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Abstra
t

We des
ribe eÆ
ient 
onstru
tions for various 
ryptographi
 primitives in private-key

as well as publi
-key 
ryptography. Our major results are two new 
onstru
tions of pseudo-

random fun
tions. We prove the pseudo-randomness of one 
onstru
tion under the assump-

tion that fa
toring (Blum integers) is hard while the other 
onstru
tion is pseudo-random if

the de
isional version of the DiÆe-Hellman assumption holds. Computing the value of our

fun
tions at any given point involves two subset produ
ts. This is mu
h more eÆ
ient than

previous proposals. Furthermore, these fun
tions have the advantage of being in TC

0

(the


lass of fun
tions 
omputable by 
onstant depth 
ir
uits 
onsisting of a polynomial number

of threshold gates). This fa
t has several interesting appli
ations. The simple algebrai


stru
ture of the fun
tions implies additional features su
h as a zero-knowledge proof for

statements of the form \y = f

s

(x)" and \y 6= f

s

(x)" given a 
ommitment to a key s of a

pseudo-random fun
tion f

s

.

�
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1 Introdu
tion

This paper studies the eÆ
ient 
onstru
tion of several fundamental 
ryptographi
 primi-

tives. Our major result are two related 
onstru
tions of pseudo-random fun
tions based

on number-theoreti
 assumptions. The �rst 
onstru
tion gives pseudo-random fun
tions

i� the de
isional version of the DiÆe-Hellman assumption (DDH-Assumption) holds.

The se
ond 
onstru
tion is at least as se
ure as the assumption that fa
toring the so 
alled

Blum-integers is hard.

1

Having eÆ
ient pseudo-random fun
tions based on fa
toring is very

desirable sin
e this is one of the most established 
on
rete intra
tability assumption used

in 
ryptography. The 
onstru
tion based on the DDH-Assumption is also attra
tive sin
e

these pseudo-random fun
tions are even more eÆ
ient (in that they have a larger output

size) and sin
e the 
onstru
tion is linear preserving (see Remark 4.1). We 
onsider the study

of the DDH-Assumption (whi
h was re
ently used in quite a few interesting appli
ations)

to be one of the 
ontributions of this paper.

Properties of Our Pseudo-Random Fun
tions

Pseudo-random fun
tions were introdu
ed by Goldrei
h, Goldwasser and Mi
ali [35℄ and

have innumerable appli
ations (e.g., [3, 9, 22, 32, 40, 36, 50, 59℄). A distribution of fun
tions

is pseudo random if: (1) It is easy to sample fun
tions a

ording to the distribution and

to 
ompute their value. (2) It is hard to tell apart a fun
tion sampled a

ording to this

distribution from a uniformly distributed fun
tion given a

ess to the fun
tion as a bla
k-

box. The properties of our new pseudo-random fun
tions are:

EÆ
ien
y: Computing the value of the fun
tion at a given point is 
omparable with two

modular exponentiations and is more eÆ
ient by an 
(n) fa
tor than any previous

proposal (that is proven to be as se
ure as some standard intra
tability assumption).

This is essential for the eÆ
ien
y of the many appli
ations of pseudo-random fun
tions.

Depth: Given appropriate prepro
essing of the key, the value of the fun
tions at any given

point 
an be 
omputed in TC

0

, 
ompared with TC

1

previously (in [60℄). Therefore

this 
onstru
tion:

1. A
hieves redu
ed laten
y for 
omputing the fun
tions in parallel and in hardware

implementations.

2. Has appli
ations to 
omputational 
omplexity (i.e., Natural Proofs [64℄) and to


omputational learning-theory.

Simpli
ity: The simple algebrai
 stru
ture of the fun
tions implies additional desirable

features. To demonstrate this, we showed in [58℄ a simple zero-knowledge proof for

the value of the fun
tion and other proto
ols. We suggest the task of designing

additional proto
ols and improving the 
urrent ones as a line for further resear
h.

More on the motivation of su
h a 
onstru
tion and on pseudo-random fun
tions in general


an be found in Se
tion 2.2.

1

In fa
t we prove the se
urity of the se
ond 
onstru
tion based on a generalized version of the 
omputa-

tional DH-Assumption (GDH-Assumption). However, breaking the GDH-Assumption modulo a 
ompos-

ite would imply an eÆ
ient algorithm for fa
torization (see [6, 69℄).

1



The DDH-Assumption

As mentioned above, we base our 
onstru
tions on two number-theoreti
 assumptions: Fa
-

toring and the DDH-Assumption. While the assumption that fa
toring is hard is a well-

established 
ryptographi
 assumption that needs little introdu
tion the DDH-Assumption

is relatively new. In the following few paragraphs we brie
y des
ribe the DDH-Assumption,

its di�erent appli
ations and the 
urrent knowledge on its se
urity. In addition we brie
y

des
ribe the 
ontribution of this paper to the study of this assumption. A more detailed

des
ription appears in Se
tion 3.1.

The DH-Assumption was introdu
ed in the 
ontext of the DiÆe and Hellman [28℄ key-

ex
hange proto
ol (among quite a few of the fundamental ideas and 
on
epts of publi
-key


ryptography). Any method for ex
hanging even a single bit, using this proto
ol, relies on

the 
omputational version of the DH-Assumption (CDH-Assumption). By assuming its

(stronger) de
isional version one 
an ex
hange many bits. For 
on
reteness, we 
onsider

the DDH-Assumption in a subgroup of Z

�

P

(the multipli
ative group modulo P ) of order

Q, where P and Q are large primes and Q divides P � 1. For su
h P and Q the DDH-

Assumption is:

There is no eÆ
ient algorithm that, given hP;Q; g; g

a

; g

b

i, distinguishes between

g

a�b

and g




with non-negligible advantage, where g is a uniformly 
hosen element

of order Q in Z

�

P

, and a; b and 
 are uniformly 
hosen from Z

Q

(naturally all

exponentiations are in Z

�

P

).

Note that this assumption does not hold when g is a generator of Z

�

P

.

It turns out that the DDH-Assumption was assumed in quite a few previous works

(both expli
itly and impli
itly). All these appli
ations rely on the average-
ase assumption

des
ribed above. In Se
tion 3.3 we show that for any given P and Q the DDH-assumption


an be redu
ed to its worst-
ase version:

There is no eÆ
ient algorithm that, given hP;Q; g; g

a

; g

b

; g




i, de
ides with over-

whelming su

ess probability whether or not 
 = a � b for every a; b and 
 in Z

Q

and every element, g, of order Q in Z

�

P

.

The randomized redu
tion we des
ribe is based on the random-self-redu
ibility of the

DDH-Problem that was previously used by Stadler [73℄. This redu
tion may strengthen our


on�den
e in the DDH-Assumption and in the se
urity of its many appli
ations. Additional

eviden
e to the validity of the DDH-Assumption lies in the fa
t that it endured the extensive

resear
h of the related CDH-Assumption. To some extent, the DDH-Assumption is also

supported by the results on the strength of the CDH-Assumption in several groups [13,

51, 52, 69℄ and by additional results [13, 18, 70℄. For instan
e, Shoup [70℄ showed that

the DDH-Problem is hard for any \generi
" algorithm. However, a main 
on
lusion of this

paper is that the DDH-Assumption deserves more attention sin
e it implies the se
urity of

many attra
tive 
ryptographi
 
onstru
tions.

The most obvious appli
ation of the DDH-Assumption is to the DiÆe-Hellman key-

ex
hange proto
ol and to the related publi
-key 
ryptosystem [29℄. In the ElGamal 
ryp-

tosystem, given the publi
 key g

a

, the en
ryption of a message m is hg

b

; g

a�b

�mi. In Se
tion 3

2



we show how to adjust this 
ryptosystem in order to obtain a probabilisti
 en
ryption-

s
heme whose semanti
 se
urity (see [39℄) is equivalent to the DDH-Assumption

2

. The pri
e

of en
rypting many bits using the ElGamal 
ryptosystem is a single (or two) exponentia-

tion. This is 
omparable with the Blum-Goldwasser 
ryptosystem [10℄. Other appli
ations

that previously appeared are [4, 14, 17, 30, 74, 73℄ and re
ently [24℄ (we des
ribe these

appli
ations in Se
tion 3.1).

To previous appli
ations one 
an add a pseudo-random generator [11, 76℄ that pra
ti
ally

doubles the input length and a pseudo-random synthesizer (see de�nition in [60℄) whose

output length is similar to its arguments length. Essentially, the generator is de�ned by

G

P;g;g

a

(b) = hg

b

; g

a�b

i and the synthesizer by S

P;g

(a; b) = g

a�b

. Both these 
onstru
tions are

overshadowed by our new 
onstru
tion of a very eÆ
ient family of pseudo-random fun
tions.

The pseudo-random fun
tion is de�ned by n+ 1 values, ha

0

; a

1

: : : a

n

i, 
hosen uniformly in

Z

Q

. The value of the fun
tion on an n-bit input x = x

1

x

2

� � � x

n

is essentially

f

P;g;a

0

;a

1

:::a

n

(x)

def

= (g

a

0

)

Q

x

i

=1

a

i

:

For some appli
ations, we still need to hash this value as des
ribed in Se
tion 4.1. Note that,

after appropriate prepro
essing, the 
omputation required 
onsists of two subset produ
ts.

This 
an be done in TC

0

(see Se
tion 4.3). The simple stru
ture of the fun
tions gives

several attra
tive properties as was shown in [58℄ (see further details in Se
tion 2.2).

The GDH-Assumption and Fa
toring

In Se
tion 5 we suggest a related 
onstru
tion of pseudo-random fun
tions that is based

on the (
omputational) GDH-Assumption. This generalization of the DH-Assumption was

previously 
onsidered in the 
ontext of a key-ex
hange proto
ol for a group of parties (see

e.g., [69, 74℄). The GDH-Assumption is implied by the DDH-Assumption (as shown in

[74℄ and in this paper) but the assumptions are not known to be equivalent. In addition,

the GDH-Assumption modulo a Blum-integer is not stronger than the assumption that

fa
toring Blum-integers is hard (see [6, 69℄). This implies an attra
tive 
onstru
tion of

pseudo-random fun
tions that are at least as se
ure as Fa
toring:

Let N be distributed over Blum-integers (N = P � Q, where P and Q are primes and

P = Q = 3 mod 4) and assume that (under this distribution) it is hard to fa
tor N . Let g

be a uniformly distributed quadrati
 residue in Z

�

N

, let ~a = ha

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : a

n;0

; a

n;1

i

be a uniformly distributed sequen
e of 2n elements in [N ℄

def

= f1; 2; : : : ; Ng and let r be a

uniformly distributed bit string of the same length as N . Then the Binary fun
tion, f

N;g;~a;r

,

is pseudo-random. Here the value of f

N;g;~a;r

on any n-bit input, x = x

1

x

2

� � � x

n

, is de�ned

by:

f

N;g;~a;r

(x)

def

=

�

g

Q

n

i=1

a

i;x

i

�

� r

(� denotes the inner produ
t mod 2).

This 
onstru
tion was re
ently improved by Naor, Reingold and Rosen [61℄. The work

in [61℄ provides a method of expanding the one bit output of f

N;g;~a;r

to polynomially many

2

The semanti
 se
urity of the original 
ryptosystem is equivalent to the DDH-Assumption only when the

message spa
e is restri
ted to the subgroup generated by g.

3



bits while paying only a small overhead in the 
omplexity of the evaluation (i.e. one modular

multipli
ation for ea
h additional output bit). In parti
ular, this implies a length-preserving

pseudo-random fun
tion that is at least as se
ure as Fa
toring whose evaluation requires

only a 
onstant number of modular multipli
ations per output bit.

Previous Work

In addition to introdu
ing pseudo-random fun
tions, Goldrei
h, Goldwasser and Mi
ali [35℄

provided a 
onstru
tion of su
h fun
tions (GGM-Constru
tion) based on pseudo-random

generators. Naor and Reingold [60℄ re
ently showed a parallel 
onstru
tion based on a new

primitive 
alled a pseudo-random synthesizer. Under 
on
rete intra
tability assumptions

like \fa
toring is hard" this 
onstru
tion gives pseudo-random fun
tions in TC

1

. Our work

is motivated by [60℄ both in the task of redu
ing the depth of the pseudo-random fun
tions

and in the 
onstru
tion itself (see Se
tion 5.2). Parallel 
onstru
tions of other 
ryptographi


primitives were provided by Impagliazzo and Naor [42℄ based on the hardness of subset sum

and fa
toring, and by Blum et. al. [7℄ based on hard-to-learn problems.

The 
onstru
tion of this paper is not only more parallelizable than the 
on
rete 
on-

stru
tions based on [35, 60℄, but it is also mu
h more eÆ
ient. Though this 
onstru
tion

seems very di�erent than the 
onstru
tions of [35, 60℄, we were able to relate the proof of

se
urity of this 
onstru
tion to both [35℄ and [60℄ (see Se
tions 4.2 and 5).

It turns out that there are a number of resear
hers who observed that the average-


ase DDH-Assumption yields pseudo-random generators with good expansion. One su
h


onstru
tion was proposed by Ra
ko� (unpublished). A di�erent 
onstru
tion is suggested

by Gertner and Malkin [31℄. This 
onstru
tion is similar to the pseudo-random generator

one gets by s
aling down our pseudo-random fun
tions.

Organization

In Se
tion 2.1 we des
ribe the notation and 
onventions used in this paper. In Se
tion 2.2

we des
ribe some appli
ations and 
onstru
tions of pseudo-random fun
tions and the mo-

tivation for our 
onstru
tion. In Se
tion 3 we further 
onsider the DDH-Assumption and

show a simple randomized redu
tion between its worst-
ase and average-
ase. In Se
tion 4

we des
ribe a 
onstru
tion of pseudo-random fun
tions based on the DDH-Assumption,

prove its se
urity and 
onsider its 
omplexity. In Se
tion 5 we de�ne the GDH-Assumption

and show a related 
onstru
tion of pseudo-random fun
tions based on this assumption. In

Se
tion 6 we 
onsider some of the possible features of our pseudo-random fun
tions and

suggest dire
tions for further resear
h.

2 Preliminaries

2.1 Notation and Conventions

� For any integer N the multipli
ative group modulo N is denoted by Z

�

N

and the

additive group modulo N is denoted by Z

N

.

4



� For any integer k, denote by [k℄ the set of integers - f1; 2; : : : ; kg. For any two integers

k < m, denote by [k::m℄ the set of integers - fk; k + 1; : : : ;mg.

� For any two bit-strings of the same length, x and y, the inner produ
t mod 2 of x

and y is denoted by x� y.

2.2 Pseudo-Random Fun
tions

As mentioned in the introdu
tion, our main result is a 
onstru
tion of a pseudo-random

fun
tion that is eÆ
ient, has shallow depth and is simple. We devote this se
tion to motivate

su
h a 
onstru
tion and to des
ribe previous 
onstru
tions and appli
ations of pseudo-

random fun
tions. Good referen
es on pseudo-random fun
tions and pseudo-randomness in

general are Goldrei
h [33, 34℄ and Luby [49℄.

The 
on
ept of a pseudo-random fun
tion-ensemble was introdu
ed by Goldrei
h, Gold-

wasser and Mi
ali [35℄. Loosely, this is an eÆ
ient fun
tion-ensemble that 
annot be eÆ-


iently distinguished from the uniform fun
tion-ensemble by an adversary that has a

ess

to the fun
tions as a bla
k-box (see De�nition 2.1). In addition, Goldrei
h, Goldwasser

and Mi
ali provided a 
onstru
tion of pseudo-random fun
tions (GGM-Constru
tion). This


onstru
tion uses pseudo-random generators [11, 76℄ as building blo
ks, whi
h in turn 
an

be obtained from any one-way fun
tion (as shown by Hastad, Impagliazzo, Levin and Luby

[41℄).

A pseudo-random fun
tion is a powerful 
ryptographi
 primitive that 
an repla
e fun
-

tions truly 
hosen uniformly at random in many appli
ations. Probably, the most notable

appli
ations of pseudo-random fun
tions are in private-key 
ryptography. They provide par-

ties who share a 
ommon key straightforward proto
ols for sending se
ret messages to ea
h

other, for identifying themselves and for authenti
ating messages [15, 36, 49℄. As shown by

Luby and Ra
ko� [50℄, it is possible to eÆ
iently 
onstru
t pseudo-random permutations

(whi
h, in parti
ular, 
an be used as blo
k-
iphers) from pseudo-random fun
tions (see

also [59℄ for an \optimal" 
onstru
tion). However, pseudo-random fun
tions have many

other appli
ations in
luding appli
ations in publi
-key 
ryptography. For example, Bellare

and Goldwasser [3℄ showed how to use pseudo-random fun
tions and a non-intera
tive zero-

knowledge proof of their values to 
onstru
t digital-signatures. Another interesting example

was given by Goldrei
h [32℄ who showed how to eliminate the state in the Goldwasser-Mi
ali-

Rivest signature s
heme (the te
hnique of [32℄ is very general). For some of the additional

appli
ations of pseudo-random fun
tions see [9, 22, 32, 40℄.

For quite a while, the GGM-Constru
tion was the only known 
onstru
tion of pseudo-

random fun
tions (that was proven to be as se
ure as some general or 
on
rete intra
tability

assumption). Motivated by the inherent sequentiality of the GGM-Constru
tion, Naor and

Reingold [60℄ re
ently showed a parallel 
onstru
tion based on a new primitive 
alled a

pseudo-random synthesizer. In addition, they showed how to 
onstru
t pseudo-random

synthesizers in parallel from general 
ryptographi
-primitives (su
h as trapdoor permuta-

tions) and based on several 
on
rete intra
tability assumption. Their 
on
rete 
onstru
tions

give NC

2

(or a
tually TC

1

) pseudo-random fun
tions. In fa
t, our work is motivated by

[60℄, as des
ribed in Se
tion 5.2.

The 
onstru
tion of this paper gives pseudo-random fun
tions 
omputable in TC

0

(given

appropriate prepro
essing). We brie
y summarize part of the dis
ussion that appears in

5



[60℄ on the appli
ations of parallel pseudo-random fun
tions:

� It is likely that pseudo-random fun
tions will be implemented in hardware (as is

the 
ase for DES). In su
h implementations, having shallow-depth pseudo-random

fun
tions implies redu
ed laten
y in 
omputing those fun
tions whi
h, for some ap-

pli
ations (su
h as the en
ryption of messages on a network), is essential.

� As was observed by Valiant [75℄, if a 
on
ept 
lass 
ontains pseudo-random fun
tions

then it 
annot be learned: There exists a distribution of 
on
epts, 
omputable in

this 
lass, that is hard for every eÆ
ient learning algorithms, for every \non-trivial"

distribution on the instan
es even when membership queries are allowed. Noti
e that

the unlearnability result implied by the existen
e of pseudo-random fun
tions is very

strong. Weaker unlearnability results for NC

1

and TC

0

, based on other 
ryptographi


assumptions, were obtained in [1, 45, 44℄. It is also interesting to 
ompare with the

result of Linial, Mansour and Nisan [48℄ who showed that AC

0


an be learned in time

slightly super-polynomial under the uniform distribution on the examples.

� Another appli
ation of pseudo-random fun
tions in 
omplexity was suggested by

Razborov and Rudi
h [64℄. They showed that if a 
ir
uit 
lass 
ontains pseudo-random

fun
tions (that are se
ure against a subexponential-time adversary), then there are no

(what they 
alled) Natural Proofs (whi
h in
lude all previously known lower bound

te
hniques) for separating this 
lass from P=poly. We therefore get from our 
on-

stru
tion that if the GDH-Assumption holds against a subexponential-time adversary

(and in parti
ular if fa
toring is suÆ
iently hard), then there are no Natural Proofs

for separating TC

0

from P=poly.

We note that one 
an extra
t a similar result (assuming the hardness of fa
toring)

from the work of Kharitonov [45℄, whi
h is based on the pseudo-random generator of

Blum, Blum and Shub [8℄.

Ex
ept of being more parallelizable, our 
onstru
tion has two additional advantages over

previous ones:

1. It is eÆ
ient: 
omputing the value of the fun
tion at any given point is 
omparable

with two exponentiations. This is the �rst 
onstru
tion that seems eÆ
ient enough

to be implemented and indeed these fun
tions were implemented by Langberg in

[47℄. Given the many appli
ations of pseudo-random fun
tions it is 
lear that having

eÆ
ient pseudo-random fun
tions is an important goal.

A somewhat surprising fa
t is that although our 
onstru
tion is mu
h more eÆ
ient

than previous ones it is still 
losely related to the GGM-Constru
tion and to the


onstru
tion of [60℄. The 
onne
tion with previous 
onstru
tions is des
ribed in Se
-

tions 4.2 and 5.2.

2. It has a simple algebrai
 stru
ture. To see our main motivation here, 
onsider the

Bellare-Goldwasser signature s
heme. The publi
 key in this s
heme 
ontains a 
om-

mitment for a key s of a pseudo-random fun
tion. The signature for a message m is


omposed of a value y and a non-intera
tive zero-knowledge proof that y = f

s

(m).

6



In order for this s
heme to be attra
tive, we must have a simple non-intera
tive zero-

knowledge proof for 
laims of the form y = f

s

(m). In this and other s
enarios we

might wish to have additional properties for the fun
tions su
h as a simple fun
tion-

sharing s
heme in the sense of [25℄. It seems that for su
h properties to be possible

we need a simple 
onstru
tion of pseudo-random fun
tions.

In [58℄ we 
onsidered some desirable features of pseudo-random fun
tions. We also pre-

sented preliminary results in obtaining these features for our 
onstru
tion of pseudo-

random fun
tions: (1) A rather simple zero-knowledge proof for 
laims of the form

y = f

s

(m) and y 6= f

s

(m). (2) A way to distribute a pseudo-random fun
tion among

a set of parties su
h that only an authorized subset 
an 
ompute the value of the

fun
tion at any given point. (3) A proto
ol for \oblivious evaluation" of the value of

the fun
tion: Assume that a party, A, knows a key s of a pseudo-random fun
tion.

Then A and a se
ond party, B, 
an perform a proto
ol during whi
h B learns exa
tly

one value f

s

(x) of its 
hoi
e whereas A does not learn a thing (and, in parti
ular,

does not learn x). We 
onsider the task of improving these proto
ols and designing

additional ones to be an interesting line for further resear
h.

2.2.1 De�nition of Pseudo-Random Fun
tions

For the sake of 
on
reteness we in
lude the de�nition of pseudo-random fun
tions almost

as it appears in [33, 34℄:

De�nition 2.1 (eÆ
iently 
omputable pseudo-random fun
tion ensemble)

Let fA

n

; B

n

g

n2N

be a sequen
e of domains and let F = fF

n

g

n2N

be a fun
tion ensemble

su
h that the random variable F

n

assumes values in the set of A

n

! B

n

fun
tions. Then

F is 
alled an eÆ
iently 
omputable pseudo-random fun
tion ensemble if the following


onditions hold:

1. (pseudo-randomness) for every probabilisti
 polynomial-time ora
le ma
hineM, every


onstant 
 > 0, and all but a �nite number of n's

�

�

�

Pr[M

F

n

(1

n

) = 1℄� Pr[M

R

n

(1

n

) = 1℄

�

�

�

<

1

n




;

where R = fR

n

g

n2N

is the 
orresponding uniform fun
tion ensemble (i.e., 8n, R

n

is

uniformly distributed over the set of A

n

! B

n

fun
tions).

2. (eÆ
ient 
omputation) There exist probabilisti
 polynomial time algorithms, I and V,

and a mapping from strings to fun
tions, �, su
h that �(I(1

n

)) and F

n

are identi
ally

distributed and V(i; x) = (�(i))(x).

Remark 2.1 In this de�nition, as well as the other de�nitions of this paper, \eÆ
ient

adversary" is interpreted as \probabilisti
 polynomial-time algorithm" and \negligible" is

interpreted as \smaller than 1=poly". In fa
t, all the proofs in this paper easily imply more

quantitative results. For a dis
ussion on se
urity preserving redu
tions see [49℄.
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3 The De
isional DiÆe-Hellman Assumption

As mentioned above, we base our �rst 
onstru
tion of pseudo-random fun
tions (des
ribed

in Se
tion 4) on the DDH-Assumption (the de
isional version of the DH-Assumption). This

assumption is relatively new, or more a

urately, was expli
itly 
onsidered only re
ently.

We therefore devote this se
tion to a dis
ussion of the DDH-Assumption: we des
ribe and

de�ne the assumption, 
onsider some of its di�erent appli
ations and the 
urrent knowledge

on its se
urity. Furthermore, we show in Se
tion 3.3 a randomized redu
tion of the worst-


ase DDH-Assumption to its average 
ase. In Se
tion 5 we des
ribe a related 
onstru
tion

of pseudo-random fun
tions based on a more 
onservative assumption: the assumption that

fa
toring Blum-integers is hard (in fa
t, this 
onstru
tion is based on the GDH-Assumption

that in turn 
an be redu
ed to Fa
toring).

3.1 Ba
kground

The DH-Assumption was introdu
ed in the 
ontext of the DiÆe and Hellman [28℄ key-

ex
hange proto
ol. Informally, a key-ex
hange proto
ol is a way for two parties, A and B,

to agree on a 
ommon key, K

A;B

, while 
ommuni
ating over an inse
ure (but authenti
ated)


hannel. Su
h a proto
ol is se
ure if any eÆ
ient third party, C, with a

ess to the 
om-

muni
ation between A and B (but not to their private random strings) 
annot tell apart

K

A;B

from a random value (i.e., K

A;B

is pseudo-random to C). This guarantees that it is


omputationally infeasible for an eavesdropper to gain \any" partial information on K

A;B

.

Given a large prime P and a generator g of Z

�

P

(both publi
ly known), the DiÆe-Hellman

key-ex
hange proto
ol goes as follows: A 
hooses an integer a uniformly at random in [P�2℄

and sends g

a

to B. In return B 
hooses an integer b uniformly at random in [P � 2℄ and

sends g

b

to A. Both A and B 
an now 
ompute g

a�b

and their 
ommon key, K

A;B

, is de�ned

by g

a�b

in some publi
ly known manner. For this proto
ol to be se
ure we must have, at

the minimum, that the CDH-Assumption holds:

Given hg; g

a

; g

b

i, it is hard to 
ompute g

a�b

.

The reason is that if this assumption does not hold, then C (as above) 
an also 
ompute

K

A;B

.

One method to produ
e the key, K

A;B

, is to apply the Goldrei
h-Levin [37℄ hard-
ore

fun
tion

3

to g

a�b

(an important improvement on the se
urity of su
h an appli
ation was made

by Shoup [70℄). If the CDH-Assumption holds, then this method indeed gives a pseudo-

random key. However, the proof in [37℄ only implies the pseudo-randomness of the key in


ase its length is at most logarithmi
 in the se
urity parameter. A mu
h more ambitious

method is to take g

a�b

itself as the key. For instan
e, in the ElGamal 
ryptosystem, given the

publi
 key g

a

the en
ryption of a messagem is hg

b

; g

a�b

�mi. The se
urity of the key-ex
hange

proto
ol now relies on the DDH-Assumption:

Given hg; g

a

; g

b

; zi, it is hard to de
ide whether or not z = g

a�b

.

3

For example, to get a key of one bit, we 
an de�ne K

A;B

to be the inner produ
t mod 2 of g

a�b

and a

random string r (
hosen by one of the parties and sent to the other over the inse
ure 
hannel).
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However, when g is a generator of Z

�

P

, we have that g

a

and g

b

do give some information

on g

a�b

. For example, if either g

a

or g

b

is a quadrati
 residue, then so is g

a�b

. A standard

solution for this problem is to take g to be a generator of the subgroup of Z

�

P

of order Q,

where Q is a large prime divisor of P � 1. In fa
t, for most appli
ations, using g of order Q

is an advantage sin
e Q may be mu
h smaller than P (say, 160 bits long) whi
h results in a

substantial improvement in eÆ
ien
y. The reason that Q may be so small is that all known

subexponential algorithms for 
omputing the dis
rete log are subexponential in the length

of P (as long as P � 1 is not too smooth) even when applied to the subgroup of size Q

generated by g (see, [53, 62℄ for surveys on algorithms for the dis
rete log; the best known

algorithm for general groups has time square root of the size of the largest prime divisor of

the group).

How Mu
h Con�den
e Can we Have in the DDH-Assumption?

It is 
lear that the 
omputational DH-Problem is at most as hard as 
omputing the dis
rete

log (given hg; g

a

i �nd a). Re
ent works by Maurer and Wolf [51℄ and Boneh and Lipton

[12℄ show that in several settings these two problems are in fa
t equivalent. For example,

Maurer and Wolf showed that given some information whi
h only depends on P and an

eÆ
ient algorithm for 
omputing the DH-Problem in Z

�

P

, one 
an eÆ
iently 
ompute the

dis
rete log in Z

�

P

(so in some non-uniform sense these problems are equivalent). Shoup [70℄

showed that there are no eÆ
ient \generi
" algorithms for 
omputing the dis
rete log or

the DH-Problem, where loosely speaking, a generi
 algorithm is one that does not exploit

any spe
ial properties of the en
oding of group elements. A bit more formally, a generi


algorithm is one that works for a \bla
k-box" group (where ea
h element has a random

en
oding and given the en
odings of a and b the algorithm 
an query for the en
odings of

a+ b and �a).

Perhaps the best eviden
e for the validity of the CDH-Assumption is the fa
t that

it endured extensive resear
h over the last two de
ades. This resear
h does not seem to

undermine the (stronger) de
isional version of the DH-Assumption as well. In addition,

the DDH-Assumption did appear both expli
itly and impli
itly in several previous works.

However, it seems that, given the many appli
ations of the DDH-Assumption, a more

extensive study of its se
urity is in pla
e.

To some extent, the DDH-Assumption is supported by the work of Shoup [70℄ and the

work of Boneh and Venkatesan [13℄. Shoup showed that the DDH-Problem is hard for any

generi
 algorithm (where a generi
 algorithm is as de�ned above). Boneh and Venkatesan

showed that 
omputing the k (�

p

logP ) most signi�
ant bits of g

a�b

(given hg; g

a

; g

b

i) is

as hard as 
omputing g

a�b

itself. A re
ent result with appli
ations to the DDH-Assumption

was shown by Canetti, Friedlander and Shparlinski [18℄.

In Se
tion 3.3 we prove an attra
tive feature of the DDH-Assumption: There is a quite

simple randomized redu
tion between its worst-
ase and its average-
ase for �xed P and Q.

More spe
i�
ally:

For any primes P and Q (su
h that Q divides P � 1), the following statements

are equivalent:

� Given hP;Q; g; g

a

; g

b

i, it is easy to distinguish with non-negligible advantage

9



between g

a�b

and g




, where g is a uniformly 
hosen element of order Q in

Z

�

P

, and a; b and 
 are uniformly 
hosen from Z

Q

.

� Given hP;Q; g; g

a

; g

b

; g




i, it is easy to de
ide with overwhelming su

ess

probability whether or not 
 = a � b, where a; b and 
 are any three elements

in Z

Q

and g is any element of order Q in Z

�

P

.

This redu
tion is based on the random-self-redu
ibility of the DDH-Problem that was pre-

viously used by Stadler [73℄. The redu
tion may strengthen our 
on�den
e in the DDH-

Assumption and in the se
urity of its appli
ations.

For most appli
ations of the DDH-Assumption (in
luding ours) there is no reason to

insist on working in a subgroup of Z

�

P

(where P is a prime). Therefore, a natural question

is how valid is this assumption for other groups. Spe
i�
 groups that were 
onsidered in

the 
ontext of the CDH-Assumption are: (1) Z

�

N

where N is a 
omposite. M
Curley and

Shmuely [52, 69℄ showed that for many of those groups breaking the CDH-Assumption is

at least as hard as fa
toring N . (2) Ellipti
-
urve groups, for whi
h (in some 
ases) no

subexponential algorithms for the dis
rete log are 
urrently known. We stress that the

randomized redu
tion mentioned above relies on the primality of the order of g.

The De
isional DH-Assumption is Very Attra
tive

It turns out that the DDH-Assumption was assumed in several previous works (both expli
-

itly and impli
itly). In the following, we brie
y refer to some of those works and des
ribe

some additional appli
ations.

The most obvious appli
ation of the DDH-Assumption is to the DiÆe-Hellman key-

ex
hange proto
ol and to the related publi
-key 
ryptosystem, namely the ElGamal 
ryp-

tosystem - given the publi
 key g

a

the en
ryption of a message m is hg

b

; g

a�b

�mi. Assume

that the message spa
e is restri
ted to the subgroup generated by g. In this 
ase, it is

easy to see that the semanti
 se
urity (see [39℄) of the 
ryptosystem is equivalent to the

DDH-Assumption. In the general 
ase (without the restri
tion on the message spa
e), we


an use the following related 
ryptosystem: given the publi
 key hg

a

; hi the en
ryption of

a message m is hg

b

; h(g

a�b

) � mi, where h is a pair-wise independent hash fun
tion from

n-bit strings to strings of approximately the length of Q (see Lemma 4.2 for more details

on the role of h). Therefore, given the DDH-Assumption, we get a probabilisti
 en
ryption

of many bits for the pri
e of a single (or two) exponentiation. This is 
omparable with the

Blum-Goldwasser 
ryptosystem [10℄.

Other appli
ations that previously appeared are:

� Bellare and Mi
ali [4℄ showed an eÆ
ient non-intera
tive oblivious transfer of many

bits that relies on the DDH-Assumption.

� Brands [14℄ pointed out that several suggestions for undeniable signatures (as the one

in [19℄ where this 
on
ept was introdu
ed) impli
itly rely on the DDH-Assumption. If

this assumption does not hold then su
h s
hemes are in fa
t ordinary digital signatures.

� Canetti [17℄ gave a simple 
onstru
tion based on the DDH-Assumption for a new


ryptographi
 primitive 
alled \Ora
le Hashing" (later renamed \perfe
tly one-way
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probabilisti
 hash fun
tions"). Loosely, these are hash fun
tions that \hide all partial

information" on their input.

� Franklin and Haber [30℄ showed a 
onstru
tion of a joint en
ryption s
heme based on

the DDH-Assumption modulo a 
omposite. Using this s
heme they showed how to

obtain an eÆ
ient proto
ol for se
ure 
ir
uit 
omputation.

� Stadler [73℄ presents veri�able se
ret sharing based on the DDH-Assumption.

� Steiner, Tsudik and Waidner [74℄ showed how to extend the DiÆe-Hellman proto
ol

to a key-ex
hange proto
ol for a group of parties. They redu
ed the se
urity of the

extended proto
ol to the DDH-Assumption (by showing that the DDH-Assumption

implies the de
isional GDH-Assumption).

A very attra
tive appli
ation of the DDH-Assumption was re
ently proposed by Cramer

and Shoup [24℄. They have presented a new publi
-key 
ryptosystem that is se
ure against

adaptive 
hosen 
iphertext atta
ks. Both en
ryption and de
ryption in this 
ryptosystem

only require a few exponentiations (in addition to universal one-way hashing).

To all these appli
ations we 
an add:

� A pseudo-random generator that pra
ti
ally doubles the input length. Essentially, the

generator is de�ned by G

P;Q;g;g

a

(b) = hg

b

; g

a�b

i.

4

As mentioned in the introdu
tion,

several unpublished 
onstru
tions of pseudo-random generators based on the DDH-

Assumption were previously suggested.

� A pseudo-random synthesizer (see de�nition in [60℄) whose output length is similar to

its arguments length, essentially de�ned by S

P;Q;g

(a; b) = g

a�b

.

Both these 
onstru
tions are overshadowed by the 
onstru
tion of pseudo-random fun
tions

introdu
ed in Se
tion 4.1.

3.2 Formal De�nition

To formalize the DDH-Assumption, we �rst need to spe
ify an eÆ
iently samplable distri-

bution for P , Q and g (where g is an element of order Q in Z

�

P

).

Let n be the se
urity parameter. For some fun
tion ` : N ! N we want to 
hoose an

n-bit prime P with an `(n)-bit prime Q that divides P � 1. A natural way to do this is to


hoose P and Q uniformly at random subje
t to those 
onstraints. However, it is possible

to 
onsider di�erent distributions. For example, it is not in
on
eivable that the assumption

holds when for every n we have a single possible 
hoi
e of P , Q and g. Another 
ommon

example is letting P and Q satisfy P = 2 � Q + 1 (although 
hoosing a smaller Q may

in
rease the eÆ
ien
y of most appli
ations). In order to keep our results general, we let

P , Q and g be generated by some probabilisti
 polynomial-time algorithm IG (where IG

stands for instan
e generator). On input 1

n

the output of IG is distributed over triplets

4

In fa
t, the output of G

P;Q;g;g

a

is a pseudo-random pair of values in the subgroup generated by g. In

order to obtain a pseudo-random value in f0; 1g

`

, for ` of approximately twi
e the length of Q, one needs

to hash the output of the generator (see Lemma 4.2). A similar observation holds for the 
onstru
tions of

pseudo-random synthesizers and pseudo-random fun
tions.
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hP;Q; gi, where P is an n-bit prime, Q a (large) prime divisor of P � 1 and g an element

of order Q in Z

�

P

. Any instantiation of IG will imply a di�erent DDH-Assumption and a

di�erent 
onstru
tion of pseudo-random fun
tions. Our proof of pseudo-randomness of the

fun
tions based on the DDH-Assumption is independent of the parti
ular instantiation of

IG.

For the various appli
ations of the DDH-Assumption we need its average-
ase version.

Namely, when a and b are uniformly 
hosen and 
 is either a � b or uniformly 
hosen. In

Se
tion 3.3 it is shown that a worst-
ase 
hoi
e of a; b and 
 
an be redu
ed to a uniform


hoi
e. Similarly, the assumption is not strengthened if g (generated by IG) is taken to be

a uniformly 
hosen element of order Q in Z

�

P

.

Assumption 3.1 (De
isional DiÆe-Hellman) For every probabilisti
 polynomial-time

algorithm A, every 
onstant � > 0 and all but a �nite number of n's

�

�

�

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A(P;Q; g; g

a

; g

b

; g




) = 1℄

�

�

�

<

1

n

�

;

where the probabilities are taken over the random bits of A, the 
hoi
e of hP;Q; gi a

ording

to the distribution IG(1

n

) and the 
hoi
e of a; b and 
 uniformly at random in Z

Q

.

3.3 A Randomized Redu
tion

In this subse
tion we use a simple randomized redu
tion to show that for every P;Q and g

the DDH-Problem is either very hard on the average or very easy in the worst-
ase. Given

the 
urrent knowledge of the DDH-Problem, su
h a result strengthens our belief in the

DDH-Assumption. The main part of the redu
tion (Lemma 3.2) was previously used by

Stadler [73℄.

De�nition 3.1 For any hP;Q; gi su
h that P is a prime, Q a prime divisor of P � 1 and

g an element of order Q in Z

�

P

the fun
tion DDH

P;Q;g

is de�ned by

DDH

P;Q;g

(g

a

; g

b

; g




) =

(

1 if 
 = a � b

0 otherwise

for any three elements a; b; 
 in Z

Q

.

Theorem 3.1 Let A be any probabilisti
 algorithm with running time t = t(n) and � = �(n)

any positive fun
tion su
h that 1=� is eÆ
iently 
onstru
tible. There exist a polynomial

p = p(n) and a probabilisti
 algorithm A

0

with running time (t(n) � p(n))=(�(n))

2

su
h that,

for any 
hoi
e of hP;Q; gi as in De�nition 3.1, if:

�

�

�

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A(P;Q; g; g

a

; g

b

; g




) = 1℄

�

�

�

> �(n);

where the probabilities are taken over the random bits of A and the 
hoi
e of a; b and 


uniformly at random in Z

Q

, then for any a; b and 
 in Z

Q

:

Pr[A

0

(P;Q; g; g

a

; g

b

; g




) 6= DDH

P;Q;g

(g

a

; g

b

; g




)℄ < 2

�n

;

where the probability is only over the random bits of A

0

.

In parti
ular, if A is probabilisti
 polynomial-time and �(n) � 1=poly(n), then A

0

is also

probabilisti
 polynomial-time.
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Blum and Mi
ali [11℄ introdu
ed the 
on
ept of random-self-redu
ibility (and random-

ized redu
tions). Informally, a problem is random-self-redu
ible if solving the problem on

any instan
e x 
an be eÆ
iently redu
ed to solving the problem on a random instan
e y

(or on a polynomial number of random instan
es). That is, for any instan
e x, a ran-

dom instan
e y 
an be eÆ
iently sampled using a random string r su
h that given r and

the solution of the problem on y it is easy to 
ompute the solution of the problem on x.

A problem that is random-self-redu
ible 
an either be eÆ
iently solved for every instan
e

with overwhelming su

ess probability or it 
annot be solved for a random instan
e with

non-negligible su

ess probability.

Our randomized redu
tion is 
losely related to other known redu
tions. Blum and

Mi
ali [11℄ showed that for any spe
i�
 prime P and generator g, the dis
rete log problem

is random-self-redu
ible: given hP; g; g

a

i for any a it is easy to generate a random instan
e

hP; g; g

a+r

= g

a

� g

r

i (where r is uniform in [P � 1℄). Given the solution for the random

instan
e (i.e., a+ r) it is easy to 
ompute the solution for the original instan
e (i.e., a). A

similar property was shown for the CDH-Problem (e.g. [51℄): given hP; g; g

a

; g

b

i for any a

and b it is easy to generate a random instan
e hP; g; g

a+r

; g

b+s

i (where r and s are uniform

in [P � 1℄). Given the solution for the random instan
e (i.e., z = g

(a+r)�(b+s)

) it is easy to


ompute the solution for the original instan
e (i.e., g

a�b

= z � (g

a

)

�s

� (g

b

)

�r

� g

�s�r

).

However, in order to prove Theorem 3.1, we need a somewhat di�erent redu
tion. In

parti
ular, we need to use the fa
t that g is an element of prime order: Theorem 3.1 
an

only hold when g is a generator of Z

�

P

if the DDH-Problem is always easy (in whi
h 
ase

the theorem holds trivially).

Lemma 3.2 There exists a probabilisti
 polynomial-time algorithm, R su
h that on any

input

hP;Q; g; g

a

; g

b

; g




i;

where P is a prime, Q a prime divisor of P � 1, g an element of order Q in Z

�

P

and a; b; 


are three elements in Z

Q

the output of R is:

hP;Q; g; g

a

0

; g

b

0

; g




0

i;

where if 
 = a � b, then a

0

and b

0

are uniform in Z

Q

and 


0

= a

0

� b

0

and if 
 6= a � b, then a

0

; b

0

and 


0

are all uniform in Z

Q

.

Proof: R 
hooses s

1

; s

2

and r uniformly in Z

Q

, 
omputes

g

a

0

= (g

a

)

r

� g

s

1

;

g

b

0

= g

b

� g

s

2

;

g




0

= (g




)

r

� (g

a

)

r�s

2

� (g

b

)

s

1

� g

s

1

�s

2

and outputs

hP;Q; g; g

a

0

; g

b

0

; g




0

i:

Let 
 = a � b+ e for e in Z

Q

then:

a

0

= r � a+ s

1

; b

0

= b+ s

2

; 


0

= a

0

b

0

+ e � r:
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If e = 0 we have that a

0

and b

0

are uniformly distributed in Z

Q

and 


0

= a

0

� b

0

. If e 6= 0 we

have that a

0

; b

0

and 


0

are all uniformly distributed in Z

Q

(this is the pla
e we use the fa
t

that Q is a prime whi
h implies that e � r is uniformly distributed in Z

Q

). Therefore, the

output of R has the desired distribution. 2

Proof: (of Theorem 3.1) Let A be any probabilisti
 algorithm with running time t = t(n),

let � = �(n) be any positive fun
tion su
h that 1=� is eÆ
iently 
onstru
tible and let hP;Q; gi

be as in De�nition 3.1. Assume that:

�

�

�

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A(P;Q; g; g

a

; g

b

; g




) = 1℄

�

�

�

> �(n);

where the probabilities are taken over the random bits of A and the 
hoi
e of a; b and 


uniformly at random in Z

Q

.

Let R be the probabilisti
 polynomial-time algorithm that is guaranteed to exist by

Lemma 3.2. By the de�nition of R and our assumption, we have that for any a; b and


 6= a � b in Z

Q

:

�

�

�

Pr[A(R(P;Q; g; g

a

; g

b

; g

a�b

)) = 1℄� Pr[A(R(P;Q; g; g

a

; g

b

; g




)) = 1℄

�

�

�

> �(n):

Now the probabilities are only taken over the random bits of A and R. Therefore, by

standard methods of ampli�
ation (see e.g., [34℄ and referen
es therein) we 
an de�ne a

probabilisti
 algorithm A

0

su
h that for any a; b and 
 6= a � b in Z

Q

:

Pr[A

0

(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A

0

(P;Q; g; g

a

; g

b

; g




) = 1℄ > 1� 2

�n

:

On any input hP;Q; g; g

a

; g

b

; g




i, the output of A

0

is essentially a threshold fun
tion of

O(n=(�(n))

2

) independent values - A(R(P;Q; g; g

a

; g

b

; g




)). It is 
lear that A

0

satis�es the


onditions required in Theorem 3.1. 2

4 Constru
tion of Pseudo-Random Fun
tions

In this se
tion we des
ribe a 
onstru
tion of pseudo-random fun
tions based on the DDH-

Assumption, prove its se
urity and 
onsider its 
omplexity. A related 
onstru
tion (based

on a weaker assumption) is des
ribed in Se
tion 5.

4.1 Constru
tion and Main Result

Constru
tion 4.1 We de�ne the fun
tion ensemble F = fF

n

g

n2N

. For every n, a key of

a fun
tion in F

n

is a tuple, hP;Q; g;~ai, where P is an n-bit prime, Q a prime divisor of

P � 1, g an element of order Q in Z

�

P

and ~a = ha

0

; a

1

; : : : a

n

i a sequen
e of n+ 1 elements

of Z

Q

. For any n-bit input, x = x

1

x

2

� � � x

n

, the fun
tion f

P;Q;g;~a

is de�ned by:

f

P;Q;g;~a

(x)

def

= (g

a

0

)

Q

x

i

=1

a

i

:

The distribution of fun
tions in F

n

is indu
ed by the following distribution on their keys: ~a

is uniform in its range and the distribution of hP;Q; gi is IG(1

n

).

14



It is 
lear that F is eÆ
iently 
omputable (sin
e IG is eÆ
ient). The pseudo-randomness

property of F is the following:

Theorem 4.1 Let F = fF

n

g

n2N

be as in Constru
tion 4.1. If the DDH-Assumption (As-

sumption 3.1) holds, then for every probabilisti
 polynomial-time ora
le ma
hine M, every


onstant � > 0, and all but a �nite number of n's

�

�

�

Pr[M

f

P;Q;g;~a

(P;Q; g) = 1℄� Pr[M

R

P;Q;g

(P;Q; g) = 1℄

�

�

�

<

1

n

�

;

where in the �rst probability, f

P;Q;g;~a

is distributed a

ording to F

n

, and in the se
ond

probability, the distribution of hP;Q; gi is IG(1

n

) and R

P;Q;g

is uniformly 
hosen in the set

of fun
tions with domain f0; 1g

n

and range hgi (the subgroup of Z

�

P

generated by g).

Moreover, if there exists a probabilisti
 ora
le ma
hine with running time t = t(n) that

distinguishes f

P;Q;g;~a

from R

P;Q;g

(as above) with advantage � = �(n). Then there exists

a probabilisti
 algorithm with running time poly(n) � t(n) that breaks the DDH-Assumption

with advantage �(n)=n.

Remark 4.1 The \moreover" part of Theorem 4.1 implies that the se
urity of the fun
tions

does not signi�
antly de
rease when the number of queries the distinguisher makes in
reases.

More formally, we have that this redu
tion is in fa
t linear-preserving (see [49℄). This is

a strong and quite unique property (and in parti
ular it is very di�erent from the proofs of

se
urity for the fun
tions in [35, 60℄).

Given Theorem 4.1, we have that F is \almost" an eÆ
iently 
omputable pseudo-random

fun
tion ensemble. There is one di�eren
e: A fun
tion f

P;Q;g;~a

in F

n

has domain f0; 1g

n

and

range hgi. Therefore, di�erent fun
tions in F

n

have di�erent ranges whi
h deviates from

the standard de�nition of pseudo-random fun
tions (De�nition 2.1). However, for many

appli
ations of pseudo-random fun
tions this deviation does not present a problem (e.g.,

the appli
ations of pseudo-random fun
tions to private-key authenti
ation and identi�
ation

and their appli
ations to digital signatures [3℄). In addition, it is rather easy to 
onstru
t

from F pseudo-random fun
tions under De�nition 2.1. In order to show this, we need the

following lemma whi
h is a simple 
orollary of the leftover hash lemma [41, 43℄:

Lemma 4.2 Let n; ` and e be three positive integers su
h that 3e + 1 < ` < n. Let X �

f0; 1g

n

be a set of at least 2

`�1

elements and x uniformly distributed in X. Let H be a

family of pair-wise independent, f0; 1g

n

! f0; 1g

`�1�3e

, hash fun
tions. Then for all but a

2

�e

fra
tion of h 2 H the uniform distribution over f0; 1g

`�1�3e

and h(x) are of statisti
al

distan
e of at most 2

�e

.

Lemma 4.2 suggests the following 
onstru
tion:

Constru
tion 4.2 Let ` = `(n) be an integer-valued fun
tion su
h that for any output,

hP;Q; gi, of IG(1

n

) we have that Q is `(n)-bit long. Let F = fF

n

g

n2N

be as in Constru
-

tion 4.1 and 8n; let H

n

be a family of pair-wise independent, f0; 1g

n

! f0; 1g

b`(n)=2


, hash

fun
tions. We de�ne the fun
tion ensemble

~

F = f

~

F

n

g

n2N

. For every n, a key of a fun
tion

15



in

~

F

n

is a pair, hk; hi, where k is a key of a fun
tion in F

n

and h 2 H

n

. For any n-bit

input, x, the fun
tion

~

f

k;h

is de�ned by:

~

f

k;h

(x)

def

= h(f

k

(x)):

The distribution of fun
tions in

~

F

n

is indu
ed by the following distribution on their keys: h

is uniform in H

n

and the distribution of k is the same as the distribution of keys in F

n

.

Note that 
hoosing the range of the hash fun
tions to be f0; 1g

b`(n)=2


is arbitrary. One


an 
hoose the range to be f0; 1g

`(n)�e(n)

for any fun
tion e(n) su
h that 2

�e(n)

is negligible.

Theorem 4.3 If the DDH-Assumption (Assumption 3.1) holds, then

~

F = f

~

F

n

g

n2N

(as in

Constru
tion 4.2) is an eÆ
iently 
omputable pseudo-random fun
tion ensemble.

Proof: The proof easily follows from Theorem 4.1 and Lemma 4.2. From Theorem 4.1 a

fun
tion f

P;Q;g;~a

sele
ted from F

n

is indistinguishable from a uniform fun
tion with domain

f0; 1g

n

and range hgi. The size of hgi is at least 2

`�1

. Therefore, from Lemma 4.2, for all

but a negligible fra
tion of the hash fun
tions h in H

n

, the distribution of h(x) where x is

uniform in hgi is indistinguishable from the uniform distribution on b`=2
-bit strings. We


an therefore 
on
lude that a distinguisher for

~

F 
an be used to distinguish F from truly

random fun
tions. 2

Remark 4.2 This proof implies that

~

F = f

~

F

n

g

n2N

remains indistinguishable from the

uniform fun
tion-ensemble even when the distinguisher has a

ess to hP;Q; gi and to h (as

in the de�nition of fun
tions in

~

F

n

).

4.2 Proof of Se
urity

There are a few possible approa
hes to proving Theorem 4.1. One approa
h is related to

the 
onstru
tion of [60℄ (and in parti
ular to the 
on
ept of an n-dimensional synthesizer).

Indeed, the 
onstru
tion of [60℄ has motivated the 
onstru
tions of this paper (the 
onne
tion

is des
ribed in Se
tion 5.2). However, the proof we give here for Theorem 4.1 follows

an analogous line to the proof of se
urity for the GGM-Constru
tion of pseudo-random

fun
tions [35℄. This may seem surprising sin
e the two 
onstru
tions look very di�erent.

Nevertheless, in some sense, one may view our 
onstru
tion as a 
areful appli
ation (or a

generalization) of the GGM-Constru
tion. In the following few paragraphs we des
ribe the

similarities and di�eren
es between the two 
onstru
tions.

Let G be a pseudo-random generator that doubles its input. De�ne G

0

and G

1

su
h that

for any n-bit string x, both G

0

(x) and G

1

(x) are n-bit strings and G(x) = hG

0

(x); G

1

(x)i.

Under the GGM-Constru
tion, the key of a pseudo-random fun
tion f

s

: f0; 1g

n

! f0; 1g

n

is a uniformly 
hosen n-bit string s. For any n-bit input, x = x

1

x

2

� � � x

n

, the fun
tion f

s

is

de�ned by:

f

s

(x)

def

= G

x

n

(� � � (G

x

2

(G

x

1

(s)) � � �):

The de�nition of f

s


an be thought of as a re
ursive labeling pro
ess of a depth-n binary

tree. The key s is the label of the root and it indu
es a labeling of all the nodes in the

tree. The labels of the 2

n

leaves 
orrespond to the 2

n

di�erent outputs of the fun
tion.
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In 
ontrast, in our 
onstru
tion no tree appears in the design and no parti
ular order is

atta
hed to the input bits. Nevertheless, we were able to relate the proof of se
urity of the

two 
onstru
tions.

The DDH-Assumption implies a simple pseudo-random generator that pra
ti
ally dou-

bles its input: G

P;Q;g;g

a

(b)

def

= hg

b

; g

a�b

i (whose output is a pseudo-random pair of values

in the subgroup generated by g) . It is tempting to use this generator for the GGM-

Constru
tion. However, a straightforward appli
ation of the GGM-Constru
tion would

give a rather ineÆ
ient fun
tion. We therefore suggest a slight 
hange to the de�nition of

the generator:

~

G

P;Q;g;g

a

(g

b

) = h

~

G

0

P;Q;g;g

a

(g

b

);

~

G

1

P;Q;g;g

a

(g

b

)i

def

= hg

b

; g

a�b

i:

At a �rst look this seems absurd:

~

G

P;Q;g;g

a

is not eÆ
iently 
omputable unless the DH-

Problem is easy. Therefore, if

~

G

P;Q;g;g

a

is eÆ
iently 
omputable, then it is not pseudo-

random. However,

~

G

P;Q;g;g

a

has the following property that allows us to use a generalization

of the GGM-Constru
tion:

~

G

P;Q;g;g

a

(g

b

) is eÆ
iently 
omputable if either a or b are known.

A more general way to state this is:

1.

~

G

P;Q;g;g

a

is eÆ
iently 
omputable (on any input), given the random bits that were

used to sample it (in parti
ular, given a).

2. For any

~

G

P;Q;g;g

a

, it is easy to generate the distribution of its output,

~

G

P;Q;g;g

a

(g

b

),

on a uniformly 
hosen input (this fa
t implies Lemma 4.4).

We now obtain the pseudo-random fun
tions of Constru
tion 4.1 using the GGM-Constru
tion

where at ea
h level of the 
onstru
tion we use a di�erent value, g

a

, for the generator:

f

P;Q;g;a

0

;a

1

;:::;a

n

(x)

def

=

~

G

x

n

P;Q;g;g

a

n

(� � � (

~

G

x

2

P;Q;g;g

a

2

(

~

G

x

1

P;Q;g;g

a

1

(g

a

0

)) � � �):

We turn to the formal proof of Theorem 4.1. First we show (in Lemma 4.4) that

a polynomial sample, h

~

G

P;Q;g;g

a

(g

b

1

); : : :

~

G

P;Q;g;g

a

(g

b

t

)i is pseudo-random i� a single sam-

ple,

~

G

P;Q;g;g

a

(g

b

), is pseudo-random. In preliminary versions of this paper the proof of

Lemma 4.4 used a hybrid-argument based on property (2) above (whi
h is similar to the


orresponding argument in [35℄). However, Vi
tor Shoup (personal 
ommuni
ation) has

pointed out that one 
an use the randomized-redu
tion of the DDH-Problem (see Se
-

tion 3.3) for an alternative proof of the lemma. The new proof is both simpler and more

se
urity-preserving. Given a distinguisher for the polynomial-sample we get a distinguisher

for the single sample that a
hieves the same advantage. Based on this property, the se
u-

rity of the fun
tions in our proof of Theorem 4.1 does not signi�
antly de
rease when the

number of queries the distinguisher makes in
reases (whi
h is very di�erent from the proofs

of se
urity for the fun
tions in [35, 60℄).

De�nition 4.1 Let n and t be any pair of positive integers. De�ne the two distributions

I

n;t

R

and I

n;t

PR

as follows:

I

n;t

R

def

= hP;Q; g; g

a

; g

b

1

; g




1

; : : : ; g

b

t

; g




t

i
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and

I

n;t

PR

def

= hP;Q; g; g

a

; g

b

1

; g

a�b

1

; : : : ; g

b

t

; g

a�b

t

i;

where hP;Q; gi is distributed a

ording to IG(1

n

) and all the values in ha; b

1

; : : : ; b

t

; 


1

; : : : ; 


t

i

are uniform in Z

Q

.

Lemma 4.4 (Indistinguishability of a Polynomial Sample) If the DDH-Assumption (As-

sumption 3.1) holds, then for every probabilisti
 polynomial-time algorithm D, every poly-

nomial t(�), every 
onstant � > 0 and all but a �nite number of n's

�

�

�

Pr[D(I

n;t(n)

PR

) = 1℄� Pr[D(I

n;t(n)

R

) = 1℄

�

�

�

<

1

n

�

:

Moreover, if there exists a probabilisti
 algorithm with running time p = p(n) that dis-

tinguishes I

n;t(n)

PR

from I

n;t(n)

R

(as above) with advantage � = �(n). Then there exists a prob-

abilisti
 algorithm with running time poly(n) � t(n) + p(n) that breaks the DDH-Assumption

with advantage �(n).

Proof: It is enough to prove the \moreover" part of the lemma as setting �(n) =

1

n

�

it

implies the �rst part of the lemma.

Let � = �(n) be any positive real-valued fun
tion. Assume that there exists a probabilis-

ti
 algorithm D with running time p = p(n) and a polynomial t(�) su
h that for in�nitely

many n's

�

�

�

Pr[D(I

n;t(n)

PR

) = 1℄� Pr[D(I

n;t(n)

R

) = 1℄

�

�

�

> �(n):

We de�ne a probabilisti
 algorithm A with running time poly(n) � t(n) + p(n) su
h that for

in�nitely many n's

�

�

�

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A(P;Q; g; g

a

; g

b

; g




) = 1℄

�

�

�

> �(n);

where the probabilities are taken over the random bits of A, the 
hoi
e of hP;Q; gi a

ording

to the distribution IG(1

n

) and the 
hoi
e of a; b and 
 uniformly at random in Z

Q

.

Let the input of A be hP;Q; g; g

a

; g

b

; g

~


i, where P is n-bit long and ~
 is either a � b or

uniform in Z

Q

. Using a randomized redu
tion similar to that in the proof of Lemma 3.2, A

generates t(n) random pairs g

b

i

; g

~


i

su
h that 8i; ~


i

= a � b

i

i� ~
 = a � b. A now invokes D on

these values to distinguish between the two possible distributions of its own input. More

formally, A exe
utes the following algorithm:

1. De�ne t = t(n) and sample ea
h one of the values in hd

1

; : : : ; d

t

; e

1

; : : : ; e

t

i uniformly

at random in Z

Q

.

2. De�ne the sequen
e I to be

hP;Q; g; g

a

;

~

R

d

1

;e

1

(g

a

; g

b

; g

~


); : : : ;

~

R

d

t

;e

t

(g

a

; g

b

; g

~


)i;

where

8i;

~

R

d

i

;e

i

(g

a

; g

b

; g

~


)

def

=

�

g

b

�

d

i

� g

e

i

;

�

g

~


�

d

i

� (g

a

)

e

i

:

3. Output D(I)
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Denote by g

b

i

; g

~


i

the value

~

R

d

i

;e

i

(g

a

; g

b

; g

~


). By the same arguments used in the proof

of Lemma 3.2 we have that:

� If ~
 = a � b, then b

1

; : : : ; b

t

are uniform in Z

Q

(and independent of ea
h other and of

a) and 8i; ~


i

= a � b

i

.

� If ~
 6= a � b, then b

1

; : : : ; b

t

; ~


1

; : : : ; ~


t

are all uniform in Z

Q

(and independent of ea
h

other and of a).

Therefore, by the de�nitions of A, I

n;t

PR

and I

n;t

R

it easily follows that:

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄ = Pr[D(I

n;t

PR

) = 1℄

and Pr[A(P;Q; g; g

a

; g

b

; g




) = 1℄ = Pr[D(I

n;t

R

) = 1℄:

It is now immediate that in�nitely many n's

�

�

�

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A(P;Q; g; g

a

; g

b

; g




) = 1℄

�

�

�

> �(n);

where the probabilities are as above. 2

The proof of Theorem 4.1 given Lemma 4.4 uses an hybrid argument, whi
h is a proof-

te
hnique for showing that two distributions are indistinguishable. See [33, 34℄ for details

on hybrid arguments. Loosely, the method for showing that D and D

0

are indistinguishable

is to (1) De�ne a polynomial-length sequen
e of eÆ
ient distributions D

0

;D

1

; : : : ;D

m

with

D

0

= D and D

m

= D

0

. (2) Show that any two neighboring distributions D

j�1

and D

j

are indistinguishable. In fa
t, in the uniform version of this argument (e.g. in the proof

of Theorem 4.1) we usually show that it is hard to distinguish D

J�1

and D

J

where J

is uniformly 
hosen in [m℄. Furthermore, in the proof of Theorem 4.1 (as well as in the


orresponding proofs in [35, 60℄) the n + 1 distributions that are (impli
itly) de�ned are

not eÆ
iently samplable. For example, one of the two extreme distributions is of uniform

fun
tions (whi
h is 
ertainly not eÆ
iently samplable). Nevertheless, a uniform fun
tion


an be eÆ
iently \simulated" by an algorithm that answers ea
h query at random (under

the restri
tion of keeping 
onsisten
y of its answers for repeating queries). Sin
e all other

intermediate fun
tion distributions 
an be \simulated" in the same sense we 
an still apply

the hybrid argument. We now turn to the formal proof (where the arguments des
ribed

above are impli
it).

Proof: (of Theorem 4.1) It is enough to prove the \moreover" part of the theorem as

setting �(n) =

1

n

�

it implies the �rst part of the theorem.

Let � = �(n) be any positive real-valued fun
tion. Assume that there exists a proba-

bilisti
 ora
le ma
hine M with running time t = t(n) su
h that for in�nitely many n's

�

�

�

Pr[M

f

P;Q;g;~a

(P;Q; g) = 1℄� Pr[M

R

P;Q;g

(P;Q; g) = 1℄

�

�

�

> �(n);

where the probabilities are as in Theorem 4.1. We de�ne a probabilisti
 algorithm D with

running time poly(n) � t(n), su
h that for in�nitely many n's

�

�

�

Pr[D(I

n;t(n)

PR

) = 1℄� Pr[D(I

n;t(n)

R

) = 1℄

�

�

�

>

1

n

� �(n):
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By Lemma 4.4, this 
ompletes the proof of the theorem.

On any input hP;Q; g; g

a

; g

b

1

; g

~


1

; g

b

2

; g

~


2

; : : : ; g

b

t

; g

~


t

i, where P is n bits long (and either

ea
h ~


i

is a � b

i

or ea
h ~


i

is uniform in Z

Q

), D exe
utes the following algorithm:

1. Sample J uniformly at random in [n℄.

2. Sample ea
h one of the values in ha

J+1

; a

J+2

; : : : ; a

n

i uniformly at random in Z

Q

.

3. Invoke M on input hP;Q; gi and answer its queries in the following way: Let the

queries asked by M be hx

1

; x

2

; : : : x

m

i. The i

th

query x

i

is an n-bit string. Denote

x

i

= �x

i

x

i

J

x

i

J+1

� � � x

i

n

, where �x

i

is a (J � 1)-bit string and x

i

J

; x

i

J+1

; : : : ; x

i

n

are single

bits. To answer the i

th

query de�ne ` = `(i) = minfi

0

j�x

i

0

= �x

i

g and answer the query

by

8

<

:

(g

~


`

)

Q

x

i

k

=1;k>J

a

k

if x

i

J

= 1

(g

b

`

)

Q

x

i

k

=1;k>J

a

k

if x

i

J

= 0

These answers are well de�ned sin
e m � t.

4. Output whatever M outputs.

From the de�nition of D we have that for f

P;Q;g;~a

and R

P;Q;g

as in Theorem 4.1,

Pr[D(I

n;t

PR

) = 1 j J = 1℄ = Pr[M

f

P;Q;g;~a

(P;Q; g) = 1℄;

Pr[D(I

n;t

R

) = 1 j J = n℄ = Pr[M

R

P;Q;g

(P;Q; g) = 1℄

and for any 0 < j < n

Pr[D(I

n;t

R

) = 1 j J = j℄ = Pr[D(I

n;t

PR

) = 1 j J = j + 1℄:

By the assumption we get that for in�nitely many n's

�

�

�

Pr[D(I

n;t

PR

) = 1℄� Pr[D(I

n;t

R

) = 1℄

�

�

�

=

�

�

�

�

�

1

n

�

n

X

j=1

Pr[D(I

n;t

PR

) = 1 j J = j℄�

1

n

�

n

X

j=1

Pr[D(I

n;t

R

) = 1 j J = j℄

�

�

�

�

�

=

1

n

�

�

�

�

Pr[D(I

n;t

PR

) = 1 j J = 1℄� Pr[D(I

n;t

R

) = 1 j J = n℄

�

�

�

=

1

n

�

�

�

�

Pr[M

f

P;Q;g;~a

(P;Q; g) = 1℄� Pr[M

R

P;Q;g

(P;Q; g) = 1℄

�

�

�

>

1

n

� �(n):

This 
ompletes the proof of the theorem. 2
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4.3 EÆ
ien
y of the Constru
tion

Consider a fun
tion f

P;Q;g;~a

2 F

n

(where ~a = ha

0

; a

1

; : : : a

n

i) as in Constru
tion 4.1. Com-

puting the value of this fun
tion at any given point, x, involves one multiple produ
t (a

produ
t of polynomially many numbers), y = a

0

�

Q

x

i

=1

a

i

(whi
h 
an be performed mod-

ulo Q), and one modular exponentiation, g

y

. This gives a pseudo-random fun
tion whi
h is

mu
h more eÆ
ient than previous 
onstru
tions. Furthermore, one 
an use prepro
essing

in order to get improved eÆ
ien
y. The most obvious prepro
essing is 
omputing the values

g

2

i

(for every positive integer i up to the length of Q). Now 
omputing the value of the

fun
tion requires two multiple produ
ts modulo a prime

5

. Additional prepro
essing 
an

redu
e the work by a fa
tor of O(log n) (see Bri
kell et. al. [16℄). A
tually, to 
ompute the

value of the pseudo-random fun
tion of Constru
tion 4.2, we also need one appli
ation of

a pair-wise independent hash fun
tion but this operation is very 
heap 
ompared with a

multiple produ
t or a modular exponentiation.

As des
ribed in the Introdu
tion and in Se
tion 2.2, we are also interested in �nding

the parallel-time 
omplexity of the pseudo-random fun
tions. In order to do so, let us

�rst re
all the result of Beame, Cook and Hoover [2℄ who showed that division and related

operations in
luding multiple produ
t are 
omputable inNC

1

. Based on this result, Reif and

Tate [65, 66℄ showed that these operations are also 
omputable in TC

0

. The exa
t depth

required for these operations was 
onsidered in [71, 72℄ where it was shown that multiple

sum is in TC

0

2

, multipli
ation and division in TC

0

3

and multiple produ
t in TC

0

4

(re
all

that for every integer d the 
lass of fun
tions 
omputable by depth d 
ir
uits 
onsisting of

a polynomial number of threshold gates is denoted by TC

0

d

).

By the results above, we immediately get that after prepro
essing (i.e., 
omputing the

values g

2

i

), it is possible to evaluate the fun
tion f

P;Q;g;~a

in TC

0

(sin
e all the ne
essary

operations 
an be performed in TC

0

):

Theorem 4.5 Let F = fF

n

g

n2N

be as in Constru
tion 4.1. Then there exists a polynomial,

p(�), and an integer i su
h that for every n 2 N and every fun
tion f

k

2 F

n

there exists a

depth d threshold 
ir
uit of size bounded by p(n) that 
omputes f

k

.

The exa
t depth of the fun
tions: As dis
ussed above, Theorem 4.5 
an be obtained by

a naive appli
ation of the results in [71, 72℄. In [58℄, we noted that a more detailed analysis

of the fun
tion f

P;Q;g;~a

implies further optimization in the depth. We des
ribed several

methods that enable to evaluate this fun
tion in TC

0

5

(using additional prepro
essing): First,

note that in both multiple produ
ts we 
an assume any prepro
essing of the values in the

multipli
ation (sin
e these values are taken from the sequen
e ha

0

; a

1

; : : : a

n

i or from the set

fg

2

i

g). Se
ond, we don't need the a
tual value of the �rst multiple produ
t, y =

Q

x

i

=1

a

i

:

Computing values r

i

(obtained by the CRT-representation) for whi
h y =

P

m

i

� r

i

(where

the values m

i

are known in advan
e and 
an be prepro
essed) is just as good. Finally, the

value P is also known in advan
e. Therefore, the depth of the �nal modular redu
tion 
an

be redu
ed by pre
omputing the values 2

i

mod P . Using similar ideas and a mu
h more


areful analysis, Krause and Lu
ks [46℄ managed to further redu
e the depth to four. This is

5

In the 
ase that Q is mu
h smaller than P we have that the �rst multiple produ
t is mu
h 
heaper than

the se
ond
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espe
ially interesting as pseudo-random fun
tions 
annot be evaluated in TC

0

2

(see [46℄ for

exa
t statements). This means that the depth required for evaluating the pseudo-random

fun
tions of this paper is almost the smallest possible. An natural question whi
h remains

open is whether there exist pseudo-random fun
tions in TC

0

3

.

Remark 4.3 Similar analysis holds for eÆ
ien
y and depth of the pseudo-random fun
-

tions of Constru
tion 5.1.

5 Constru
tion Based on Fa
toring or the GDH-Assumption

In this se
tion we show an additional 
onstru
tion of pseudo-random fun
tions - Constru
-

tion 5.1, that is very similar to Constru
tion 4.2. The se
urity of Constru
tion 5.1 is redu
ed

to the GDH-Assumption whi
h is a generalization of the 
omputational DH-Assumption.

This 
onstru
tion is interesting for two main reasons:

1. The GDH-Assumption is implied by the DDH-Assumption but they are not known

to be equivalent. Therefore, Constru
tion 5.1 may still be valid even if the DDH-

Assumption does not hold. In addition, the GDH-Assumption modulo a so 
alled

Blum-integer is not stronger than the assumption that fa
toring Blum-integers is

hard. This gives an attra
tive 
onstru
tion of pseudo-random fun
tions that is at

least as se
ure as Fa
toring (whi
h was re
ently improved in [61℄).

2. Constru
tion 5.1 is based on a somewhat di�erent methodology than Constru
tion 4.2.

It may be easier to apply this methodology in order to 
onstru
t pseudo-random

fun
tions based on additional assumptions (in fa
t, Constru
tion 4.2 was obtained as

a modi�
ation of Constru
tion 5.1).

5.1 The GDH-Assumption

The GDH-Assumption was previously 
onsidered in the 
ontext of a key-ex
hange proto
ol

for a group of parties (see e.g., [69, 74℄). In this proto
ol, party i 2 [n℄ 
hooses a se
ret

value, a

i

. After exe
uting the proto
ol, ea
h of these parties 
an 
ompute g

Q

i2[n℄

a

i

and

this value de�nes their 
ommon key. While exe
uting the proto
ol, an eavesdropper may

learn values of the form g

Q

i2I

a

i

for several proper subsets I of [n℄. It is essential to assume

that even with this knowledge it is hard to 
ompute g

Q

i2[n℄

a

i

. The GDH-Assumption is

even stronger: Informally, this assumption says that it is hard to 
ompute g

Q

i2[n℄

a

i

for an

algorithm that 
an query g

Q

i2I

a

i

for any proper subset, I of [n℄ of its 
hoi
e.

To remain 
onsistent with the DDH-Assumption, we state the GDH-Assumption (As-

sumption 5.1) in a subgroup of Z

�

P

of order Q (where P and Q are primes). In fa
t,

the 
orresponding assumption in any other group implies a 
orresponding 
onstru
tion of

pseudo-random fun
tions. For example, sin
e breaking the GDH-Assumption modulo a


omposite is at least as hard as fa
toring [6, 69℄, we obtain in Se
tion 5.4 a 
onstru
tion of

pseudo-random fun
tions whi
h is at least as se
ure as Fa
toring. Furthermore, in 
ontrast

with the DDH-Assumption, one 
an 
onsider the GDH-Assumption in Z

�

P

itself (i.e., when

g is a generator of Z

�

P

).

In order to formalize the GDH-Assumption, we use the following de�nition:
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De�nition 5.1 Let hP;Q; gi be any possible output of IG(1

n

) and let ~a = h~a

1

; ~a

2

; : : : ~a

n

i be

any sequen
e of n elements of Z

Q

. De�ne the fun
tion h

P;Q;g;~a

with domain f0; 1g

n

su
h

that for any n-bit input, x = x

1

x

2

� � � x

n

,

h

P;Q;g;~a

(x)

def

= g

Q

x

i

=1

~a

i

:

De�ne h

r

P;Q;g;~a

to be the restri
tion of h

P;Q;g;~a

to inputs f0; 1g

n

n f1

n

g.

Assumption 5.1 (Generalized DiÆe-Hellman) For every probabilisti
 polynomial-time

ora
le ma
hine A, every 
onstant � > 0 and all but a �nite number of n's

Pr[A

h

r

P;Q;g;~a

(P;Q; g) = h

P;Q;g;~a

(1

n

)℄ <

1

n

�

;

where the probability is taken over the random bits of A, the 
hoi
e of hP;Q; gi a

ording to

the distribution IG(1

n

) and the 
hoi
e of ea
h of the values in ~a = h~a

1

; ~a

2

; : : : ~a

n

i uniformly

at random in Z

Q

.

As a 
orollary of Theorem 4.1 we have that if the DDH-Assumption holds, then so does

the GDH-Assumption. In fa
t, we get that the DDH-Assumption implies the de
isional

GDH-Assumption (this was also previously shown in [74℄):

Corollary 5.1 If the DDH-Assumption (Assumption 3.1) holds, then for every probabilisti


polynomial-time ora
le ma
hine A, every 
onstant � > 0 and all but a �nite number of n's

�

�

�

Pr[A

h

r

P;Q;g;~a

(P;Q; g; h

P;Q;g;~a

(1

n

)) = 1℄� Pr[A

h

r

P;Q;g;~a

(P;Q; g; g




) = 1℄

�

�

�

<

1

n

�

;

where the probabilities are taken over the random bits of A, the 
hoi
e of hP;Q; gi a

ording

to the distribution IG(1

n

), the 
hoi
e of ea
h of the values in ~a = h~a

1

; ~a

2

; : : : ~a

n

i uniformly

at random in Z

Q

and the 
hoi
e of 
 uniformly at random in Z

Q

.

5.2 Motivation to the 
onstru
tion

Constru
tion 5.1 is motivated by the 
on
ept of pseudo-random synthesizers and the 
on-

stru
tion of pseudo-random fun
tions using pseudo-random synthesizers as building blo
ks

[60℄. Informally, a pseudo-random synthesizer, S, is:

An eÆ
iently 
omputable fun
tion of two arguments su
h that given polynomially-

many, uniformly-
hosen, inputs for ea
h argument, fx

i

g

m

i=1

and fy

i

g

m

i=1

, the

output of S on all the 
ombinations, (S(x

i

; y

j

))

m

i;j=1

, 
annot be eÆ
iently distin-

guished from uniform.

A natural generalization is a k-dimensional pseudo-random synthesizer. Informally, a k-

dimensional pseudo-random synthesizer, S, may be de�ned to be:

An eÆ
iently 
omputable fun
tion of k arguments su
h that given polynomially-

many, uniformly-
hosen, inputs for ea
h argument,

nn

x

j

i

o

m

i=1

o

k

j=1

, the output

of S on all the 
ombinations, M =

�

S(x

1

i

1

; x

2

i

2

; : : : ; x

k

i

k

)

�

m

i

1

;i

2

;:::;i

k

=1

, 
annot be

eÆ
iently distinguished from uniform by an algorithm that 
an a

ess M at

points of its 
hoi
e.
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The 
onstru
tion of [60℄ 
an be viewed as �rst re
ursively applying a 2-dimensional

synthesizer to get an n-dimensional synthesizer, S, and then de�ning the pseudo-random

fun
tion, f , by:

f

ha

1;0

;a

1;1

;a

2;0

;a

2;1

;:::a

n;0

;a

n;1

i

(�

1

�

2

: : : �

n

)

def

= S(a

1;�

1

; a

2;�

2

; : : : ; a

n;�

n

):

However, using this 
onstru
tion, the depth of the n-dimensional synthesizer (and the

pseudo-random fun
tions) is larger by a logarithmi
 fa
tor than the depth of the 2-dimensional

synthesizer. Therefore, a natural problem is to 
ome up with a dire
t 
onstru
tion of an

n-dimensional synthesizer.

In this se
tion it is shown that under the GDH-Assumption the fun
tion, S

P;Q;g;r

, de-

�ned by S

P;Q;g;r

(a

1

; a

2

; : : : ; a

n

)

def

=

�

g

Q

n

i=1

a

i

�

� r, is an n-dimensional synthesizer. Con-

stru
tion 5.1 is then obtained as des
ribed above.

5.3 The Constru
tion

We turn to the 
onstru
tion of pseudo-random fun
tions:

Constru
tion 5.1 We de�ne the fun
tion ensemble F = fF

n

g

n2N

. For every n, a key of

a fun
tion in F

n

is a tuple, hP;Q; g;~a; ri, where P is an n-bit prime, Q a prime divisor

of P � 1, g an element of order Q in Z

�

P

, ~a = ha

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : a

n;0

; a

n;1

i a sequen
e

of 2n elements of Z

Q

and r an n-bit string. For any n-bit input, x = x

1

x

2

� � � x

n

, the

Binary-fun
tion, f

P;Q;g;~a;r

, is de�ned by:

f

P;Q;g;~a;r

(x)

def

=

�

g

Q

n

i=1

a

i;x

i

�

� r;

(where � denotes the inner produ
t mod 2). The distribution of fun
tions in F

n

is indu
ed

by the following distribution on their keys: ~a and r are uniform in their range and the

distribution of hP;Q; gi is IG(1

n

).

Theorem 5.2 If the GDH-Assumption (Assumption 5.1) holds, then F = fF

n

g

n2N

(as in

Constru
tion 5.1) is an eÆ
iently 
omputable pseudo-random fun
tion ensemble.

In order to prove Theorem 5.2 we need the following 
orollary of the Goldrei
h-Levin

hard-
ore-bit theorem [37℄ (more pre
isely, the setting of this 
orollary is somewhat di�erent

than the one 
onsidered in [37℄ but their result still applies):

Corollary 5.3 If the GDH-Assumption (Assumption 5.1) holds, then for every probabilisti


polynomial-time ora
le ma
hine A, every 
onstant � > 0 and all but a �nite number of n's

�

�

�

Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; (h

P;Q;g;~a

(1

n

))� r) = 1℄� Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; �) = 1℄

�

�

�

<

1

n

�

;

where the probabilities are taken over the random bits of A, the 
hoi
e of hP;Q; gi a

ording

to the distribution IG(1

n

), the 
hoi
e of ea
h of the values in ~a = h~a

1

; ~a

2

; : : : ~a

n

i uniformly at

random in Z

Q

, the 
hoi
e of r uniformly at random in f0; 1g

n

and the 
hoi
e of � uniformly

at random in f0; 1g.
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Proof:(of Theorem 5.2) Let F = fF

n

g

n2N

be as in Constru
tion 5.1. It is 
lear that F

is eÆ
iently 
omputable. Assume that F is not pseudo-random, then there exists a prob-

abilisti
 polynomial-time ora
le ma
hine M and a 
onstant � > 0 su
h that for in�nitely

many n's

�

�

�

Pr[M

f

P;Q;g;~a;r

(P;Q; g; r) = 1℄� Pr[M

R

n

(P;Q; g; r) = 1℄

�

�

�

>

1

n

�

;

where in the �rst probability, f

P;Q;g;~a;r

is distributed a

ording to F

n

, and in the se
ond

probability R

n

is uniformly distributed over the set of f0; 1g

n

! f0; 1g fun
tions, hP;Q; gi

is distributed a

ording to IG(1

n

) and r is a uniformly 
hosen n bit string.

Let t(�) be a polynomial that bounds the running time of M. We de�ne a probabilisti


polynomial-time ora
le ma
hine A su
h that for in�nitely many n's

�

�

�

Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; (h

P;Q;g;~a

(1

n

))� r) = 1℄� Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; �) = 1℄

�

�

�

>

1

n

�

� t(n)

;

where the probabilities are as in Corollary 5.3. By Corollary 5.3 this would 
ontradi
t the

GDH-Assumption and would 
omplete the proof of the theorem.

Given a

ess to h

r

P;Q;g;~a

and on input hP;Q; g; r; ~�i (where we expe
t ~� to either be

uniformly 
hosen or to be (h

P;Q;g;~a

(1

n

))� r), A exe
utes the following algorithm:

1. De�ne t = t(n) and sample J uniformly at random in [t℄.

2. Sample ea
h one of hb

1

; b

2

; : : : ; b

n

i uniformly at random in Z

Q

.

3. Invoke M on input hP;Q; g; ri and answer its queries in the following way: Let the

queries asked by M be hx

1

; x

2

; : : : x

m

i and assume without loss of generality that all

those queries are distin
t.

� Answer ea
h one of the �rst J � 1 queries with a uniformly 
hosen bit.

� Answer the J

th

query with ~�.

� Let x

i

be the i

th

query for i > J and de�ne the n-bit string z = z

1

z

2

: : : z

n

su
h

that z

k

is 1 if the k

th

bit of x

i

and the k

th

bit of x

J

are equal and 0 otherwise.

Sin
e x

i

6= x

J

we have that z 6= 1

n

. Finally, answer the i

th

query with

�

�

h

r

P;Q;g;~a

(z)

�

Q

z

k

=0

b

k

�

� r:

4. Output whatever M outputs.

From the de�nition of A we have that all its answers to queries x

i

for i > J are f

P;Q;g;~a;r

(x

i

),

where ~a = ha

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : a

n;0

; a

n;1

i depends on the J

th

query x

J

= x

J

1

x

J

2

: : : x

J

n

as

follows: For every 1 � k � n if x

J

k

= 0 then a

k;0

= ~a

k

and a

k;1

= b

k

and if x

J

k

= 1

then a

k;1

= ~a

k

and a

k;0

= b

k

. The �rst J � 1 queries are answered by A uniformly at

random. The only answer that depends on ~� is the J

th

answer itself. This answer is of


ourse uniformly distributed in 
ase ~� is uniform. It is also not hard to verify that the J

th

answer is f

P;Q;g;~a;r

(x

J

) in 
ase ~� = (h

P;Q;g;~a

(1

n

))� r. We 
an therefore 
on
lude that:
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Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; (h

P;Q;g;~a

(1

n

))� r) = 1 j J = 1℄

= Pr[M

f

P;Q;g;~a;r

(P;Q; g; r) = 1℄;

as well as

Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; �) = 1 j J = t(n)℄

= Pr[M

R

n

(P;Q; g; r) = 1℄;

and

Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; �) = 1 j J = j℄

= Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; (h

P;Q;g;~a

(1

n

))� r) = 1 j J = j + 1℄;

where the probabilities are as above. Therefore, by the standard hybrid argument we get

from the assumption that for in�nitely many n's

�

�

�

Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; (h

P;Q;g;~a

(1

n

))� r) = 1℄� Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; �) = 1℄

�

�

�

>

1

n

�

� t(n)

:

2

Remark 5.1 From the proof of Theorem 5.2 we get that F is pseudo-random even if the

distinguisher (denoted by M in the proof) has a

ess to P;Q; g and r.

5.4 Pseudo-Random Fun
tions at Least as Se
ure as Fa
toring

The proof of Theorem 5.2 does not rely on the spe
i�
 group for whi
h the GDH-Assumption

is de�ned. Therefore, the 
orresponding assumption in any other group implies a 
orre-

sponding 
onstru
tion of pseudo-random fun
tions. An espe
ially interesting example is

taking the GDH-Assumption modulo a 
omposite. Sin
e breaking this assumption is at

least as hard as fa
toring [6, 69℄, we obtain an attra
tive 
onstru
tion of pseudo-random

fun
tions whi
h is at least as se
ure as Fa
toring. As mentioned in the introdu
tion, this


onstru
tion was re
ently improved in [61℄. In this subse
tion, we repeat the de�nition of

the GDH-Assumption and the 
onstru
tion of pseudo-random fun
tions with the group set

to Z

�

N

, where N is a Blum-integer. The proof of se
urity is pra
ti
ally the same as the proof

of Theorem 5.2 (and is therefore omitted).

Similarly to the 
ase of the DDH-Assumption, we keep our results general by letting the


omposite N be generated by some polynomial-time algorithm FIG (where FIG stands

for fa
toring-instan
e-generator). We assume that on input 1

n

of FIG its output, N , is

distributed over 2n� bit integers, where N = P �Q for two n� bit primes, P and Q, su
h

that P � Q � 3 mod 4 (su
h an integer is known as a Blum-integer).
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The GDH-Assumption Modulo a Composite:

De�nition 5.2 Let N be any possible output of FIG(1

n

), let g be any quadrati
-residue in

Z

�

N

and let ~a = h~a

1

; ~a

2

; : : : ~a

n

i be any sequen
e of n elements of [N ℄. De�ne the fun
tion

h

N;g;~a

with domain f0; 1g

n

su
h that for any n-bit input, x = x

1

x

2

� � � x

n

,

h

N;g;~a

(x)

def

= g

Q

x

i

=1

~a

i

:

De�ne h

r

N;g;~a

to be the restri
tion of h

N;g;~a

to inputs f0; 1g

n

n f1

n

g.

Assumption 5.2 (Generalized DiÆe-Hellman in Z

�

N

) For every probabilisti
 polynomial-

time ora
le ma
hine A, for every 
onstant � > 0 and all but a �nite number of n's

Pr[A

h

r

N;g;~a

(N; g) = h

N;g;~a

(1

n

)℄ <

1

n

�

;

where the probability is taken over the random bits of A, the 
hoi
e of N a

ording to the

distribution FIG(1

n

), the 
hoi
e of g uniformly at random in the set of quadrati
-residues

in Z

�

N

and the 
hoi
e of ea
h of the values in ~a = h~a

1

; ~a

2

; : : : ~a

n

i uniformly at random in

[N ℄.

The Constru
tion and its Se
urity:

Constru
tion 5.2 We de�ne the fun
tion ensemble F = fF

n

g

n2N

. For every n, a key of

a fun
tion in F

n

is a tuple, hN; g;~a; ri, where N is a 2n-bit Blum-integer, g is a quadrati
-

residue in Z

�

N

, ~a = ha

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : a

n;0

; a

n;1

i is a sequen
e of 2n values in [N ℄ and

r is a 2n-bit string. For any n-bit input, x = x

1

x

2

� � � x

n

, the Binary-fun
tion, f

N;g;~a;r

, is

de�ned by:

f

N;g;~a;r

(x)

def

=

�

g

Q

n

i=1

a

i;x

i

�

� r:

The distribution of fun
tions in F

n

is indu
ed by the following distribution on their keys:

g;~a and r are uniform in their range and the distribution of N is FIG(1

n

).

In the same way Theorem 5.2 is proven, we get that:

Theorem 5.4 If the GDH-Assumption in Z

�

N

(Assumption 5.1) holds, then F = fF

n

g

n2N

(as in Constru
tion 5.2) is an eÆ
iently 
omputable pseudo-random fun
tion ensemble.

However, breaking the GDH-Assumption in Z

�

N

is at least as hard as fa
toring N :

Theorem 5.5 ([6, 69℄) If the GDH-Assumption in Z

�

N

(Assumption 5.1) does not hold,

then there exists a probabilisti
 polynomial-time ora
le ma
hine A and a 
onstant � > 0

su
h that for in�nitely many n,

Pr[A(P �Q) = hP;Qi℄ >

1

n

�

;

where the distribution of N = P �Q is FIG(1

n

).

Furthermore, the redu
tion is linear-preserving (see [49℄): Assume that there exists a

probabilisti
 algorithm A

0

with running-time t(n) that breaks the GDH-Assumption in Z

�

N

with probability �(n). Then there exists a probabilisti
 algorithm A with running-time t(n) �

poly(n) for fa
toring with su

ess-probability �(n).
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We 
an therefore dedu
e that:

Corollary 5.6 (of Theorem 5.4 and Theorem 5.5) Let F = fF

n

g

n2N

be as in Constru
-

tion 5.2 and assume that F is not an eÆ
iently 
omputable pseudo-random fun
tion en-

semble. Then there exists a probabilisti
 polynomial-time algorithm A and a 
onstant � > 0

su
h that for in�nitely many n's:

Pr[A(P �Q) = hP;Qi℄ >

1

n

�

;

where the distribution of N = P �Q is FIG(1

n

).

6 Additional Features and Further Resear
h

This paper shows two, very eÆ
ient, 
onstru
tions of pseudo-random fun
tions. The �rst


onstru
tion is based on the de
isional DH-Assumption (Assumption 3.1) and the se
ond


onstru
tion is based on a generalization of the 
omputational DH-Assumption (Assump-

tion 5.1). Therefore, a natural line for further resear
h is the study of the validity of these

assumptions and the relations between these assumptions and the standard 
omputational

DH-Assumption. Sin
e our 
onstru
tions 
an be based on the 
orresponding assumptions

for other groups (e.g., in ellipti
-
urve groups), it is interesting to study the validity of these

assumptions as well.

The pseudo-random fun
tions of Constru
tions 4.2 and 5.1 have a simple algebrai


stru
ture. We 
onsider this to be an important advantage over all previous 
onstru
tions,

mainly sin
e several attra
tive features seem more likely to exist for a simple 
onstru
tion of

pseudo-random fun
tions. In [58℄ we presented preliminary results in obtaining su
h features

for our 
onstru
tion of pseudo-random fun
tions: (1) A rather simple zero-knowledge proof

for 
laims of the form y = f

s

(m) and y 6= f

s

(m). (2) A way to distribute a pseudo-random

fun
tion among a set of parties su
h that only an authorized subset 
an 
ompute the value

of the fun
tion at any given point. (3) A proto
ol for \oblivious evaluation" of the value of

the fun
tion: Assume that a party, A, knows a key s of a pseudo-random fun
tion. Then A

and a se
ond party, B, 
an perform a proto
ol during whi
h B learns exa
tly one value f

s

(x)

of its 
hoi
e whereas A does not learn a thing (and, in parti
ular, does not learn x). Though

there is mu
h room for improving these designs, they are still a signi�
ant improvement over

the proto
ols that are available for all previous 
onstru
tions of pseudo-random fun
tions

(in
luding 
ommonly used blo
k-
iphers su
h as DES) and they serve as a demonstration

to the potential of our 
onstru
tion.

We 
onsider the task of improving the proto
ols given in [58℄ and designing additional

ones to be an interesting line for further resear
h. A parti
ularly interesting example arises

by the work of Bellare and Goldwasser [3℄. They suggest a way to design a digital-signature

s
heme that is very attra
tive given eÆ
ient pseudo-random fun
tions and an eÆ
ient non-

intera
tive zero-knowledge proof for 
laims of the form y = f

s

(m) (when a 
ommitment to a

key s of a pseudo-random fun
tion f

s

is available as part of the publi
-key). Another very

attra
tive s
heme one may desire is a fun
tion-sharing s
heme for pseudo-random fun
tions

(in an analogous meaning to fun
tion-sharing s
hemes for trapdoor one-way permutations
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as de�ned in [25℄). Two examples for appli
ations of su
h s
hemes are eÆ
ient metering of

web usage [55℄ and the distribution of KDCs (key-distribution 
enters) [57℄.

In Se
tion 5.2 the 
on
ept of a k-dimensional pseudo-random synthesizer and the im-

mediate 
onstru
tion of pseudo-random fun
tions from n-dimensional synthesizers are de-

s
ribed. Assumption 5.1 gives a simple 
onstru
tion of an n-dimensional synthesizer whi
h

indeed translates to a 
onstru
tion of pseudo-random fun
tions (Constru
tion 5.1). An in-

teresting problem is to 
onstru
t eÆ
ient n-dimensional synthesizers using other intra
tabil-

ity assumptions.
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