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Abstract

We show how to construct pseudo-random permutations that satisfy a certain cycle restric-
tion, for example that the permutation be cyclic (consisting of one cycle containing all the
elements) or an involution (a self-inverse permutation) with no fixed points. The construction
can be based on any (unrestricted) pseudo-random permutation. The resulting permutations
are defined succinctly and their evaluation at a given point is efficient. Furthermore, they enjoy
a fast forward property, i.e. it is possible to iterate them at a very small cost.

1 Introduction

A family of permutations P, = {P, : {0,1}" +~ {0,1}"|k € {0,1}¢} is called (cryptographic)
pseudo-random if it satisfies the following:

Succinct Representation: For a permutation P, € P, k can be thought of as the key. The
length ¢ of k should be small i.e. polynomial in n.

Efficient Computation: Given k € {0,1}¢ and z € {0,1}" computing y = P;(z) can be done effi-
ciently. Similarly, given y € {0,1}" computing z = P, L(x) can be done efficiently. Efficiently
means in time polynomial in /.

Indistinguishability: It is computationally infeasible to distinguish whether a given permutation
7 is (i) a random member of the family P or (ii) a truly random permutation on n-bit strings.
The access the distinguisher has to the permutation 7 is black-box, i.e. it can give z and
obtain 7(z) and give y and obtain 77! (y) for z’s and y’s of its choice'.

We measure the advantage ¢ of distinguishing cases (i) and (ii) as a function of m, the number
of times the distinguisher gets to call the black-box for 7 (in either direction) and ¢, the running
time of the distinguisher. Ideally € should be a negligible function in ¢ times a polynomial in
t and m.

Pseudo-random permutations were defined by Luby and Rackoff [5] as a formalization of block-
ciphers. They also showed how to construct such families based on pseudo-random functions,
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as defined by Goldreich Goldwasser and Micali [2]. These permutations and constructions have
received a lot of attention since then (cf. [6]).

Suppose now that we are interested in constructing a pseudo-random cyclic permutation, i.e.
a family C of cyclic permutations (the cycle type of a cyclic permutation consists of a single cycle
that contains all the elements) whose members cannot be distinguished from a random cyclic
permutation. Such a question arises, for instance, from the work of Shamir and Tsaban [8] who
wanted to succinctly define and generate a non-repeating sequence of randomly looking n-bit values
X1, X5 .... If one has a random looking cyclic permutation 7, then defining 2y = 7(1) and X;,1 =
7(X;) yields such a sequence.

In this work we show that it is possible to solve this problem and in fact a more general one.
For any fixed cycle type, it is possible to construct a family of permutations with the prescribed
type that is indistinguishable from a random permutation of this type.

1.1 Definitions

We now formally define the permutations we are trying to construct. A cycle type of a permutation 7
is a list stating how many cycles of each size there are in 7. E.g. if 7 = (164)(57)(238), then the cycle
type of 7 is “one cycle of size 2 and two cycles of size 37 (which can be denoted by {(2,1)(3,2)}). Let
C be a cycle type. We say that a family of permutations F¢ = {Py : {0,1}" — {0,1}"|k € {0,1}¢}
is pseudo-random of type C' if it satisfies the following;:

Cycle type: Each P, € F¢ has cycle type C.
Succinct Representation: The length £ of k (the key of Pg) should be small (polynomial in n).

Efficient Computation: Given k € {0,1}* and z € {0,1}" computing y = Pj(z) can be done
efficiently. Similarly, given y € {0,1}" computing z = P, () can be done efficiently (in time
polynomial in £.)

Indistinguishability: It is computationally infeasible to distinguish whether a given permutation
7 is (i) a random member of the family F¢ or (ii) a truly random permutation of cycle type
C. The access the distinguisher has to the permutation 7 is black-box, i.e. it can give  and
obtain 7(z) and give y and obtain 77! (y) for z’s and y’s of its choice.

We measure the advantage ¢ of distinguishing cases (i) and (ii) as a function of m, the number
of times the distinguisher gets to call the black-box for 7 (in either direction) and ¢, the running
time of the distinguisher.

2 The construction

Let C' be a cycle type of permutations on N = 2" elements. Let o be some fixed permutation
on n-bit strings whose cycle type is C. We assume that it is easy given z to find o(z) as well as
o~ !(x). For instance, if we are interested in cyclic permutations, then o can be (0,1,2,...2" —1)).
Let Py = {P;. : {0,1}" = {0,1}"|k € {0,1}*} be a family of pseudo-random permutations. Then
Fc, the family of pseudo-random permutations of cycle type C' is defined as

Fo ={Fy = P,oo0 P ke {0,1}}.

In other words, a permutation in F¢ is determined by an /¢-bit key that define a permutation
Py € Py. To evaluate Fy(z) one computes P, '(o(Py(z))). In order to evaluate F, '(y) one



computes P, ' (07! (Pk(y))). Both directions require two invocations of the original pseudo-random

permutation and a single evaluation of o or o~ L.

Why does it work? The fact that the members of F¢ have the desired cycle type follows from
a well known theorem in elementary group theory that states that the cycle structures of the
permutations o and 7o o o 77! are the same?. We can show an even stronger statement:

Theorem 1 Let o be a some permutation with cycle type C and let ™ be a random permutation,
then the permutation T o o o ™' is distributed uniformly among the permutations with the same
cycle type C as o.

Proof: Let o, 7 and 7' be three permutations with cycle type C. Define two sets of permutations
= {n|7=mocon '} and II' = {n| 7' = mogomr~'}. It is enough to show that IT and II’ have the
same size. The main observation is that there exists a permutation P such that 7/ = Po7o P71,
Given this claim we get a 1-to-1 and onto mapping between II and IT": every permutation 7 € II
is mapped to 7' = P o x. It remains to prove the claim. Let (ig,%1,...%.) be a cycle in 7 and
(if),4,,...4.) be a cycle of the same length in 7’. It is easy to see that (P~!(ig), P~'(i1),... P71 (i.))
is a cycle in P o7 o P!, Therefore, if we define P(i}) =ij for j = 1...m, we get that the cycle in
7 is mapped to a corresponding cycle in 7/. To define P such that 7/ = P o7 o P!, we can just
continue mapping all of the cycles in 7 to a unique corresponding (same length) cycle in 7. Note
that this (arbitrary) correspondence between cycles is possible since 7 and 7/ have the same cycle
type. O

From this theorem we can deduce the security of the construction:

Theorem 2 Suppose that we have an adversary D that can distinguish with advantage at least ¢
whether a given permutation is (i) a random member of F¢ or (ii) a random permutation with cycle
type C', while making m calls to the permutation and running in time t. Then there is a distinguisher
D' for the family P that runs in time O(t) and makes 2m calls to the input permutation and has €
advantage of distinguishing a member of P from a truly random permutation.

Proof: The theorem follows from a simulation argument: given 7 as a black-box, D’ simulates
D on the permutation 7 = 7o 0 o 7 ': whenever D requests to evaluate its input permutation
7 on a point z, D' requests for 7(x) and then requests for 7=! on o(n(X)); it then feeds D with
the result (a similar process is done when D requests the inverse of z. D’ outputs the same guess
(‘random’/‘pseudo-random’) as D.

Clearly if D makes m calls to the input permutation, then D’ makes 2m calls. Let D[r] denote

the output of D when the input permutation is 7. From Theorem 1 we can conclude that
Pr[D[r] = ‘random’ |7 is random of cycle type C] = Pr[D’[r] = ‘random’ |7 is random]
and by the definition of the construction
Pr[D[r] = ‘pseudo-random’ |7 € F¢] = Pr[D'[r] = ‘pseudo-random’ | € P).

Hence if D distinguishes with advantage €, so does D’. The number of calls to the input
permutation D' makes is twice that of D, The running time of D’ is similar to that of D, except
that D' needs to call o for each operation. Assuming that this can be done in O(1) time, we have
the desired result. O
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3 Applications and Properties

Involutions An interesting family of permutations this method allows us to construct are pseudo-
random involutions. An involution is a permutation that is the inverse of itself. The advantage of
using such permutations for encryption is that the encryption operation and decryption operation
are identical (this is not necessarily a good property for an encryption scheme, but it may be useful
in some situations.) The encryption done by the Enigma was an involution.

The construction is exactly as in Section 2. Fix ¢ to be the involution mapping even ¢’s to 7 + 1
and odd ¢’s to 4 — 1. Then the resulting family F; = {Fy = Py oo o P, '|k € {0,1}/} is a family of
pseudo-random involutions with no fixed-points.

t-wise independent permutations: The combinatorial counterpart to cryptographic pseudo-
randomness is (almost) ¢-wise independence. While there are no known good constructions of
exact t-wise independent permutations for ¢ > 3, various approximations are possible (see [6] for a
discussion). Suppose that we are interested in a family of ¢-wise independent permutations that has
cycle type C, i.e. considering the permutation at any ¢ values has the same distribution as a random
permutation with cycle type C. If we have a family H of 2¢-wise independent permutations, then
He ={hoooh l|h € H} is a t-wise independent family with cycle type C. This follows from
appealing to Theorem 2. Similarly, if H is an approzimation to a 2t-wise independent permutation,
then H¢ is a related approximation to a t-wise independent family with cycle type C.

Fast Forward Property: The construction of F¢ has the appealing property that it is possible
to iterate F} on itself at ‘zero’ cost. To compute Fk(m) (x) for any m,z and Fj € F¢ note that

F™(2) = Py (o(Pu(Py (0 --))) = Py (0™ (P(x))).

Therefore, assuming ¢ is such where fast forward is possible, then computing F,Em) () has of the
same complexity as Fj(z). For instance, in the case of the cyclic permutation, performing m
iterations amounts to computing P, (Pj, () + m mod 2").

We can therefore allow the adversary queries of the form (z,m) that will be answered by
Fk(m) (z). Here, again, a simple adaptation of Theorem 2 implies that such queries cannot enable
distinguishing Fj from a random permutation of the given cycle type, unless P is weak as well.

Finally, another operation that can be performed efficiently and is relevant when the cycle type
contains cycles of medium length is to test whether two elements z; and z9 are in the same cycle
of the given permutation Fj. If 21 and x5 are in the same cycle, then there exists an m such that
To = Fk(m) (z1) and therefore Py (z5) = 0™ (P (z1)). Therefore z; and x5 are in the same cycle iff
Py (z2) and Py(z2) are in the same cycle in o (which we assume can be determined easily).

4 Open Problems

We showed how to construct a family of pseudo-random permutations where it is possible to quickly
iterate the permutation. However, this works only for a fixed cycle type. The question is whether
it is possible to construct a family of permutations such that (i) The cycle type distribution is close
to that of a random permutation (ii) It is possible to iterate a member of the family very quickly.
(iii) The family is indistinguishable from truly random permutations even with the fast iteration
queries.



Using the approach of this paper it is sufficient to construct a family of permutations C that
satisfies (i) and (ii). Composing it with a (regular) pseudo-random permutation will yield property
(iii) as well. Note that a pseudo-random cyclic permutation satisfies properties (ii) and (iii) (but
not (i)), since it is not easy to distinguish such a permutation from a random one (it should require
roughly 2"/? evaluations).

Another interesting question is whether it is possible to construct pseudo-random functions that
can be iterated. The need for such functions (or the k-wise independent version of them) arises
in algorithmic applications such as Pollard’s rho method [7] and Hellman’s time-space tradeoff for
inverting function ([4], see also [1]). Here, again, the approach of this paper tells us that it is
sufficient to come up with a family F of functions that has the correct distribution on the “tree
structure” as well as the ability to compute iterations, but is not necessarily pseudo-random. Then
for any P that is a (regular) family of pseudo-random permutations, the family {P~' o F o P|F €
F,P € P} has all the desired properties.
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