size 3" (whi
h 
an be denoted by f(2; 1)(3; 2)g). Let

C be a 
y
le type. We say that a family of permutations F

C

= fP

k

: f0; 1g

n

7! f0; 1g

n

jk 2 f0; 1g

`

g

is pseudo-random of type C if it satis�es the following:

Cy
le type: Ea
h P

k

2 F

C

has 
y
le type C.

Su

in
t Representation: The length ` of k (the key of P

k

) should be small (polynomial in n).

EÆ
ient Computation: Given k 2 f0; 1g

`

and x 2 f0; 1g

n


omputing y = P

k

(x) 
an be done

eÆ
iently. Similarly, given y 2 f0; 1g

n


omputing x = P

�1

k

(x) 
an be done eÆ
iently (in time

polynomial in `.)

Indistinguishability: It is 
omputationally infeasible to distinguish whether a given permutation

� is (i) a random member of the family F

C

or (ii) a truly random permutation of 
y
le type

C. The a

ess the distinguisher has to the permutation � is bla
k-box, i.e. it 
an give x and

obtain �(x) and give y and obtain �

�1

(y) for x's and y's of its 
hoi
e.

We measure the advantage " of distinguishing 
ases (i) and (ii) as a fun
tion of m, the number

of times the distinguisher gets to 
all the bla
k-box for � (in either dire
tion) and t, the running

time of the distinguisher.

2 The 
onstru
tion

Let C be a 
y
le type of permutations on N = 2

n

elements. Let � be some �xed permutation

on n-bit strings whose 
y
le type is C. We assume that it is easy given x to �nd �(x) as well as

�

�1

(x). For instan
e, if we are interested in 
y
li
 permutations, then � 
an be (0; 1; 2; : : : 2

n

� 1)).

Let P

`

= fP

k

: f0; 1g

n

7! f0; 1g

n

jk 2 f0; 1g

`

g be a family of pseudo-random permutations. Then

F

C

, the family of pseudo-random permutations of 
y
le type C is de�ned as

F

C

= fF

k

= P

k

Æ � Æ P

�1

k

jk 2 f0; 1g

`

g:

In other words, a permutation in F

C

is determined by an `-bit key that de�ne a permutation

P

k

2 P

`

. To evaluate F

k

(x) one 
omputes P

�1

k

(�(P

k

(x))). In order to evaluate F

�1

k

(y) one

2




omputes P

�1

k

(�

�1

(P

k

(y))). Both dire
tions require two invo
ations of the original pseudo-random

permutation and a single evaluation of � or �

�1

.

Why does it work? The fa
t that the members of F

C

have the desired 
y
le type follows from

a well known theorem in elementary group theory that states that the 
y
le stru
tures of the

permutations � and � Æ � Æ �

�1

are the same

2

. We 
an show an even stronger statement:

Theorem 1 Let � be a some permutation with 
y
le type C and let � be a random permutation,

then the permutation � Æ � Æ �

�1

is distributed uniformly among the permutations with the same


y
le type C as �.

Proof: Let �, � and �

0

be three permutations with 
y
le type C. De�ne two sets of permutations

� = f�j � = �Æ�Æ�

�1

g and �

0

= f�j �

0

= �Æ�Æ�

�1

g. It is enough to show that � and �

0

have the

same size. The main observation is that there exists a permutation P su
h that �

0

= P Æ � Æ P

�1

.

Given this 
laim we get a 1-to-1 and onto mapping between � and �

0

: every permutation � 2 �

is mapped to �

0

= P Æ �. It remains to prove the 
laim. Let (i

0

; i

1

; : : : i




) be a 
y
le in � and

(i

0

0

; i

0

1

; : : : i

0




) be a 
y
le of the same length in �

0

. It is easy to see that (P

�1

(i

0

); P

�1

(i

1

); : : : P

�1

(i




))

is a 
y
le in P Æ � Æ P

�1

. Therefore, if we de�ne P (i

0

j

) = i

j

for j = 1 : : : m, we get that the 
y
le in

� is mapped to a 
orresponding 
y
le in �

0

. To de�ne P su
h that �

0

= P Æ � Æ P

�1

, we 
an just


ontinue mapping all of the 
y
les in � to a unique 
orresponding (same length) 
y
le in �

0

. Note

that this (arbitrary) 
orresponden
e between 
y
les is possible sin
e � and �

0

have the same 
y
le

type. 2

From this theorem we 
an dedu
e the se
urity of the 
onstru
tion:

Theorem 2 Suppose that we have an adversary D that 
an distinguish with advantage at least "

whether a given permutation is (i) a random member of F

C

or (ii) a random permutation with 
y
le

type C, while makingm 
alls to the permutation and running in time t. Then there is a distinguisher

D

0

for the family P that runs in time O(t) and makes 2m 
alls to the input permutation and has "

advantage of distinguishing a member of P from a truly random permutation.

Proof: The theorem follows from a simulation argument: given � as a bla
k-box, D

0

simulates

D on the permutation � = � Æ � Æ �

�1

: whenever D requests to evaluate its input permutation

� on a point x, D

0

requests for �(x) and then requests for �

�1

on �(�(X)); it then feeds D with

the result (a similar pro
ess is done when D requests the inverse of x. D

0

outputs the same guess

(`random'/`pseudo-random') as D.

Clearly if D makes m 
alls to the input permutation, then D

0

makes 2m 
alls. Let D[� ℄ denote

the output of D when the input permutation is � . From Theorem 1 we 
an 
on
lude that

Pr[D[� ℄ = `random' j� is random of 
y
le type C℄ = Pr[D

0

[�℄ = `random' j� is random℄

and by the de�nition of the 
onstru
tion

Pr[D[� ℄ = `pseudo-random' j� 2 F

C

℄ = Pr[D

0

[�℄ = `pseudo-random' j� 2 P℄:

Hen
e if D distinguishes with advantage ", so does D

0

. The number of 
alls to the input

permutation D

0

makes is twi
e that of D, The running time of D

0

is similar to that of D, ex
ept

that D

0

needs to 
all � for ea
h operation. Assuming that this 
an be done in O(1) time, we have

the desired result. 2

2

K�orner [3℄ says that some may label this fa
t as a 
andidate for the dullest theorem, but it turns out to have

played an important role in 
ryptography (and world history), in the breaking of The Enigma, the Se
ond World

War German en
ryption ma
hine.
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3 Appli
ations and Properties

Involutions An interesting family of permutations this method allows us to 
onstru
t are pseudo-

random involutions. An involution is a permutation that is the inverse of itself. The advantage of

using su
h permutations for en
ryption is that the en
ryption operation and de
ryption operation

are identi
al (this is not ne
essarily a good property for an en
ryption s
heme, but it may be useful

in some situations.) The en
ryption done by the Enigma was an involution.

The 
onstru
tion is exa
tly as in Se
tion 2. Fix � to be the involution mapping even i's to i+1

and odd i's to i� 1. Then the resulting family F

I

= fF

k

= P

k

Æ � Æ P

�1

k

jk 2 f0; 1g

`

g is a family of

pseudo-random involutions with no �xed-points.

t-wise independent permutations: The 
ombinatorial 
ounterpart to 
ryptographi
 pseudo-

randomness is (almost) t-wise independen
e. While there are no known good 
onstru
tions of

exa
t t-wise independent permutations for t > 3, various approximations are possible (see [6℄ for a

dis
ussion). Suppose that we are interested in a family of t-wise independent permutations that has


y
le type C, i.e. 
onsidering the permutation at any t values has the same distribution as a random

permutation with 
y
le type C. If we have a family H of 2t-wise independent permutations, then

H

C

= fh Æ � Æ h

�1

jh 2 Hg is a t-wise independent family with 
y
le type C. This follows from

appealing to Theorem 2. Similarly, if H is an approximation to a 2t-wise independent permutation,

then H

C

is a related approximation to a t-wise independent family with 
y
le type C.

Fast Forward Property: The 
onstru
tion of F

C

has the appealing property that it is possible

to iterate F

k

on itself at `zero' 
ost. To 
ompute F

(m)

k

(x) for any m;x and F

k

2 F

C

note that

F

(m)

k

(x) = P

�1

k

(�(P

k

(P

�1

k

(� � � �)))) = P

�1

k

(�

(m)

(P

k

(x))):

Therefore, assuming � is su
h where fast forward is possible, then 
omputing F

(m)

k

(x) has of the

same 
omplexity as F

k

(x). For instan
e, in the 
ase of the 
y
li
 permutation, performing m

iterations amounts to 
omputing P

�1

k

(P

k

(x) +m mod 2

n

):

We 
an therefore allow the adversary queries of the form (x;m) that will be answered by

F

(m)

k

(x). Here, again, a simple adaptation of Theorem 2 implies that su
h queries 
annot enable

distinguishing F

k

from a random permutation of the given 
y
le type, unless P is weak as well.

Finally, another operation that 
an be performed eÆ
iently and is relevant when the 
y
le type


ontains 
y
les of medium length is to test whether two elements x

1

and x

2

are in the same 
y
le

of the given permutation F

k

. If x

1

and x

2

are in the same 
y
le, then there exists an m su
h that

x

2

= F

(m)

k

(x

1

) and therefore P

k

(x

2

) = �

(m)

(P

k

(x

1

)). Therefore x

1

and x

2

are in the same 
y
le i�

P

k

(x

2

) and P

k

(x

2

) are in the same 
y
le in � (whi
h we assume 
an be determined easily).

4 Open Problems

We showed how to 
onstru
t a family of pseudo-random permutations where it is possible to qui
kly

iterate the permutation. However, this works only for a �xed 
y
le type. The question is whether

it is possible to 
onstru
t a family of permutations su
h that (i) The 
y
le type distribution is 
lose

to that of a random permutation (ii) It is possible to iterate a member of the family very qui
kly.

(iii) The family is indistinguishable from truly random permutations even with the fast iteration

queries.
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Using the approa
h of this paper it is suÆ
ient to 
onstru
t a family of permutations C that

satis�es (i) and (ii). Composing it with a (regular) pseudo-random permutation will yield property

(iii) as well. Note that a pseudo-random 
y
li
 permutation satis�es properties (ii) and (iii) (but

not (i)), sin
e it is not easy to distinguish su
h a permutation from a random one (it should require

roughly 2

n=2

evaluations).

Another interesting question is whether it is possible to 
onstru
t pseudo-random fun
tions that


an be iterated. The need for su
h fun
tions (or the k-wise independent version of them) arises

in algorithmi
 appli
ations su
h as Pollard's rho method [7℄ and Hellman's time-spa
e tradeo� for

inverting fun
tion ([4℄, see also [1℄). Here, again, the approa
h of this paper tells us that it is

suÆ
ient to 
ome up with a family F of fun
tions that has the 
orre
t distribution on the \tree

stru
ture" as well as the ability to 
ompute iterations, but is not ne
essarily pseudo-random. Then

for any P that is a (regular) family of pseudo-random permutations, the family fP

�1

Æ F Æ P jF 2

F ; P 2 Pg has all the desired properties.
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